Patents by Inventor Zhongchun Wang

Zhongchun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8243357
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: August 14, 2012
    Assignee: Soladigm, Inc.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Patent number: 8228592
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 24, 2012
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert T Rozbicki
  • Publication number: 20110266138
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Application
    Filed: June 11, 2010
    Publication date: November 3, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20110267675
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20110266137
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Application
    Filed: June 11, 2010
    Publication date: November 3, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20110267674
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20110249314
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Application
    Filed: June 22, 2011
    Publication date: October 13, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
  • Patent number: 8031389
    Abstract: An all-solid-state electrochromic device comprises a transparent base material, and an electrochromic multilayer-stack structure formed on the transparent base material. The electrochromic multilayer-stack structure comprises a first transparent-conductive film formed on the transparent base material, an ion-storage layer formed on the first transparent-conductive film, a solid-electrolyte layer formed on the ion-storage layer, and an electrochromic layer formed on the solid-electrolyte layer. The electrochromic layer comprises a reflection-controllable electrochromic layer. In one exemplary embodiment, the electrochromic layer comprises a reflection-controllable layer that comprises at least one of antimony and an antimony-based alloy. A second transparent-conductive film can be formed on the reflection-controllable layer, or between the reflection-controllable layer and the solid-electrolyte layer.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Publication number: 20110211247
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: May 11, 2011
    Publication date: September 1, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20100243427
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 30, 2010
    Applicant: SOLADIGM, INC.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20100245973
    Abstract: Prior electrochromic devices frequently suffer from poor reliability and poor performance. Some of the difficulties result from inappropriate design and construction of the devices. In order to improve device reliability two layers of an electrochromic device, the counter electrode layer and the electrochromic layer, can each be fabricated to include defined amounts of lithium. Further, the electrochromic device may be subjected to a multistep thermochemical conditioning operation to improve performance. Additionally, careful choice of the materials and morphology of some components of the electrochromic device provides improvements in performance and reliability. In some devices, all layers of the device are entirely solid and inorganic.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 30, 2010
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Eric Kurman, Mark Kozlowski, Mike Scobey, Jeremy Dixon, Anshu Pradhan
  • Patent number: 7804635
    Abstract: One exemplary embodiment of an electrochromic thin-film material comprises a metal-chalcogen compound; and/or a mixture or solid solution of one or more metal-rich metal-chalcogen compounds and/or lithium. One or more of the metals comprise Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Sb, or Bi, or combinations thereof; and one or more of the chalcogens comprise O, S, Se, or Te, or combinations thereof.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: September 28, 2010
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen, Jeremy Alexander Dixon
  • Publication number: 20100238535
    Abstract: One exemplary embodiment of an electrochromic thin-film material comprises a metal-chalcogen compound; and/or a mixture or solid solution of one or more metal-rich metal-chalcogen compounds and/or lithium. One or more of the metals comprise Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Sb, or Bi, or combinations thereof; and one or more of the chalcogens comprise O, S, Se, or Te, or combinations thereof.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Inventors: Zhongchun Wang, Paul P. Nguyen, Jeremy A. Dixon
  • Patent number: 7715082
    Abstract: An electrochromic switching device comprises a counter electrode, an active electrode and an electrolyte layer disposed between the counter electrode and the active electrode. The active electrode comprises at least one of an oxide, a nitride, an oxynitrides, a partial oxide, a partial nitride and a partial oxynitride of at least one of Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb and I. Upon application of a current to the electrochromic switching device, a compound comprising at least one of the alkali and the alkaline earth metal ion and an element of the active electrode is formed as part of the active electrode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 11, 2010
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Publication number: 20100079845
    Abstract: An all-solid-state electrochromic device comprises a transparent base material, and an electrochromic multilayer-stack structure formed on the transparent base material. The electrochromic multilayer-stack structure comprises a first transparent-conductive film formed on the transparent base material, an ion-storage layer formed on the first transparent-conductive film, a solid-electrolyte layer formed on the ion-storage layer, and an electrochromic layer formed on the solid-electrolyte layer. The electrochromic layer comprises a reflection-controllable electrochromic layer. In one exemplary embodiment, the electrochromic layer comprises a reflection-controllable layer that comprises at least one of antimony and an antimony-based alloy. A second transparent-conductive film can be formed on the reflection-controllable layer, or between the reflection-controllable layer and the solid-electrolyte layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 1, 2010
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Patent number: 7646526
    Abstract: One exemplary embodiment of an electrochromic thin-film material comprises an alloy of antimony and one or more base metals; and/or an alloy of antimony, one or more base metals, and lithium; and/or an alloy of antimony, one or more base metals, lithium, and one or more noble metals. Another exemplary embodiment of an electrochromic thin-film material comprises a multilayer stack, the multilayer stack comprising at least one layer comprising one of antimony, antimony-lithium alloy, antimony-one or more base metals alloy, antimony-one or more base metals-lithium alloy, antimony-one or more base metals-one or more noble metals alloy, and antimony-one or more base metals-one or more noble metals-lithium alloy; and at least one alternating layer comprising one of a base metal and a base-metal alloy. One or more of the base metals comprise Co, Mn, Ni, Fe, Zn, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Cd, Mg, Al, Ga, In, Sn, Pb, and Bi, and alloys thereof.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: January 12, 2010
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Publication number: 20090323158
    Abstract: An electrochromic switching device comprises a counter electrode, an active electrode and an electrolyte layer disposed between the counter electrode and the active electrode. The active electrode comprises at least one of an oxide, a nitride, an oxynitrides, a partial oxide, a partial nitride and a partial oxynitride of at least one of Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb and I. Upon application of a current to the electrochromic switching device, a compound comprising at least one of the alkali and the alkaline earth metal ion and an element of the active electrode is formed as part of the active electrode.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Patent number: 7338590
    Abstract: A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: March 4, 2008
    Assignee: Sandia Corporation
    Inventors: John A. Shelnutt, James E. Miller, Zhongchun Wang, Craig J. Medforth
  • Patent number: 7223474
    Abstract: Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: May 29, 2007
    Assignee: Sandia Corporation
    Inventors: John A. Shelnutt, Craig J. Medforth, Zhongchun Wang
  • Patent number: 7132163
    Abstract: Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 7, 2006
    Inventors: John A. Shelnutt, Craig J. Medforth, Zhongchun Wang