Patents by Inventor Zhonghui Alex Wang

Zhonghui Alex Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150104648
    Abstract: The presently claimed invention provides a metal-free and low stress thick film of diamond-like carbon (DLC). The diamond-like carbon layer of the present invention has a wide range of applications such as automotive coating, hydrophobic-hydrophilic tuning, solar photovoltaic, decorative coating, protective coating and bio-compatible coating. The presently claimed invention further provides a method and an apparatus to grow a metal-free and low stress thick film of diamond-like carbon by performing deposition and plasma etching to stack more than one diamond-like carbon layers together in the same chamber.
    Type: Application
    Filed: September 19, 2014
    Publication date: April 16, 2015
    Inventor: Zhonghui Alex WANG
  • Patent number: 7884017
    Abstract: Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 8, 2011
    Assignee: Lam Research Corporation
    Inventors: Zhonghui Alex Wang, Tiruchirapalli Arunagiri, Fritz C. Redeker, Yezdi Dordi, John Boyd, Mikhail Korolik, Arthur M. Howald, William Thie, Praveen Nalla
  • Publication number: 20100136788
    Abstract: Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 3, 2010
    Applicant: Lam Research Corporation
    Inventors: Zhonghui Alex Wang, Tiruchirapalli Arunagiri, Fritz C. Redeker, Yezdi Dordi, John Boyd, Mikhail Korolik, Arthur M. Howald, William Thie, Praveen Nalla
  • Patent number: 7709400
    Abstract: Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 4, 2010
    Assignee: Lam Research Corporation
    Inventors: Zhonghui Alex Wang, Tiruchirapalli Arunagirí, Fritz C. Redeker, Yezdi Dordi, John Boyd, Mikhail Korolik, Arthur M. Howald, William Thie, Praveen Nalla
  • Publication number: 20080280456
    Abstract: Methods for cleaning semiconductor wafers following chemical mechanical polishing are provided. An exemplary method exposes a wafer to a thermal treatment in an oxidizing environment followed by a thermal treatment in a reducing environment. The thermal treatment in the oxidizing environment both removes residues and oxidizes exposed copper surfaces to form a cupric oxide layer. The thermal treatment in the reducing environment then reduces the cupric oxide to elemental copper. This leaves the exposed copper clean and in condition for further processing, such as electroless plating.
    Type: Application
    Filed: May 8, 2007
    Publication date: November 13, 2008
    Inventors: Zhonghui Alex Wang, Tiruchirapalli Arunagiri, Fritz C. Redeker, Yezdi Dordi, John Boyd, Mikhail Korolik, Arthur M. Howald, William Thie, Praveen Nalla
  • Patent number: 7109111
    Abstract: A method of annealing a metal layer on a substrate in a chamber is provided. The method comprises positioning a substrate with a metal layer thereon in a chamber, removing atmospheric gases from the chamber, providing process gas to the chamber, and annealing the metal layer at a temperature greater than about 80 degrees Celsius. Also provided is a method of forming a feature on a substrate. The method comprises depositing a dielectric layer on the substrate, forming at least one opening within the dielectric layer, depositing a metal layer in the opening, positioning the substrate in an annealing chamber, removing atmospheric gases from the annealing chamber, providing process gas to the annealing chamber, and annealing the metal layer at temperature greater than about 80 degrees Celsius.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: September 19, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Zhonghui Alex Wang, Bo Zheng
  • Patent number: 6911136
    Abstract: A method and apparatus for providing a uniform current density across an immersed surface of a substrate during an immersion process. The method includes the steps of determining a time varying area of an immersed portion of the substrate during the immersion process, and supplying a time varying current to the substrate during the immersion process, wherein the time varying current is proportional to the time varying area and is configured to provide a constant current density to the immersed portion of the substrate.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 28, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Bo Zheng, Rajeev Bajaj, Zhonghui Alex Wang
  • Publication number: 20030201166
    Abstract: A method and apparatus for providing a uniform current density across an immersed surface of a substrate during an immersion process. The method includes the steps of determining a time varying area of an immersed portion of the substrate during the immersion process, and supplying a time varying current to the substrate during the immersion process, wherein the time varying current is proportional to the time varying area and is configured to provide a constant current density to the immersed portion of the substrate.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Bo Zheng, Rajeev Bajaj, Zhonghui Alex Wang
  • Publication number: 20030162392
    Abstract: A method of annealing a metal layer on a substrate in a chamber is provided. The method comprises positioning a substrate with a metal layer thereon in a chamber, removing atmospheric gases from the chamber, providing process gas to the chamber, and annealing the metal layer at a temperature greater than about 80 degrees Celsius. Also provided is a method of forming a feature on a substrate. The method comprises depositing a dielectric layer on the substrate, forming at least one opening within the dielectric layer, depositing a metal layer in the opening, positioning the substrate in an annealing chamber, removing atmospheric gases from the annealing chamber, providing process gas to the annealing chamber, and annealing the metal layer at temperature greater than about 80 degrees Celsius.
    Type: Application
    Filed: February 11, 2002
    Publication date: August 28, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Zhonghui Alex Wang, Bo Zheng