Patents by Inventor Zhu Ji

Zhu Ji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200404656
    Abstract: Apparatuses, systems, and methods to dynamically indicate preference for self-contained slots and slot duration by a user equipment device (UE) in communication with a base station (e.g., a gNB) using a 5G NR radio access technology. A UE may determine to send an indication to a gNB indicating a preference for self-contained slots and slot duration for downlink and/or uplink communications utilizing one or more of the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), and/or acknowledgement messaging (ACK/NACK) for downlink communications, and utilizing one or more of the physical uplink control channel (PUCCH), the PDCCH, and/or the physical uplink shared channel (PUSCH) for uplink communications. The configuration of self-contained slots and slot duration for uplink and/or downlink may be based on one or more of average packet size, average packet rate, traffic type and UE processing capabilities.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Zhu Ji, Yang Li, Yuchul Kim, Johnson O. Sebeni, Sami M. Almalfouh, Wei Zeng, Dawei Zhang
  • Publication number: 20200389848
    Abstract: A device, system, and method adaptively adjusts uplink power transmission to component carriers in carrier aggregation. The method is performed at a user equipment configured with a carrier aggregation functionality including a primary component carrier (PCC) and a secondary component carrier (SCC), the UE using a first transmit power for an uplink transmission on the PCC and using a second transmit power for the uplink transmission on the SCC. The method includes determining whether a total transmit power including the first and second transmit powers for the uplink transmission exceeds a predetermined threshold. The method includes, when the total transmit power exceeds the predetermined threshold, adjusting the first transmit power based on a connectivity parameter for the PCC. The method includes adjusting the second transmit power based on the adjusting of the first transmit power.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 10, 2020
    Inventors: Zhu JI, Ruirui ZONG, Wenshan PAN, Lei LI, Yaoqi YAN, Elliot S. BRIGGS
  • Patent number: 10863389
    Abstract: This disclosure relates to techniques for a wireless device to indicate a preferred bandwidth part and duty cycle in a cellular communication system. A wireless device and a cellular base station may establish a radio resource control connection. The wireless device may transmit an indication of a preferred bandwidth part, or a preferred communication duty cycle, or both, to the cellular base station. The cellular base station may select a bandwidth part, or communication duty cycle, or both, based at least in part on the indication provided by the wireless device, and may transmit an indication of the selected bandwidth part, communication duty cycle, or both, to the wireless device. The cellular base station and the wireless device may perform cellular communication using the selected bandwidth part, communication duty cycle, or both.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: December 8, 2020
    Assignee: Apple Inc.
    Inventors: Yi Su, Yuchul Kim, Pengkai Zhao, Wei Zhang, Sami M. Almalfouh, Wei Zeng, Haitong Sun, Dawei Zhang, Yu Zhang, Tianyan Pu, Zhu Ji, Johnson O. Sebeni, Yang Li
  • Patent number: 10856358
    Abstract: Apparatuses, systems, and methods for a base station to perform a method construct dynamic hierarchical sub-configurations of bandwidth parts (BWPs) for use in a connected mode discontinuous reception (CDRX) communication session with a user equipment (UE) device. The base station may configure a first BWP at a baseband frequency associated with the CDRX communication session as a default BWP, a second BWP with a wider bandwidth than the first BWP as a transmission BWP, and one or more third BWPs as resting BWPs. The transmission BWP and the one or more resting BWPs may be configured to periodically override the default BWP as the active BWP for a predetermined number of CDRX cycles. The transmission BWP may be utilized, when activated to perform data transmission by UE device, and the one or more resting BWPs may be utilized, when activated, for performing channel measurements.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 1, 2020
    Assignee: Apple Inc.
    Inventors: Wei Zhang, Yuchul Kim, Junsung Lim, Haitong Sun, Wei Zeng, Sami M. Almalfouh, Yang Li, Zhu Ji, Dawei Zhang, Johnson O. Sebeni
  • Patent number: 10840994
    Abstract: The present disclosure relates to opportunistically selecting an antenna in an electronic device having multiple antennas. A baseband processor of the electronic device may connect to a first cellular tower providing cellular service at a first frequency using a first antenna of the electronic device. The baseband processor may then receive an indication of a handover event to a second cellular tower operating at a second frequency. The baseband processor may determine signal measurements of the second cellular tower for each antenna of the electronic device that is capable of operating at the second frequency. The baseband processor may execute a handover to the second cellular tower using the antenna associated with the best performing signal measurements. In this manner, an antenna may be opportunistically selected based on performance of the antenna, improving operation of the electronic device and quality of cellular service.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: November 17, 2020
    Assignee: Apple Inc.
    Inventors: Vijendrakumar K. Ashiwal, Dikshit Garg, Vijay Gadde, Sharad Garg, Jia Tang, Zhu Ji, Mohit Narang, Tiberiu Muresan
  • Publication number: 20200358515
    Abstract: This disclosure relates to performing receive beam tracking using motion sensing information in a cellular communication system. A wireless device and a cellular base station may establish a cellular link. A receive beam configuration may be selected for the cellular link. A downlink data beam may be received using the selected receive beam configuration. A possible modification to the receive beam configuration may be selected based at least in part on motion sensing information for the wireless device. It may be determined whether the possible modification to the receive beam configuration improves downlink data beam reception. It may be determined whether to modify the receive beam configuration for the cellular link in accordance with the possible modification to the receive beam configuration, for example based on whether the possible modification to the receive beam configuration improves downlink data beam reception.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 12, 2020
    Inventors: Yang Li, Zhu Ji, Johnson O. Sebeni, Ping Wang, Haitong Sun, Pengkai Zhao, Sulabh Khandelwal, Jia Tang
  • Publication number: 20200351695
    Abstract: Apparatuses, systems, and methods for a wireless device to perform a method including performing one or more of periodic beam quality measurements and/or event-based beam quality measurements, determining, based at least in part on one or more of the periodic beam quality measurements and/or the event-based beam quality measurements, a recommended beam quality measurement configuration, and transmitting, to a base station serving the UE, the recommended beam quality measurement configuration. In addition, the UE may perform receiving, from the base station, instructions regarding the beam quality measurement configuration. The instructions may include instructions to activate, deactivate, and/or modify at least one beam quality measurement configuration. In addition, the instructions may be based, at least in part, on the recommended beam quality measurement configuration.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Wei Zhang, Tianyan Pu, Yang Li, Haitong Sun, Wei Zeng, Jia Tang, Beibei Wang, Sami M. Almalfouh, Zhu Ji, Johnson O. Sebeni, Yuchul Kim, Dawei Zhang
  • Patent number: 10805120
    Abstract: A method is disclosed where a user equipment (“UE”) determines a value of a first parameter and determines a value of a second parameter to select a regularization method for correlation estimate values based on the first parameter value and the second parameter value.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: October 13, 2020
    Assignee: Apple Inc.
    Inventors: Yang Li, Zhu Ji, Johnson O Sebeni
  • Publication number: 20200323006
    Abstract: Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
    Type: Application
    Filed: June 18, 2020
    Publication date: October 8, 2020
    Inventors: Wei Zeng, Haijing Hu, Yuchul Kim, Dawei Zhang, Xiangying Yang, Zhu Ji, Yang Li, Beibei Wang, Jia Tang, Sami M. Almalfouh, Johnson O. Sebeni, Wei Zhang, Tianyan Pu, Vijay Venkataraman, Christian W. Mucke
  • Publication number: 20200314748
    Abstract: Apparatuses, systems, and methods for a wireless device to perform methods for configuring a power savings signal in fifth generation (5G) new radio (NR) networks. The wireless device may transmit, to a base station within a network, power savings requirements and receiving, from the base station, a configuration of a power saving signal, where the configuration indicates one or more functionalities of the power saving signal. The wireless device may periodically receive, from the base station, the power saving signal and interpret the power saving signal based on the configuration. The configuration of the power saving signal may be received via radio resource control signaling.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 1, 2020
    Inventors: Yuchul Kim, Wei Zeng, Haitong Sun, Dawei Zhang, Jia Tang, Yang Li, Zhu Ji, Johnson O. Sebeni
  • Patent number: 10791474
    Abstract: This disclosure relates to techniques for detecting a signal and powering off at least some receiver components if no signal is detected. A wireless device may take one or more measurements of one or more signals. The wireless device may determine, based on the measurements, whether a signal (e.g., a signal of a licensed assisted access cell) is anticipated during an upcoming time period, e.g., a subframe or portion of a subframe. If no signal is anticipated, the wireless device may power off at least some receiver functions.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 29, 2020
    Assignee: Apple Inc.
    Inventors: Beibei Wang, Zhu Ji, Johnson O. Sebeni, Jia Tang, Yang Li
  • Patent number: 10779276
    Abstract: Apparatuses, systems, and methods to dynamically indicate preference for self-contained slots and slot duration by a user equipment device (UE) in communication with a base station (e.g., a gNB) using a 5G NR radio access technology. A UE may determine to send an indication to a gNB indicating a preference for self-contained slots and slot duration for downlink and/or uplink communications utilizing one or more of the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), and/or acknowledgement messaging (ACK/NACK) for downlink communications, and utilizing one or more of the physical uplink control channel (PUCCH), the PDCCH, and/or the physical uplink shared channel (PUSCH) for uplink communications. The configuration of self-contained slots and slot duration for uplink and/or downlink may be based on one or more of average packet size, average packet rate, traffic type and UE processing capabilities.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: September 15, 2020
    Assignee: Apple Inc.
    Inventors: Zhu Ji, Yang Li, Yuchul Kim, Johnson O. Sebeni, Sami M. Almalfouh, Wei Zeng, Dawei Zhang
  • Publication number: 20200281002
    Abstract: Apparatuses, systems, and methods for a wireless device to perform simultaneous uplink activity for multiple RATs in the same carrier using frequency division multiplexing. The wireless device may establish a first wireless link with a first base station according to a first radio access technology (RAT) and a second wireless link with a second base station according to a second RAT. The first base station may provide a first cell operating in a first system bandwidth and the second base station may provide a second cell operating in a second system bandwidth. The wireless device may determine whether the wireless device has uplink activity scheduled according to both the first RAT and the second RAT. If so, the wireless device may perform uplink activity for both the first RAT and the second RAT in the first system bandwidth using frequency division multiplexing.
    Type: Application
    Filed: April 22, 2020
    Publication date: September 3, 2020
    Inventors: Yang Li, Wei Zeng, Zhu Ji, Beibei Wang, Jia Tang, Yuchul Kim, Haijing Hu, Dawei Zhang, Xiangying Yang, Sami M. Almalfouh, Johnson O. Sebeni, Wei Zhang, Tianyan Pu
  • Publication number: 20200274751
    Abstract: This disclosure relates to techniques for supporting narrowband device-to-device wireless communication, including possible techniques for providing synchronization sequences. A first wireless device may transmit a preamble of a device-to-device wireless communication with a second wireless device. The preamble may include a first synchronization sequence. The first synchronization sequence may include multiple repetitions of a basis sequence, multiplied by a cover code. The basis sequence may span multiple orthogonal frequency division multiplexing symbols.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Yang Li, Tianyan Pu, Li Su, Zhu Ji
  • Publication number: 20200267642
    Abstract: This disclosure relates to techniques for opportunistically depowering receiver chains of a wireless device. Based on control information, a device may determine whether the current number of active receiver chains can be reduced while maintaining a target achievable code rate for a period of data reception associated with the control information. Additionally, the device may generate and use a lookup table to determine whether to depower receiver chains, and which receiver chains to depower.
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Inventors: Tianyan Pu, Sai Sravan Bharadwaj Karri, Wei Zhang, Swaminathan Balakrishnan, Xiantao Sun, Beibei Wang, Manish G. Vemulapalli, Jia Tang, Sami M. Almalfouh, Zhu Ji, Sachin J. Sane
  • Patent number: 10750398
    Abstract: Apparatuses, systems, and methods for a wireless device to perform a method including performing one or more of periodic beam quality measurements and/or event-based beam quality measurements, determining, based at least in part on one or more of the periodic beam quality measurements and/or the event-based beam quality measurements, a recommended beam quality measurement configuration, and transmitting, to a base station serving the UE, the recommended beam quality measurement configuration. In addition, the UE may perform receiving, from the base station, instructions regarding the beam quality measurement configuration. The instructions may include instructions to activate, deactivate, and/or modify at least one beam quality measurement configuration. In addition, the instructions may be based, at least in part, on the recommended beam quality measurement configuration.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 18, 2020
    Assignee: Apple Inc.
    Inventors: Wei Zhang, Tianyan Pu, Yang Li, Haitong Sun, Wei Zeng, Jia Tang, Beibei Wang, Sami M. Almalfouh, Zhu Ji, Johnson O. Sebeni, Yuchul Kim, Dawei Zhang
  • Publication number: 20200252949
    Abstract: This disclosure relates to techniques for a wireless device to dynamically adapt its bandwidth use using network scheduling information in a cellular communication system. A radio resource control connection between a cellular base station and a wireless device may be established. The wireless device may receive network scheduling information from the cellular base station. The wireless device may dynamically select a receive bandwidth for receiving transmissions from the cellular base station based at least in part on the network scheduling information.
    Type: Application
    Filed: January 10, 2020
    Publication date: August 6, 2020
    Inventors: Yuchul Kim, Jia Tang, Yang Li, Wei Zeng, Haitong Sun, Yu Zhang, Zhu Ji, Dawei Zhang
  • Patent number: 10736163
    Abstract: Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to establish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: August 4, 2020
    Assignee: Apple Inc.
    Inventors: Wei Zeng, Haijing Hu, Yuchul Kim, Dawei Zhang, Xiangying Yang, Zhu Ji, Yang Li, Beibei Wang, Jia Tang, Sami M. Almalfouh, Johnson O. Sebeni, Wei Zhang, Tianyan Pu, Vijay Venkataraman, Christian W. Mucke
  • Patent number: 10728903
    Abstract: Described herein are apparatuses, systems and methods for adaptive downlink scheduling and link adaptation. The methods including, at a base station connected to a user equipment (“UE”), determining an initial modulation and coding scheme (“MCS”) for a plurality of subframes to be transmitted to the UE, wherein each MCS relates to a coding rate value for the subframes, determining an MCS pattern for the plurality of subframes based on the initial MCS, wherein an MCS for one of the subframes has a higher coding rate value than the initial MCS, and transmitting the plurality of subframes to the UE according to the MCS pattern.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 28, 2020
    Assignee: Apple Inc.
    Inventors: Zhu Ji, Yanxia Wang, Bing Zhao, Johnson O. Sebeni
  • Patent number: 10728803
    Abstract: A method performed by a user equipment (UE) connected to a network that utilizes a first bandwidth for a plurality of network operations and assigns the UE a second bandwidth, within the first bandwidth, to utilize for communication with the network. The method including determining a third bandwidth within the first bandwidth that is narrower than the first bandwidth and wider than the second bandwidth and includes the second bandwidth, monitoring the third bandwidth for at least one reference signal transmitted by the network, and determining at least one value that corresponds to the connection between the UE and the network based on the at least one reference signal.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: July 28, 2020
    Assignee: Apple Inc.
    Inventors: Yang Li, Zhu Ji, Johnson O. Sebeni