Patents by Inventor Zidu Ma

Zidu Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140053570
    Abstract: A method for reducing emissions from an engine includes generating a light hydrocarbon fuel fraction and combusting the light hydrocarbon fuel fraction in place of the fuel. The light hydrocarbon fuel fraction is generated by heating the fuel and flowing the fuel through a plurality of hollow fiber superhydrophobic membranes in a membrane module. Each hollow superhydrophobic membrane comprises a porous support and a superhydrophobic layer free of pores that extend from one side of the superhydrophobic layer to the other. Vapor from the fuel permeates the superhydrophobic membranes and enters a distillate collection chamber, producing a distilled fuel in the distillate collection chamber and a residual fuel within the hollow fiber superhydrophobic membranes. The residual fuel is removed from the membrane module and cooled to produce a cooled residual fuel.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: United Technologies Corporation
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Publication number: 20130340468
    Abstract: An air conditioning and water producing system includes a heat pumping unit and a membrane contactor in thermal communication with the heat pumping unit. The membrane contactor is configured such that a first brine flow is cooled by the heat pumping unit and diluted at the membrane contactor. A distiller is in thermal communication with the heat pumping unit and the membrane contactor such that a second brine flow is heated by the heat pumping unit and conveyed through the distiller. Thermal interaction between the second brine flow and the first brine flow flowing through the distiller extracts water from the second brine flow.
    Type: Application
    Filed: March 16, 2012
    Publication date: December 26, 2013
    Applicant: CARRIER CORPORATION
    Inventor: Zidu Ma
  • Patent number: 8603300
    Abstract: A method for fractionating a fuel includes heating the fuel and flowing it through hollow superhydrophobic membranes in a membrane module. Vapor from the fuel permeates the hydrophobic membranes and enters a distillate collection chamber, producing distilled fuel and residual fuel. The residual fuel is removed from the module and cooled. The cooled residual fuel is flowed through hollow tubes in the module and the distilled fuel is removed from the distillate collection chamber. Burning the distilled fuel reduces engine emissions. A fuel fractionation system includes a distillate collection chamber, hollow superhydrophobic membranes, hollow tubes and a distillate outlet. The hollow superhydrophobic membranes receive heated fuel and allow vapor from the heated fuel to permeate the membranes and enter the distillate collection chamber. The hollow tubes receive cooled residual fuel and are positioned to allow vapor in the distillate collection chamber to condense on outer surfaces of the hollow tubes.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 10, 2013
    Assignee: United Technologies Corporation
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Publication number: 20130206658
    Abstract: A heat exchange system may include a first heat exchange circuit and a second heat exchange circuit. The first heat exchange circuit may circulate a first working fluid sequentially through a first heat exchanger, a second heat exchanger and a membrane contactor. The second heat exchange circuit may direct a second working fluid sequentially through the first heat exchanger and the membrane contactor, where the second working fluid includes solute and solvent. The first heat exchanger and the membrane contactor may transfer heat energy from the second working fluid to the first working fluid, and the second heat exchanger may transfer heat energy from the first working fluid to a third working fluid. The membrane contactor may extract a portion of the solvent from the second working fluid.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: United Technologies Corporation
    Inventors: Hailing Wu, Zidu Ma
  • Publication number: 20130199220
    Abstract: An air temperature and humidity control device using a liquid-desiccant humidity controller thermally coupled to a heat pump is disclosed. The humidity controller may include a contactor having at least one contact module with a porous sidewall that is permeable to water vapor and impermeable to the liquid desiccant. The disclosed device provides air temperature control through heat transfer between the liquid desiccant and heat pump and provides humidity controls through water transfer between the desiccant and surrounding air.
    Type: Application
    Filed: November 9, 2010
    Publication date: August 8, 2013
    Applicant: Carrier Corporation
    Inventors: Zidu Ma, Yirong Jiang, Dong Luo
  • Patent number: 8466079
    Abstract: A method for regenerating at least one impurity-adsorbing sorbent bed includes passing impurity-containing fluid through the impurity-adsorbing bed. The impurity-adsorbing sorbent bed adsorbs an impurity in the impurity-containing fluid to produce a purified fluid. A portion of the purified fluid is sent back through the impurity-adsorbing sorbent bed that contains the adsorbed impurity. The impurity-adsorbing sorbent bed is exposed to microwave energy to desorb the impurity adsorbed on the impurity-adsorbing sorbent bed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 18, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Thomas H. Vanderspurt, Sarah J. Arsenault, Theresa A. Hugener-Campbell, Sean C. Emerson, Zidu Ma, James D. MacLeod, Susanne M. Opalka
  • Publication number: 20130071793
    Abstract: A method for fractionating a fuel includes heating the fuel and flowing it through hollow superhydrophobic membranes in a membrane module. Vapor from the fuel permeates the hydrophobic membranes and enters a distillate collection chamber, producing distilled fuel and residual fuel. The residual fuel is removed from the module and cooled. The cooled residual fuel is flowed through hollow tubes in the module and the distilled fuel is removed from the distillate collection chamber. Burning the distilled fuel reduces engine emissions. A fuel fractionation system includes a distillate collection chamber, hollow superhydrophobic membranes, hollow tubes and a distillate outlet. The hollow superhydrophobic membranes receive heated fuel and allow vapor from the heated fuel to permeate the membranes and enter the distillate collection chamber. The hollow tubes receive cooled residual fuel and are positioned to allow vapor in the distillate collection chamber to condense on outer surfaces of the hollow tubes.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Patent number: 8070859
    Abstract: A non-porous membrane suitable for use in removing dissolved oxygen in a fuel deoxygenator device in an aircraft is produced by solvent casting. A first membrane layer is deposited on a substrate. A second membrane layer is deposited on top of the first membrane layer. Subsequent membrane layers may be deposited on top of the second membrane layer as desired. The resulting non-porous membrane allows little or no leaking of fuel across the membrane.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: December 6, 2011
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Zidu Ma, Louis J. Spadaccini, He Huang, Harry Cordatos, Foster Phillip Lamm, Ingo Pinnau
  • Publication number: 20110180383
    Abstract: A membrane distillation system includes a distillation vessel, an array of hollow fiber membranes pervious to distillate vapor but impervious to feed solution and an array of hollow tubes impervious to distillate vapor and feed solution but which allow thermal energy transmission. The system further includes a pump, a heat exchanger for heating the feed solution before it enters the hollow fiber membranes, and an outlet for removing distillate from the distillation vessel. A method for removing distillate from a feed solution includes delivering the feed solution through hollow tubes spanning a distillation vessel, heating the feed solution, delivering the feed solution through hollow fiber membranes spanning the distillation vessel to create a vapor pressure differential between the hollow fiber membranes and a distillation volume within the distillation vessel, and removing distillate from the distillation vessel.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: MILTON ROY COMPANY
    Inventors: Zidu Ma, Timothy D. Davis, James R. Irish, Gary D. Winch
  • Publication number: 20110180479
    Abstract: A treatment system includes a feed source, a first treatment unit for separating a feed into a first product and a concentrated feed containing less than about 7% total dissolved solids, and a membrane distillation unit for separating the concentrated feed into a second product and a superconcentrated feed containing at least about 14% total dissolved solids. The membrane distillation unit includes hollow fiber membranes having inner bores for receiving the concentrated feed and membrane walls for allowing vapor transmission of distillate. A method includes delivering feed to a first treatment unit where it is separated into first product and concentrated feed streams; delivering the concentrated feed to internal bores of hollow fiber membranes where it is separated into second product and superconcentrated feed streams as vapor passes across the hollow fiber membranes; delivering the superconcentrated feed to a liquid removal unit; and collecting the first and second product streams.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 28, 2011
    Applicant: MILTON ROY COMPANY
    Inventors: Haralambos Cordatos, James R. Irish, Zidu Ma, Timothy N. Sundel, Xiaomei Yu
  • Patent number: 7871520
    Abstract: A membrane module comprising an outer casing having an interior region, a plurality of hollow fiber membranes extending through at least a portion of the interior region, and having exterior surfaces and inner hollow regions, where the inner hollow regions are configured to provide flow paths for a distillate fluid. The membrane module further comprises an opening extending through the outer casing for providing a feed solution to the interior region adjacent the exterior surfaces of the plurality of hollow fiber membranes, where the feed solution provided to the opening has an elevated temperature that is greater than an atmospheric-pressure boiling temperature of the feed solution, and an elevated pressure at which an effective boiling temperature of the feed solution is greater than the elevated temperature.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: January 18, 2011
    Assignee: Milton Roy Company
    Inventors: Zidu Ma, James R. Irish, Xiaohong Liao, Haralambos Cordatos, Xiaomei Yu
  • Publication number: 20100216628
    Abstract: A method for regenerating at least one impurity-adsorbing sorbent bed includes passing impurity-containing fluid through the impurity-adsorbing bed. The impurity-adsorbing sorbent bed adsorbs an impurity in the impurity-containing fluid to produce a purified fluid. A portion of the purified fluid is sent back through the impurity-adsorbing sorbent bed that contains the adsorbed impurity. The impurity-adsorbing sorbent bed is exposed to microwave energy to desorb the impurity adsorbed on the impurity-adsorbing sorbent bed.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 26, 2010
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Thomas H. Vanderspurt, Sarah J. Arsenault, Theresa A. Hugener-Campbell, Sean C. Emerson, Zidu Ma, James D. MacLeod, Susanne M. Opalka
  • Patent number: 7744824
    Abstract: The athermal sorbent bed regeneration system of the present invention includes a main fuel supply, at least one sorbent bed, a source of microwave energy, and a secondary fuel supply. The main fuel supply has a first concentration of an impurity and the secondary fuel supply has a second concentration of the impurity that is less than the first concentration of the impurity. The sorbent bed adsorbs the impurity. The microwave energy source regenerates the sorbent bed for reuse.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: June 29, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Thomas H. Vanderspurt, Sarah J. Arsenault, Theresa A. Hugener-Campbell, Sean C. Emerson, Zidu Ma, James D. MacLeod, Susanne M. Opalka
  • Publication number: 20100065496
    Abstract: A membrane distillation system includes a membrane distillation module, a brine loop and a distillate loop. The brine loop and the distillate loop each include means for regulating flow of brine solution and distillate, respectively, to the membrane distillation module. The flow of brine solution and distillate is regulated to prevent brine solution and distillate from penetrating membranes of the membrane distillation module. A method of membrane distillation includes delivering brine solution and distillate to the membrane distillation module at low pressures in a first mode. The method also includes heating the brine solution and cooling the distillate and delivering portions of each to the membrane distillation module in a second mode. The portions of heated brine solution and cooled distillate are adjusted to facilitate membrane distillation while preventing liquid from penetrating membranes of the membrane distillation module.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 18, 2010
    Applicant: Milton Roy Company
    Inventors: Zidu Ma, Xiaohong Liao, James R. Irish
  • Publication number: 20100051549
    Abstract: A contactor module for separating a distillate from a feed solution includes an outer casing with an interior region, a distillate collection chamber, and pluralities of hollow fiber membranes and hollow tubes extending through the distillate collection chamber, where the hollow fiber membranes are configured to allow vapor transmission, and the hollow tubes are configured to substantially prevent vapor transmission, and further configured to allow transmission of thermal energy.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Applicant: Milton Roy Company
    Inventors: Zidu Ma, Xiaohong Liao, James R. Irish
  • Publication number: 20100025219
    Abstract: A distillation system and method includes open reservoirs and pluralities of hollow fiber membranes and hollow tubes extending through portions of separate open reservoirs. The hollow fiber membranes are configured to allow vapor transmission, and the hollow tubes are configured to substantially prevent vapor transmission but allow transmission of thermal energy. Feed solution is circulated through the open reservoirs. Distillate is separated from the feed solution by the hollow fiber membranes and thermal energy is recouped through the hollow tubes.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 4, 2010
    Applicant: Milton Roy Company
    Inventors: Zidu Ma, Xiaohong Liao, James R. Irish
  • Patent number: 7608185
    Abstract: A membrane module comprising an outer casing having an interior region, a seal disposed within the outer case, thereby dividing the interior region into a first chamber and a second chamber, and a plurality of hollow fiber membranes extending through the first chamber and the second chamber, where at least a portion of the plurality of hollow fiber membranes have first segments located within the first chamber and second segments located within the second chamber, the first segments being configured to allow vapor transmission therethrough, and the second segments being configured to substantially prevent vapor transmission therethrough, and further configured to allow transmission of thermal energy therethrough.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: October 27, 2009
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Xiaohong Liao, Zidu Ma, James R. Irish
  • Publication number: 20090152184
    Abstract: A membrane module comprising an outer casing having an interior region, a seal disposed within the outer case, thereby dividing the interior region into a first chamber and a second chamber, and a plurality of hollow fiber membranes extending through the first chamber and the second chamber, where at least a portion of the plurality of hollow fiber membranes have first segments located within the first chamber and second segments located within the second chamber, the first segments being configured to allow vapor transmission therethrough, and the second segments being configured to substantially prevent vapor transmission therethrough, and further configured to allow transmission of thermal energy therethrough.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Xiaohong Liao, Zidu Ma, James R. Irish
  • Publication number: 20090152199
    Abstract: A membrane module comprising an outer casing having an interior region, a plurality of hollow fiber membranes extending through at least a portion of the interior region, and having exterior surfaces and inner hollow regions, where the inner hollow regions are configured to provide flow paths for a distillate fluid. The membrane module further comprises an opening extending through the outer casing for providing a feed solution to the interior region adjacent the exterior surfaces of the plurality of hollow fiber membranes, where the feed solution provided to the opening has an elevated temperature that is greater than an atmospheric-pressure boiling temperature of the feed solution, and an elevated pressure at which an effective boiling temperature of the feed solution is greater than the elevated temperature.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Zidu Ma, James R. Irish, Xiaohong Liao, Haralambos Cordatos, Xiaomei Yu
  • Patent number: 7435283
    Abstract: A fuel stabilization system includes a first deoxygenator and a second deoxygenator both for removing dissolved oxygen from a hydrocarbon fuel. The first and second deoxygenators are arranged in parallel or series to sequentially remove a portion of dissolved oxygen from the hydrocarbon fuel. The arrangement of several deoxygenators for a single fuel stream improves removal of dissolved oxygen and provides for scalability of the fuel system to meet application specific demands. The arrangement also provides for the preservation of partial system functionality in the event of the failure of one of the deoxygenator modules.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: October 14, 2008
    Assignee: United Technologies Corporation
    Inventors: Thomas Gregory Tillman, Alexander G. Chen, Catalin G. Fotache, Louis J. Spadaccini, Foster Lamm, Zidu Ma, Lou Chiappetta, Charles C. Coffin, James A. Wilkinson, Brian Welch