Patents by Inventor Ziran LIU

Ziran LIU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230381956
    Abstract: The present disclosure provides a multi-arm spacecraft model predictive control method based on the mixture of Gaussian processes, equipment, and a medium. Model predictive control has excellent performance in dealing with complex nonlinear systems such as multi-arm spacecrafts with various constraints, and is widely applied to ground robots, unmanned aerial vehicles, autonomous driving and other practical scenarios. Therefore, a task space controller is designed based on the model predictive control in the present disclosure. Besides, in order to enhance the anti-interference capability of the present disclosure, an interference model is established and compensation is carried out in the model predictive control by utilizing the characteristics of small training data volume and high training speed in the mixture of Gaussian processes. Finally, a thrust distribution method is designed to complete platform control.
    Type: Application
    Filed: May 5, 2023
    Publication date: November 30, 2023
    Inventors: Chengfei Yue, Xibin Cao, Ziran Liu, Xueqin Chen, Fan Wu, Cheng Wei
  • Patent number: 11822024
    Abstract: Provided is a pixel sensing circuit, including a signal generation sub-circuit, a reset sub-circuit, an amplification sub-circuit, and a read sub-circuit. The reset sub-circuit is configured to provide a signal of a first power supply line to a first node under control of a reset signal line. The signal generation sub-circuit is configured to detect a light signal and convert the detected light signal into an electrical signal. The amplification sub-circuit is configured to provide an amplified electrical signal to a second node according to a signal provided by a second power supply line and under control of the first node. The read sub-circuit is configured to output the amplified electrical signal to a signal read line under control of a scan signal line.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: November 21, 2023
    Assignees: Beijing BOE Sensor Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Dexi Kong, Cheng Li, Kunjing Chung, Lin Zhou, Jingjie Su, Jie Zhang, Tiansheng Li, Ziran Liu, Jin Cheng
  • Patent number: 11614551
    Abstract: The present disclosure provides a detection substrate, a manufacturing method thereof and a ray detector. The detection substrate includes: a base substrate; a plurality of independent first electrodes arranged on the base substrate on the same layer; a photoelectric conversion layer arranged on a whole face of sides, facing away from the base substrate, of the plurality of first electrodes; a ray absorption layer arranged on a side, facing away from the plurality of first electrodes, of the photoelectric conversion layer, wherein an orthographic projection of the ray absorption layer on the base substrate is overlapped with an orthographic projection of gaps between the first electrodes on the base substrate; and a second electrode arranged on a whole face of a side, facing away from the plurality of first electrodes, of the photoelectric conversion layer.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 28, 2023
    Assignees: Beijing BOE Sensor Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Jianxing Shang, Xuecheng Hou, Zhenyu Wang, Ziran Liu, Chuang Yong
  • Publication number: 20220214463
    Abstract: Provided is a pixel sensing circuit, including a signal generation sub-circuit, a reset sub-circuit, an amplification sub-circuit, and a read sub-circuit. The reset sub-circuit is configured to provide a signal of a first power supply line to a first node under control of a reset signal line. The signal generation sub-circuit is configured to detect a light signal and convert the detected light signal into an electrical signal. The amplification sub-circuit is configured to provide an amplified electrical signal to a second node according to a signal provided by a second power supply line and under control of the first node. The read sub-circuit is configured to output the amplified electrical signal to a signal read line under control of a scan signal line.
    Type: Application
    Filed: August 31, 2021
    Publication date: July 7, 2022
    Inventors: Dexi KONG, Cheng LI, Kunjing CHUNG, Lin ZHOU, Jingjie SU, Jie ZHANG, Tiansheng LI, Ziran LIU, Jin CHENG
  • Publication number: 20220163684
    Abstract: The present disclosure provides a detection substrate, a manufacturing method thereof and a ray detector. The detection substrate includes: a base substrate; a plurality of independent first electrodes arranged on the base substrate on the same layer; a photoelectric conversion layer arranged on a whole face of sides, facing away from the base substrate, of the plurality of first electrodes; a ray absorption layer arranged on a side, facing away from the plurality of first electrodes, of the photoelectric conversion layer, wherein an orthographic projection of the ray absorption layer on the base substrate is overlapped with an orthographic projection of gaps between the first electrodes on the base substrate; and a second electrode arranged on a whole face of a side, facing away from the plurality of first electrodes, of the photoelectric conversion layer.
    Type: Application
    Filed: June 18, 2021
    Publication date: May 26, 2022
    Inventors: Jianxing SHANG, Xuecheng HOU, Zhenyu WANG, Ziran LIU, Chuang YONG