Patents by Inventor Zlatko Sitar

Zlatko Sitar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220393431
    Abstract: A method of making a Group III nitride material that includes: providing a substrate; patterning a template on the substrate; depositing a layer of a material comprising aluminum, gallium and nitrogen on the substrate at a temperature; annealing the layer comprising aluminum, gallium and nitrogen; epitaxially growing Distributed Bragg Reflectors to form a structure on the substrate that comprises microcavities; and etching micropillars in the structure for at least 30 seconds with a heated basic solution is described.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 8, 2022
    Inventors: Michael D. Gerhold, Alexander Franke, Zlatko Sitar, Ramon Collazo, Ronny Kirste, Dorian Alden
  • Patent number: 9840790
    Abstract: The invention provides highly transparent single crystalline AlN layers as device substrates for light emitting diodes in order to improve the output and operational degradation of light emitting devices. The highly transparent single crystalline AlN layers have a refractive index in the a-axis direction in the range of 2.250 to 2.400 and an absorption coefficient less than or equal to 15 cm-1 at a wavelength of 265 nm. The invention also provides a method for growing highly transparent single crystalline AlN layers, the method including the steps of maintaining the amount of Al contained in wall deposits formed in a flow channel of a reactor at a level lower than or equal to 30% of the total amount of aluminum fed into the reactor, and maintaining the wall temperature in the flow channel at less than or equal to 1200° C.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: December 12, 2017
    Assignees: Hexatech, Inc., National University Corporation Tokyo University of Agriculture and Technology, Tokuyama Corporation
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Toru Nagashima, Toru Kinoshita, Yuki Kubota, Rafael F. Dalmau, Jinqiao Xie, Baxter F. Moody, Raoul Schlesser, Zlatko Sitar
  • Publication number: 20170154963
    Abstract: The energy of formation of a point defect in a compound semiconductor is a function of the process conditions and the Fermi energy (the energy of the charge carriers). In wide bandgap semiconductors or insulators, the contribution of this energy to the formation energy of charged point defects is significant. For doping for n- or p-type conductivity, the larger the energy gap, the higher the concentration of compensating point defects that is at equilibrium with the system. This is a fundamental problem with wide bandgap materials that will be directly addressed with these capabilities. In this approach, minority carrier injection is used to modify the quasi-Fermi level to control the formation energy of the point defects. Increasing the formation energy of unwanted point defect through an external excitation that leads to excess minority carriers during the growth of the semiconductor device structure leads to a reduction in compensating point defects.
    Type: Application
    Filed: November 11, 2016
    Publication date: June 1, 2017
    Inventors: Ramon R. Collazo, Zlatko Sitar, James Tweedie
  • Publication number: 20150247260
    Abstract: The invention provides highly transparent single crystalline AlN layers as device substrates for light emitting diodes in order to improve the output and operational degradation of light emitting devices. The highly transparent single crystalline AlN layers have a refractive index in the a-axis direction in the range of 2.250 to 2.400 and an absorption coefficient less than or equal to 15 cm-1 at a wavelength of 265 nm. The invention also provides a method for growing highly transparent single crystalline A1N layers, the method including the steps of maintaining the amount of Al contained in wall deposits formed in a flow channel of a reactor at a level lower than or equal to 30% of the total amount of aluminum fed into the reactor, and maintaining the wall temperature in the flow channel at less than or equal to 1200° C.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 3, 2015
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Toru Nagashima, Toru Kinoshita, Yuki Kubota, Rafael F. Dalmau, Jinqiao Xie, Baxter F. Moody, RAOUL Schlesser, Zlatko Sitar
  • Patent number: 8822045
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 2, 2014
    Assignee: North Carolina State University
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Patent number: 8734965
    Abstract: The present invention provides methods of preparing Group III-nitride films of controlled polarity and substrates coated with such controlled polarity films. In particular, the invention provides substrate preparation steps that optimize the substrate surface for facilitating growth of a Group III-polar film, an N-polar film, or a selectively patterned film with both a Group III-polar portion and an N-polar portion in precise positioning. The methods of the invention are particularly suited for use in CVD methods.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 27, 2014
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Ramón R. Collazo, Zlatko Sitar
  • Patent number: 8414677
    Abstract: The invention provides a method of forming a dense, shaped article, such as a crucible, formed of a refractory material, the method comprising the steps of placing a refractory material having a melting point of at least about 2900° C. in a mold configured to form the powder into an approximation of the desired shape. The mold containing the powder is treated at a temperature and pressure sufficient to form a shape-sustaining molded powder that conforms to the shape of the mold, wherein the treating step involves sintering or isostatic pressing. The shape-sustaining molded powder can be machined into the final desired shape and then sintered at a temperature and for a time sufficient to produce a dense, shaped article having a density of greater than about 90% and very low open porosity. Preferred refractory materials include tantalum carbide and niobium carbide.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: April 9, 2013
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Rafael F. Dalmau, Vladimir Noveski, Zlatko Sitar
  • Publication number: 20120168772
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 5, 2012
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Patent number: 8148802
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 3, 2012
    Assignee: North Carolina State University
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Publication number: 20110140124
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 16, 2011
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Patent number: 7915178
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 29, 2011
    Assignee: North Carolina State University
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Publication number: 20110020602
    Abstract: The present invention provides methods of preparing Group III-nitride films of controlled polarity and substrates coated with such controlled polarity films. In particular, the invention provides substrate preparation steps that optimize the substrate surface for facilitating growth of a Group III-polar film, an N-polar film, or a selectively patterned film with both a Group III-polar portion and an N-polar portion in precise positioning. The methods of the invention are particularly suited for use in CVD methods.
    Type: Application
    Filed: September 30, 2010
    Publication date: January 27, 2011
    Inventors: Raoul Schlesser, Ramón R. Collazo, Zlatko Sitar
  • Patent number: 7815970
    Abstract: The present invention provides methods of preparing Group III-nitride films of controlled polarity and substrates coated with such controlled polarity films. In particular, the invention provides substrate preparation steps that optimize the substrate surface for facilitating growth of a Group III-polar film, an N-polar film, or a selectively patterned film with both a Group III-polar portion and an N-polar portion in precise positioning. The methods of the invention are particularly suited for use in CVD methods.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 19, 2010
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Ramón R. Collazo, Zlatko Sitar
  • Patent number: 7678195
    Abstract: A method of growing bulk single crystals of an AlN on a single crystal seed is provided, wherein an AlN source material is placed within a crucible chamber in spacial relationship to a seed fused to the cap of the crucible. The crucible is heated in a manner sufficient to establish a temperature gradient between the source material and the seed with the seed at a higher temperature than the source material such that the outer layer of the seed is evaporated, thereby cleaning the seed of contaminants and removing any damage to the seed incurred during seed preparation. Thereafter, the temperature gradient between the source material and the seed is inverted so that the source material is sublimed and deposited on the seed, thereby growing a bulk single crystal of AlN.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: March 16, 2010
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Vladimir Noveski, Zlatko Sitar
  • Publication number: 20100025823
    Abstract: The present invention provides methods of protecting a surface of an aluminum nitride substrate. The substrate with the protected surface can be stored for a period of time and easily activated to be in a condition ready for thin film growth or other processing. In certain embodiments, the method of protecting the substrate surface comprises forming a passivating layer on at least a portion of the substrate surface by performing a wet etch, which can comprise the use of one or more organic compounds and one or more acids. The invention also provides aluminum nitride substrates having passivated surfaces.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Inventors: Ramon R. Collazo, Zlatko Sitar, Rafael Dalmau
  • Publication number: 20090324859
    Abstract: The invention provides a method of forming a dense, shaped article, such as a crucible, formed of a refractory material, the method comprising the steps of placing a refractory material having a melting point of at least about 2900° C. in a mold configured to form the powder into an approximation of the desired shape. The mold containing the powder is treated at a temperature and pressure sufficient to form a shape-sustaining molded powder that conforms to the shape of the mold, wherein the treating step involves sintering or isostatic pressing. The shape-sustaining molded powder can be machined into the final desired shape and then sintered at a temperature and for a time sufficient to produce a dense, shaped article having a density of greater than about 90% and very low open porosity. Preferred refractory materials include tantalum carbide and niobium carbide.
    Type: Application
    Filed: September 10, 2009
    Publication date: December 31, 2009
    Inventors: Raoul Schlesser, Rafael F. Dalmau, Vladimir Noveski, Zlatko Sitar
  • Patent number: 7632454
    Abstract: The invention provides a method of forming a dense, shaped article, such as a crucible, formed of a refractory material, the method comprising the steps of placing a refractory material having a melting point of at least about 2900° C. in a mold configured to form the powder into an approximation of the desired shape. The mold containing the powder is treated at a temperature and pressure sufficient to form a shape-sustaining molded powder that conforms to the shape of the mold, wherein the treating step involves sintering or isostatic pressing. The shape-sustaining molded powder can be machined into the final desired shap and then sintered at a temperature and for a time sufficient to produce a dense, shaped article having a density of greater than about 90% and very low open porosity. Preferred refractory materials include tantalum carbide and niobium carbide.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: December 15, 2009
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Rafael F. Dalmau, Vladimir Noveski, Zlatko Sitar
  • Publication number: 20070257333
    Abstract: A method of growing bulk single crystals of an AlN on a single crystal seed is provided, wherein an AlN source material is placed within a crucible chamber in spacial relationship to a seed fused to the cap of the crucible. The crucible is heated in a manner sufficient to establish a temperature gradient between the source material and the seed with the seed at a higher temperature than the source material such that the outer layer of the seed is evaporated, thereby cleaning the seed of contaminants and removing any damage to the seed incurred during seed preparation. Thereafter, the temperature gradient between the source material and the seed is inverted so that the source material is sublimed and deposited on the seed, thereby growing a bulk single crystal of AlN.
    Type: Application
    Filed: April 6, 2006
    Publication date: November 8, 2007
    Inventors: Raoul Schlesser, Vladimir Noveski, Zlatko Sitar
  • Publication number: 20060280640
    Abstract: The invention provides a method of forming a dense, shaped article, such as a crucible, formed of a refractory material, the method comprising the steps of placing a refractory material having a melting point of at least about 2900° C. in a mold configured to form the powder into an approximation of the desired shape. The mold containing the powder is treated at a temperature and pressure sufficient to form a shape-sustaining molded powder that conforms to the shape of the mold, wherein the treating step involves sintering or isostatic pressing. The shape-sustaining molded powder can be machined into the final desired shap and then sintered at a temperature and for a time sufficient to produce a dense, shaped article having a density of greater than about 90% and very low open porosity. Preferred refractory materials include tantalum carbide and niobium carbide.
    Type: Application
    Filed: April 5, 2006
    Publication date: December 14, 2006
    Inventors: Raoul Schlesser, Rafael Dalmau, Vladimir Noveski, Zlatko Sitar
  • Publication number: 20060257626
    Abstract: The present invention provides methods of preparing Group III-nitride films of controlled polarity and substrates coated with such controlled polarity films. In particular, the invention provides substrate preparation steps that optimize the substrate surface for facilitating growth of a Group III-polar film, an N-polar film, or a selectively patterned film with both a Group III-polar portion and an N-polar portion in precise positioning. The methods of the invention are particularly suited for use in CVD methods.
    Type: Application
    Filed: May 11, 2006
    Publication date: November 16, 2006
    Inventors: Raoul Schlesser, Ramon Collazo, Zlatko Sitar