Patents by Inventor Zoran Falkenstein

Zoran Falkenstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122640
    Abstract: An electrosurgical instrument includes jaws having an electrode configuration utilized to electrically modify tissue in contact with one or more electrodes. The instrument is removably connectable to an electrosurgical unit via an electrosurgical connector extending from the instrument and a receptacle on the electrosurgical unit. The electrosurgical instrument is rotatable without disrupting electrical connection to the electrodes of the jaws. One or more of the electrodes is retractable. The electrosurgical unit and instrument optimally seals and/or cuts tissue based on identifying the tissue and monitoring the modification of the tissue by the application of radio frequency energy.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 18, 2024
    Inventors: John Brustad, Zoran Falkenstein, Benjamin Linville-Engler, Matthew Wixey, Gary Johnson, Patrick Elliott
  • Publication number: 20240127714
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Patent number: 11864823
    Abstract: An electrosurgical instrument includes jaws having an electrode configuration utilized to electrically modify tissue in contact with one or more electrodes. The instrument is removably connectable to an electrosurgical unit via an electrosurgical connector extending from the instrument and a receptacle on the electrosurgical unit. The electrosurgical instrument is rotatable without disrupting electrical connection to the electrodes of the jaws. One or more of the electrodes is retractable. The electrosurgical unit and instrument optimally seals and/or cuts tissue based on identifying the tissue and monitoring the modification of the tissue by the application of radio frequency energy.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: January 9, 2024
    Assignee: Applied Medical Resources Corporation
    Inventors: John Brustad, Zoran Falkenstein, Benjamin Linville-Engler, Matthew Wixey, Gary Johnson, Patrick Elliott
  • Patent number: 11854425
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: December 26, 2023
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Publication number: 20230293224
    Abstract: An electrosurgical system can include an electrosurgical generator, a feedback circuit or controller, and an electrosurgical tool. The feedback circuit can provide an electrosurgery endpoint by determining the phase end point of a tissue to be treated. The electrosurgical system can include more than one electrosurgical tool for different electrosurgical operations and can include a variety of user interface features and audio/visual performance indicators. The electrosurgical system can also power conventional bipolar electrosurgical tools and direct current surgical appliances.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Inventors: John R. Brustad, Zoran Falkenstein, Christopher J. Cappello, Gary M. Johnson, Benjamin A. Gianneschi, Olivia J. Tran, Matthew A. Wixey, Kennii Pravongviengkham, Boun Pravong, Haruyasu Yawata, Matthew M. Becerra, Adam J. Cohen, Nabil Hilal, Edward D. Pingleton, Said S. Hilal, Charles C. Hart, Chris R. Wikoff
  • Patent number: 11660136
    Abstract: An electrosurgical system can include an electrosurgical generator, a feedback circuit or controller, and an electrosurgical tool. The feedback circuit can provide an electrosurgery endpoint by determining the phase end point of a tissue to be treated. The electrosurgical system can include more than one electrosurgical tool for different electrosurgical operations and can include a variety of user interface features and audio/visual performance indicators. The electrosurgical system can also power conventional bipolar electrosurgical tools and direct current surgical appliances.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: May 30, 2023
    Assignee: Applied Medical Resources Corporation
    Inventors: John R. Brustad, Zoran Falkenstein, Christopher J. Cappello, Gary M. Johnson, Benjamin A. Gianneschi, Olivia J. Tran, Matthew A. Wixey, Kennii Pravongviengkham, Boun Pravong, Haruyasu Yawata, Matthew M. Becerra, Adam J. Cohen, Nabil Hilal, Edward D. Pingleton, Said S. Hilal, Charles C. Hart, Chris R. Wikoff
  • Publication number: 20230010780
    Abstract: The present invention provides a surgical training device for training laparoscopic first entry surgical techniques. The training device includes a simulated abdominal wall that is penetrable with an optical trocar. A receptacle containing a tissue simulation is located inside the receptacle. The tissue simulation is observable via scope placed inside the optical trocar. Upon penetration of the one or more of the simulated abdominal wall and receptacle, the tissue simulation appears to translate distally relative to the simulated abdominal wall. The distal translation is effected by a variety of ways including the release of negative pressure inside the receptacle upon penetration and the expansion of an elastic wall of the receptacle with the introduction of fluid under pressure into the receptacle.
    Type: Application
    Filed: September 20, 2022
    Publication date: January 12, 2023
    Inventors: Serene Wachli, Gregory K. Hofstetter, Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Patent number: 11450236
    Abstract: The present invention provides a surgical training device for training laparoscopic first entry surgical techniques. The training device includes a simulated abdominal wall that is penetrable with an optical trocar. A receptacle containing a tissue simulation is located inside the receptacle. The tissue simulation is observable via scope placed inside the optical trocar. Upon penetration of the one or more of the simulated abdominal wall and receptacle, the tissue simulation appears to translate distally relative to the simulated abdominal wall. The distal translation is effected by a variety of ways including the release of negative pressure inside the receptacle upon penetration and the expansion of an elastic wall of the receptacle with the introduction of fluid under pressure into the receptacle.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: September 20, 2022
    Assignee: Applied Medical Resources Corporation
    Inventors: Serene Wachli, Gregory K. Hofstetter, Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Patent number: 11123105
    Abstract: A visual insufflation obturator is provided. The obturator includes seals, valves, screens and/or various other tip features to eliminate the ingress of fluids, matter and/or gas that can disrupt the visual field of the laparoscope disposed within the obturator. The obturator provides additional features such as lens and anti-fog features to further increase visibility of the scope, efficiently insufflate the patient and ultimately provide an access channel into the insufflated abdomen once the visual insufflation obturator is removed.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 21, 2021
    Assignee: Applied Medical Resources Corporation
    Inventors: Scott V. Taylor, Paul W. Balschweit, Jeremy J. Albrecht, Gary M. Johnson, Said S. Hilal, Zoran Falkenstein
  • Publication number: 20210186599
    Abstract: An electrosurgical system can include an electrosurgical generator, a feedback circuit or controller, and an electrosurgical tool. The feedback circuit can provide an electrosurgery endpoint by determining the phase end point of a tissue to be treated. The electrosurgical system can include more than one electrosurgical tool for different electrosurgical operations and can include a variety of user interface features and audio/visual performance indicators. The electrosurgical system can also power conventional bipolar electrosurgical tools and direct current surgical appliances.
    Type: Application
    Filed: January 8, 2021
    Publication date: June 24, 2021
    Inventors: John R. Brustad, Zoran Falkenstein, Christopher J. Cappello, Gary M. Johnson, Benjamin A. Gianneschi, Olivia J. Tran, Matthew A. Wixey, Kennii Pravongviengkham, Boun Pravong, Haruyasu Yawata, Matthew M. Becerra, Adam J. Cohen, Nabil Hilal, Edward D. Pingleton, Said S. Hilal, Charles C. Hart, Chris R. Wikoff
  • Publication number: 20210137582
    Abstract: An electrosurgical instrument includes jaws having an electrode configuration utilized to electrically modify tissue in contact with one or more electrodes. The instrument is removably connectable to an electrosurgical unit via an electrosurgical connector extending from the instrument and a receptacle on the electrosurgical unit. The electrosurgical instrument is rotatable without disrupting electrical connection to the electrodes of the jaws. One or more of the electrodes is retractable. The electrosurgical unit and instrument optimally seals and/or cuts tissue based on identifying the tissue and monitoring the modification of the tissue by the application of radio frequency energy.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 13, 2021
    Inventors: John Brustad, Zoran Falkenstein, Benjamin Linville-Engler, Matthew Wixey, Gary Johnson, Patrick Elliott
  • Publication number: 20210104177
    Abstract: A portable surgical training device is provided. The trainer includes a top cover spaced apart from a base to form a simulated body cavity for locating model organs that are substantially obscured from the field of view of the user. The top cover includes a video display, fixed insertion ports and interchangeable inserts containing simulated tissue layers. The training device has open sides for demonstrating and training lateral surgical techniques including a simulated or live tissue colon attached to a support leg for simulating transanal minimally invasive surgery. A training endoscope with an adjustable focal length for use with the trainer and, in particular, with optical trocars is disclosed. The surgical trainer can be angled and is well suited for training laparoscopic surgery techniques and demonstrating surgical instruments.
    Type: Application
    Filed: November 23, 2020
    Publication date: April 8, 2021
    Inventors: Boun Pravong, Kennii Pravongviengkham, Lee Cohen, Charles C. Hart, Vivek Sikri, Zoran Falkenstein, Richard W. Conklin, Eduardo Bolanos, Adam Hoke, Jacob J. Filek, Michael Palermo
  • Patent number: 10888371
    Abstract: An electrosurgical system can include an electrosurgical generator, a feedback circuit or controller, and an electrosurgical tool. The feedback circuit can provide an electrosurgery endpoint by determining the phase end point of a tissue to be treated. The electrosurgical system can include more than one electrosurgical tool for different electrosurgical operations and can include a variety of user interface features and audio/visual performance indicators. The electrosurgical system can also power conventional bipolar electrosurgical tools and direct current surgical appliances.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: January 12, 2021
    Assignee: Applied Medical Resources Corporation
    Inventors: John R. Brustad, Zoran Falkenstein, Christopher J. Cappello, Gary M. Johnson, Benjamin A. Gianneschi, Olivia J. Tran, Matthew A. Wixey, Kennii Pravongviengkham, Boun Pravong, Haruyasu Yawata, Matthew M. Becerra, Adam J. Cohen, Nabil Hilal, Edward D. Pingleton, Said S. Hilal, Charles C. Hart, Chris R. Wikoff
  • Patent number: 10874452
    Abstract: An electrosurgical instrument includes jaws having an electrode configuration utilized to electrically modify tissue in contact with one or more electrodes. The instrument is removably connectable to an electrosurgical unit via an electrosurgical connector extending from the instrument and a receptacle on the electrosurgical unit. The electrosurgical instrument is rotatable without disrupting electrical connection to the electrodes of the jaws. One or more of the electrodes is retractable. The electrosurgical unit and instrument optimally seals and/or cuts tissue based on identifying the tissue and monitoring the modification of the tissue by the application of radio frequency energy.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 29, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: John Brustad, Zoran Falkenstein, Benjamin Linville-Engler, Matthew Wixey, Gary Johnson, Patrick Elliott
  • Patent number: 10854112
    Abstract: A portable surgical training device is provided. The trainer includes a top cover spaced apart from a base to form a simulated body cavity for locating model organs that are substantially obscured from the field of view of the user. The top cover includes a video display, fixed insertion ports and interchangeable inserts containing simulated tissue layers. The training device has open sides for demonstrating and training lateral surgical techniques including a simulated or live tissue colon attached to a support leg for simulating transanal minimally invasive surgery. A training endoscope with an adjustable focal length for use with the trainer and, in particular, with optical trocars is disclosed. The surgical trainer can be angled and is well suited for training laparoscopic surgery techniques and demonstrating surgical instruments.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: December 1, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Boun Pravong, Kennii Pravongviengkham, Lee Cohen, Charles C. Hart, Vivek Sikri, Zoran Falkenstein, Richard W. Conklin, Eduardo Bolanos, Adam Hoke, Jacob J. Filek, Michael Palermo
  • Publication number: 20200279508
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Patent number: 10657845
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 19, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Publication number: 20190328449
    Abstract: An electrosurgical system can include an electrosurgical generator, a feedback circuit or controller, and an electrosurgical tool. The feedback circuit can provide an electrosurgery endpoint by determining the phase end point of a tissue to be treated. The electrosurgical system can include more than one electrosurgical tool for different electrosurgical operations and can include a variety of user interface features and audio/visual performance indicators. The electrosurgical system can also power conventional bipolar electrosurgical tools and direct current surgical appliances.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 31, 2019
    Inventors: John R. Brustad, Zoran Falkenstein, Christopher J. Cappello, Gary M. Johnson, Benjamin A. Gianneschi, Olivia J. Tran, Matthew A. Wixey, Kennii Pravongviengkham, Boun Pravong, Haruyasu Yawata, Matthew M. Becerra, Adam J. Cohen, Nabil Hilal, Edward D. Pingleton, Said S. Hilal, Charles C. Hart, Chris R. Wikoff
  • Patent number: 10342604
    Abstract: An electrosurgical system can include an electrosurgical generator, a feedback circuit or controller, and an electrosurgical tool. The feedback circuit can provide an electrosurgery endpoint by determining the phase end point of a tissue to be treated. The electrosurgical system can include more than one electrosurgical tool for different electrosurgical operations and can include a variety of user interface features and audio/visual performance indicators. The electrosurgical system can also power conventional bipolar electrosurgical tools and direct current surgical appliances.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: July 9, 2019
    Assignee: Applied Medical Resources Corporation
    Inventors: John R. Brustad, Zoran Falkenstein, Christopher J. Cappello, Gary M. Johnson, Benjamin A. Gianneschi, Olivia J. Tran, Matthew A. Wixey, Kennii Pravongviengkham, Boun Pravong, Haruyasu Yawata, Matthew M. Becerra, Adam J. Cohen, Nabil Hilal, Edward D. Pingleton, Said S. Hilal, Charles C. Hart, Chris R. Wikoff
  • Publication number: 20190122583
    Abstract: The present invention provides a surgical training device for training laparoscopic first entry surgical techniques. The training device includes a simulated abdominal wall that is penetrable with an optical trocar. A receptacle containing a tissue simulation is located inside the receptacle. The tissue simulation is observable via scope placed inside the optical trocar. Upon penetration of the one or more of the simulated abdominal wall and receptacle, the tissue simulation appears to translate distally relative to the simulated abdominal wall. The distal translation is effected by a variety of ways including the release of negative pressure inside the receptacle upon penetration and the expansion of an elastic wall of the receptacle with the introduction of fluid under pressure into the receptacle.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Serene Wachli, Gregory K. Hofstetter, Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar