Patents by Inventor Zvi Lando

Zvi Lando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6555183
    Abstract: A method of forming thick titanium nitride films with low resistivity. Using a thermal chemical vapor deposition reaction between ammonia (NH3) and titanium tetrachloride (TiCl4), a titanium nitride film is formed at a temperature of less than about 600° C., and an NH3:TiCl4 ratio greater than about 5. The deposited TiN film is then treated in a hydrogen-containing plasma such as that generated from molecular hydrogen (H2). This results in a thick titanium nitride film with low resistivity and good step coverage. The deposition and plasma treatment steps may be repeated for additional cycles to form a thick, composite titanium nitride film of desired thickness, which is suitable for use in plug fill or capacitor structure applications.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: April 29, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang
  • Patent number: 6548402
    Abstract: A method of forming a titanium nitride (TiN) layer using a reaction between ammonia (NH3) and titanium tetrachloride (TiCl4). In one embodiment, an NH3:TiCl4 ratio of about 8.5 is used to deposit a TiN layer at a temperature of about 500° C. at a pressure of about 20 torr. In another embodiment, a composite TiN layer is formed by alternately depositing TiN layers of different thicknesses, using process conditions having different NH3:TiCl4 ratios. In one preferred embodiment, a TiN layer of less than about 20 Å is formed at an NH3:TiCl4 ratio of about 85, followed by a deposition of a thicker TiN layer at an NH3:TiCl4 ratio of about 8.5. By repeating the alternate film deposition using the two different process conditions, a composite TiN layer is formed. This composite TiN layer has an improved overall step coverage and reduced stress, compared to a standard TiN process, and is suitable for small geometry plug fill applications.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: April 15, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ming Xi, Frederick Wu, Ramanujapuram A. Srinivas, Yehuda Demayo, Zvi Lando, Mei Chang, Russell C. Ellwanger
  • Publication number: 20020155219
    Abstract: A method of forming thick titanium nitride films with low resistivity. Using a thermal chemical vapor deposition reaction between ammonia (NH3) and titanium tetrachloride (TiCl4), a titanium nitride film is formed at a temperature of less than about 600° C., and an NH3:TiCl4 ratio greater than about 5. The deposited TiN film is then treated in a hydrogen-containing plasma such as that generated from molecular hydrogen (H2). This results in a thick titanium nitride film with low resistivity and good step coverage. The deposition and plasma treatment steps may be repeated for additional cycles to form a thick, composite titanium nitride film of desired thickness, which is suitable for use in plug fill or capacitor structure applications.
    Type: Application
    Filed: February 1, 2000
    Publication date: October 24, 2002
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang
  • Publication number: 20020064598
    Abstract: A method of forming a titanium nitride (TiN) layer using a reaction between ammonia (NH3) and titanium tetrachloride (TiCl4). In one embodiment, an NH3:TiCl4 ratio of about 8.5 is used to deposit a TiN layer at a temperature of about 500° C. at a pressure of about 20 torr. In another embodiment, a composite TiN layer is formed by alternately depositing TiN layers of different thicknesses, using process conditions having different NH3:TiCl4 ratios. In one preferred embodiment, a TiN layer of less than about 20 Å is formed at an NH3:TiCl4 ratio of about 85, followed by a deposition of a thicker TiN layer at an NH3:TiCl4 ratio of about 8.5. By repeating the alternate film deposition using the two different process conditions, a composite TiN layer is formed. This composite TiN layer has an improved overall step coverage and reduced stress, compared to a standard TiN process, and is suitable for small geometry plug fill applications.
    Type: Application
    Filed: June 11, 1999
    Publication date: May 30, 2002
    Inventors: SHULIN WANG, MING XI, FREDERICK WU, RAMANUJAPURAM A. SRINIVAS, YEHUDA DEMAYO, ZVI LANDO, MEI CHANG, RUSSELL C. ELLWANGER
  • Patent number: 6326690
    Abstract: A method of film processing comprises forming an integrated titanium/titanium nitride (Ti/TiN) film structure having an intermediate layer. The intermediate layer comprises species containing Si, and preferably containing Si and Ti, such as titanium silicide (TiSix), or TiSixOy, among others. The intermediate layer protects the underlying Ti film against chemical attack during subsequent TiN deposition using a titanium tetrachloride (TiCl4)-based chemistry. The method allows reliable Ti/TiN film integration to be achieved with excellent TiN step coverage. For example, the film structure can be used as an effective barrier layer in integrated circuit fabrication.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: December 4, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang
  • Publication number: 20010001297
    Abstract: A method of film processing comprises forming an integrated titanium/titanium nitride (Ti/TiN) film structure having an intermediate layer. The intermediate layer comprises species containing Si, and preferably containing Si and Ti, such as titanium silicide (TiSix), or TiSixOy, among others. The intermediate layer protects the underlying Ti film against chemical attack during subsequent TiN deposition using a titanium tetrachloride (TiCl4)-based chemistry. The method allows reliable Ti/TiN film integration to be achieved with excellent TiN step coverage. For example, the film structure can be used as an effective barrier layer in integrated circuit fabrication.
    Type: Application
    Filed: December 14, 2000
    Publication date: May 17, 2001
    Applicant: APPLIED MATERIALS, INC.,
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang
  • Patent number: 6214714
    Abstract: A method of film processing comprises forming an integrated titanium/titanium nitride (Ti/TiN) film structure having an intermediate layer. The intermediate layer comprises species containing Si, and preferably containing Si and Ti, such as titanium silicide (TiSix), or TiSixOy, among others. The intermediate layer protects the underlying Ti film against chemical attack during subsequent TiN deposition using a titanium tetrachloride (TiCl4)-based chemistry. The method allows reliable Ti/TiN film integration to be achieved with excellent TiN step coverage. For example, the film structure can be used as an effective barrier layer in integrated circuit fabrication.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: April 10, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang