Side saddle drilling rigs

A land-based drilling rig includes a first substructure and a second substructure, the second substructure being positioned generally parallel to the first substructure. The land-based drilling rig also includes a drill rig floor coupled to the first and second substructures, the drill rig floor including a V-door. The side of the drill rig floor has the V-door defining a V-door side of the drill rig floor, where the V-door side of the drill rig floor is parallel to the first substructure. The first and second substructures pivotably support the drill rig floor. The land-based drilling rig also includes a mast, the mast mechanically coupled to one or more of the first substructure, the second substructure, and the drill rig floor. The mast is pivotably coupled to one or more of the first substructure, the second substructure, and the drill rig floor by a mast pivot point. The mast includes a V-door side, the V-door side of the mast parallel to the first or second substructure. In addition, the land-based drilling rig includes a mast hydraulic lift cylinder coupled to the mast at a mast lift point and a choke manifold, the choke manifold positioned on the drill rig floor.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of Ser. No. 16/244,974 filed Jan. 10, 2019, which is a continuation of U.S. application Ser. No. 16/035,375, filed Jul. 13, 2018, now issued as U.S. Pat. No. 10,214,937, which is continuation of U.S. application Ser. No. 15/893,463, filed Feb. 9, 2018, now issued as 10,094,137, which is a continuation of Ser. No. 15/191,140, filed Jun. 23, 2016, now issued as U.S. Pat. No. 9,926,719, which is a continuation in part which claims priority from U.S. application Ser. No. 14/616,234, filed Feb. 6, 2015, now issued as U.S. Pat. No. 9,708,861, and U.S. application Ser. No. 14/180,049 filed Feb. 13, 2014, now issued as 9,810,027. U.S. application Ser. No. 14/616,234 is itself a continuation in part of U.S. application Ser. No. 14/180,049, which is itself a nonprovisional application which claims priority from U.S. provisional application No. 61/764,259, filed Feb. 13, 2013.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to drilling rigs, and specifically to slingshot rig structures for land drilling in the petroleum exploration and production industry.

BACKGROUND OF THE DISCLOSURE

Land-based drilling rigs may be configured to be traveled from location to location to drill multiple wells within the same area known as a wellsite. In certain situations, it is necessary to travel across an already drilled well for which there is a well-head in place. Further, mast placement on land-drilling rigs may have an effect on drilling activity. For example, depending on mast placement on the drilling rig, an existing well-head may interfere with the location of land-situated equipment such as, for instance, existing wellheads, and may also interfere with raising and lowering of equipment needed for operations.

SUMMARY

The present disclosure provides for a land based drill rig. The land based drill rig may include a first and a second lower box, the lower boxes positioned generally parallel and spaced apart from each other. The land based drill rig may further include a drill rig floor. The drill rig floor may be coupled to the first lower box by a first strut, the first lower box and first strut defining a first substructure. The drill rig floor may also be coupled to the second lower box by a second strut, the second lower box and second strut defining a second substructure. The struts may be hingedly coupled to the drill rig floor and hingedly coupled to the corresponding lower box such that the drill rig floor may pivot between an upright and a lowered position. The drill rig floor may include a V-door oriented to generally face one of the substructures.

The present disclosure also provides for a land based drilling rig. The land based drilling rig may include a first and a second lower box, the lower boxes positioned generally parallel and spaced apart from each other. The land based drill rig may further include a drill rig floor. The drill rig floor may be coupled to the first lower box by a first strut, the first lower box and first strut defining a first substructure. The drill rig floor may also be coupled to the second lower box by a second strut, the second lower box and second strut defining a second substructure. The struts may be hingedly coupled to the drill rig floor and hingedly coupled to the corresponding lower box such that the drill rig floor may pivot between an upright and a lowered position. The drill rig floor may include a V-door oriented to generally face one of the substructures. The land based drilling rig may further include a mast coupled to the drill rig floor. The land based drilling rig may further include a tank support structure affixed to the first or second substructure. The tank support structure may include a tank and mud process equipment. The land based drilling rig may further include a grasshopper positioned to carry cabling and lines to the drilling rig. The grasshopper may be positioned to couple to the drill rig floor generally at a side of the drill rig floor, and the side of the drill rig floor to which the grasshopper couples may face towards the first or second substructure.

BRIEF DESCRIPTION OF THE DRAWINGS

The summary and the detailed description are further understood when read in conjunction with the appended drawings. For the purpose of illustrating the present disclosure, there are shown in the drawings exemplary embodiments of said disclosure; however, the disclosure is not limited to the specific methods, compositions, and devices disclosed. In addition, the drawings are not necessarily drawn to scale. In the drawings:

FIG. 1 is a side elevation from the driller's side of a drilling rig consistent with at least one embodiment of the present disclosure.

FIG. 2 is an overhead view of a drilling rig consistent with at least one embodiment of the present disclosure.

FIG. 3 is a perspective view of a drilling rig consistent with at least one embodiment of the present disclosure.

FIG. 4 is a side elevation of a drilling rig consistent with at least one embodiment of the present disclosure in a mast lowered position.

FIG. 5 is a side elevation view of the drilling rig of FIG. 4 in a mast raised position.

DETAILED DESCRIPTION

The present disclosure may be understood more readily by reference to the following detailed description, taken in connection with the accompanying figures, which form a part of this disclosure. It is to be understood that this disclosure is not limited to the specific devices, methods, applications, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the present disclosure. Also, as used in the specification, including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. The term “plurality,” as used herein, means more than one.

FIG. 1 depicts a side elevation of drilling rig 10 from the “driller's side” consistent with at least one embodiment of the present disclosure. Drilling rig 10 may include drill rig floor 20, right substructure 30, and left substructure 40. Right and left substructures 30, 40 may support drill rig floor 20, Mast 50 may be mechanically coupled to one or both of right and left substructures 30, 40 or drill rig floor 20. As would be understood by one having ordinary skill in the art with the benefit of this disclosure, the terms “right” and “left” as used herein are used only to refer to each separate substructure to simplify discussion, and are not intended to limit this disclosure in any way. In some embodiments, drill rig floor 20 may include V-door 23, defining a V-door side of drill rig floor 20 and V-door side 22 of drilling rig 10. V-door 23 and V-door side 22 may be located over right substructure 30. The V-door side 52 of mast 50 may correspondingly face right substructure 30. Pipe handler 24 may be positioned to carry piping through a V-door as understood in the art positioned on V-door side 22 of drilling rig 10. In some embodiments, grasshopper 60 may be positioned to carry cabling and lines to drilling rig 10. In other embodiments (not shown), V-door side 22 and mast V-door side may face left substructure 40. In some embodiments, as depicted in FIG. 1, blow out preventer 90 may be located between left substructure 40 and right substructure 30, i.e. drilling rig 10 may be centered over a wellbore.

In some embodiments, tank support structure 80 and tanks 70 may be included in drilling rig 10. Tank support structure 80 may be affixed to right substructure 30 or left substructure 40 by means known to those of ordinary skill in the art with the benefit of this disclosure, including, but not limited to, welding and bolting. As shown in FIG. 1, tank support structure 80 may be affixed to left substructure 40. Tank support structure 80 may be located on the opposite substructure from V-door side 22 of drilling rig 10. Tanks 70 may, for example, be mud tanks, auxiliary mud tanks, or other tanks useful in drilling operations and may be located within tank support structure 80. In some embodiments, mud process equipment 100 may also be mounted within tank support structure 80. Mud process equipment may include, for example, shakers, filters, and other equipment associated with the use of drilling mud.

In some embodiments, tank support structure 80 may be mechanically coupled to right substructure 30 or left substructure 40 by one or more equipment support cantilevers 63. In some embodiments, one or more equipment support cantilevers 63 may be hingedly coupled to one or both of right and left substructures 30, 40. Equipment support cantilevers 63 may be utilized to support one or more pieces of drilling rig equipment mechanically coupled to equipment support cantilevers 63 including, for example and without limitation, tank support structure 80, drill line spooler 65, hydraulic power units (HPUs), compressors, variable frequency drives (VFDs), choke manifolds, accumulators, or other pieces of rig equipment. In some embodiments, one or more of right and left substructures 30, 40 may include one or more compartments 68. Compartments 68 may be formed in an interior of the respective right or left substructure 30, 40. In some embodiments, compartments 68 may be closed by hatch or door 69, which may close compartments 68 while allowing access thereto.

In some embodiments, one or both of right and left substructures 30, 40 may include one or more upper equipment support cantilevers 67. As depicted in FIG. 1, each upper equipment support cantilever 67 may be hingedly coupled to one of right or left substructure 30, 40. In some embodiments, upper equipment support cantilevers 67 may be utilized to support one or more pieces of drilling rig equipment mechanically coupled to upper equipment support cantilevers 67, including one or more of, for example and without limitation, mud process equipment 100, choke manifold 102, accumulator 104, mud gas separators, process tanks, trip tanks, drill line spoolers, HPU's, VFD, or driller's cabin 106.

FIG. 2 depicts an overhead view of drilling rig 10 consistent with at least one embodiment of the present disclosure in which V-door side 22 of drilling rig 10, drill rig floor 20, and tank support structure 80 are shown. In some embodiments, choke manifold 102 may likewise be located on the rig floor. In some embodiments, accumulator 104 may likewise be located on the rig floor.

In some embodiments, substructures 30, 40 may be fixed as depicted in FIGS. 1, 2. In some embodiments, as depicted in FIG. 3, substructures 30′, 40′, may pivotably support drill rig floor 20. Drill rig floor 20 may be pivotably coupled to one or more lower boxes 130 by a plurality of struts 140 together forming substructures 30′, 40′ (pivot points shown as pivot points 141). Lower boxes 130 may support drill rig floor 20. Lower boxes 130 may be generally parallel to each other and spaced apart. Struts 140 may be hingedly coupled to drill rig floor 20 and to lower boxes 130. In some embodiments, struts 140 may be coupled to lower boxes 130 and drill rig floor 20 such that they form a bar linkage therebetween, allowing relative motion of drill rig floor 20 relative to lower boxes 130 while maintaining drill rig floor 20 parallel to lower boxes 130. Thus, drill rig floor 20 may be moved from an upper position as shown in FIG. 3 to a lower position while remaining generally horizontal.

In some embodiments, the movement of drill rig floor 20 may be driven by one or more hydraulic cylinders 150. In some embodiments, when in the upright position, one or more diagonals 160 may be coupled between drill rig floor 20 and lower boxes 130 to, for example and without limitation, maintain drill rig floor 20 in the uptight position.

In some embodiments, with reference to FIGS. 1-3, as they are mounted directly to a substructure (30 or 40) of drilling rig 10, one or more pieces of equipment may travel with drilling rig 10 during a skidding operation. For example and without limitation, equipment may include tanks 70, mud process equipment 100, choke manifold 102, accumulator 104, mud gas separators, process tanks, trip tanks, drill line spoolers, HPU's, VFD, or driller's cabin 106. As such any pipe or tubing connections between or taken from tanks 70, mud process equipment 100, choke manifold 102, and/or accumulator 104 may remain connected during the skidding operations. This arrangement may allow, for example, more rapid rig disassembly (“rigging-down”) and assembly (or “rigging-up”) of drilling rig 10 before and after a skidding operation.

Additionally, by facing V-door side 22 of drilling rig 10 toward one of the substructures 30, 40, equipment and structures that pass through the V-door 23 or to drill rig floor 20 from V-door side 22 of drilling rig 10 may, for example, be less likely to interfere with additional wells in the well field.

In some embodiments, as depicted in FIGS. 4, 5, mast 50 may be mechanically coupled to rig drill rig floor 20. In some embodiments, not depicted, mast 50 may be mechanically coupled to one or both of right and left substructures 30, 40. In some embodiments, mast 50 may be mechanically coupled to drill rig floor 20 by one or more mast pivot points 54. In some embodiments, as depicted in FIG. 4, mast 50 may be mechanically coupled to mast pivot points 54 in a horizontal position, defined as a mast lowered position of drilling rig 10. In some embodiments, mast 50 may be transported in the horizontal position. In some embodiments, mast 50 may be constructed from one or more mast subunits and may be transported in a disassembled state. In some embodiments, drilling rig 10 may include one or more hydraulic cylinders 56. Hydraulic cylinders 56 may, in some embodiments, be mechanically coupled to one of drill rig floor 20 or one or both of right and left substructures 30, 40. Hydraulic cylinders 56 may be mechanically coupled to mast 50 at one or more mast lift points 58. Once hydraulic cylinders 56 are mechanically coupled to mast 50, hydraulic cylinders 56 may be extended to raise mast 50 from the horizontal position depicted in FIG. 4 to a vertical position as depicted in FIG. 5, defined as a mast raised position of drilling rig 10. In some embodiments, hydraulic cylinders 56 may be mechanically coupled to drill rig floor 20 at one or more rig floor lifting points 21.

In some embodiments, as depicted in FIGS. 4, 5, drilling rig 10 may include one or more hydraulic walkers 120. Hydraulic walkers 120 may, in some embodiments, be positioned at a lower end of one or both right and left substructures 30, 40. In some embodiments, hydraulic walkers 120 may be hydraulically actuatable to move or walk drilling rig 10 to a different location in the wellsite. In some embodiments, hydraulic walkers 120 may be operable to move or walk drilling rig 10 in any direction. In some embodiments, equipment positioned on equipment support cantilevers 63 and upper equipment support cantilevers 67 as previously discussed may be moved with drilling rig 10 as it is moved or walked.

One having ordinary skill in the art with the benefit of this disclosure will understand that the specific configurations depicted in FIGS. 1-5 may be varied without deviating from the scope of this disclosure.

Those skilled in the art will appreciate that numerous changes and modifications can be made to the preferred embodiments of the present disclosure and that such changes and modifications can be made without departing from the spirit of said disclosure. It is, therefore, intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of said disclosure.

Claims

1. A system comprising:

a wellsite, the wellsite comprising a plurality of wells, each well having a wellhead, a blowout preventer, and a wellbore;
a land-based drilling rig, the land-based drilling rig centered over a wellbore, the land-based drilling rig comprising: a first substructure; a second substructure, the second substructure being positioned generally parallel to the first substructure, the blowout preventer positioned between the first substructure and the second substructure; a drill rig floor fixedly coupled to the first and second substructures wherein the drill rig floor is immovable with respect to the first and second substructures when the land-based drilling rig is assembled and set up for drilling, the drill rig floor including a V-door, the side of the drill rig floor having the V-door defining a V-door side of the drill rig floor, the V-door side of the drill rig floor parallel to the first substructure; a mast, the mast mechanically coupled to one or more of the first substructure, the second substructure, and the drill rig floor, the mast being pivotably coupled to one or more of the first substructure, the second substructure, and the drill rig floor by a mast pivot point, the mast comprising a V-door side, the V-door side of the mast parallel to the first or second sub structure; a mast hydraulic lift cylinder coupled to the mast at a mast lift point; and an accumulator, the accumulator positioned on the drill rig floor, the first substructure, or the second substructure.

2. The system of claim 1, wherein the first substructure and second substructure are adapted to be traveled through the wellsite when attached to the drill rig floor.

3. The system of claim 1, wherein the land-based drilling rig further comprises a choke manifold, the choke manifold positioned on the drill rig floor, the first substructure, or the second substructure.

4. A system comprising:

a wellsite, the wellsite comprising a plurality of wells, each well having a wellhead, a blowout preventer, and a wellbore;
a land-based drilling rig, the land-based drilling rig centered over a wellbore, the land-based drilling rig comprising: a first substructure; a second substructure, the second substructure being positioned generally parallel to the first substructure; a drill rig floor fixedly coupled to the first and second substructures wherein the drill rig floor is immovable with respect to the first and second substructures when the land-based drilling rig is assembled and set up for drilling, the drill rig floor including a V-door, the side of the drill rig floor having the V-door defining a V-door side of the drill rig floor, the V-door side of the drill rig floor parallel to the first substructure; a mast, the mast mechanically coupled to one or more of the first substructure, the second substructure, and the drill rig floor, the mast being pivotably coupled to one or more of the first substructure, the second substructure, and the drill rig floor by a mast pivot point, the mast comprising a V-door side, the V-door side of the mast parallel to the first or second sub structure; a mast hydraulic lift cylinder coupled to the mast at a mast lift point; and a choke manifold, the choke manifold mounted on the first substructure or the second substructure; wherein the first substructure and second substructure are adapted to be traveled through the wellsite when attached to the drill rig floor.
Referenced Cited
U.S. Patent Documents
2792198 May 1957 Braun
3598189 August 1971 Presley et al.
3650339 March 1972 Selfe et al.
3802137 April 1974 Armstrong
3922825 December 1975 Eddy
3942593 March 9, 1976 Reeve, Jr.
4235566 November 25, 1980 Beeman
4403898 September 13, 1983 Thompson
4759414 July 26, 1988 Willis
4821816 April 18, 1989 Willis
4834604 May 30, 1989 Brittain
5492436 February 20, 1996 Suksumake
6026912 February 22, 2000 King et al.
6161358 December 19, 2000 Mochizuki
6343892 February 5, 2002 Kristiansen
6634436 October 21, 2003 Desai
6779614 August 24, 2004 Oser
7249629 July 31, 2007 Cunningham et al.
7306055 December 11, 2007 Barnes
7584809 September 8, 2009 Flud
7832974 November 16, 2010 Fikowski
7992646 August 9, 2011 Wright
8316588 November 27, 2012 Cicognani
8468753 June 25, 2013 Donnally
8549815 October 8, 2013 Donnally
8720128 May 13, 2014 Vogt
9096282 August 4, 2015 Smith et al.
9518429 December 13, 2016 Fortson et al.
9574402 February 21, 2017 Hause
9784040 October 10, 2017 Smith et al.
9951539 April 24, 2018 Roodenburg et al.
10273708 April 30, 2019 Holst et al.
20010025727 October 4, 2001 Byrt et al.
20030155154 August 21, 2003 Oser
20040211598 October 28, 2004 Palidis
20060104746 May 18, 2006 Thompson
20060231267 October 19, 2006 Wood
20090200856 August 13, 2009 Chehade
20090218138 September 3, 2009 Donnally
20090218139 September 3, 2009 Donnally
20090218144 September 3, 2009 Donnally et al.
20100032213 February 11, 2010 Orgeron
20100038088 February 18, 2010 Springett et al.
20100186960 July 29, 2010 Reitsma
20110030942 February 10, 2011 Orgeron
20110072737 March 31, 2011 Wasterval
20110247290 October 13, 2011 Beck et al.
20120138327 June 7, 2012 Sorokan
20130153309 June 20, 2013 Smith
20140014417 January 16, 2014 Smith
20140044510 February 13, 2014 Eldib
20140271094 September 18, 2014 Crisp
20150008039 January 8, 2015 Wijning et al.
20150053426 February 26, 2015 Smith
20150218891 August 6, 2015 Reddy et al.
20160002946 January 7, 2016 Wijning et al.
20160010323 January 14, 2016 Konduc
20160115741 April 28, 2016 Davis
20160130877 May 12, 2016 Fortson
20160137115 May 19, 2016 Doherty
20160258215 September 8, 2016 Holst
20160258225 September 8, 2016 Holst
20160298394 October 13, 2016 Reddy et al.
20170096832 April 6, 2017 Robb
20170241126 August 24, 2017 Konduc et al.
20170328081 November 16, 2017 Trevithick
Foreign Patent Documents
9811431 September 1998 BR
201254949 September 2008 CN
101358510 February 2009 CN
92263646 May 1989 CO
04042280 June 2004 CO
05118908 April 2006 CO
07097892 April 2008 CO
3022381 January 2015 EP
3081737 November 2016 EP
3587728 January 2020 EP
101402500 February 2013 KR
9943920 September 1999 WO
WO2009106859 September 2009 WO
WO2012092147 June 2013 WO
Other references
  • Office Action issued in Colombian App. No. NC2018/0012922 and English translation thereof, dated Apr. 1, 2020 (14 pages).
Patent History
Patent number: 10865583
Type: Grant
Filed: Dec 16, 2019
Date of Patent: Dec 15, 2020
Patent Publication Number: 20200149307
Assignee: NABORS DRILLING TECHNOLOGIES USA, INC. (Houston, TX)
Inventors: Padira Reddy (Houston, TX), Ashish Gupta (Houston, TX)
Primary Examiner: Babajide A Demuren
Application Number: 16/715,040
Classifications
Current U.S. Class: Tilts Relative To Base (52/116)
International Classification: E04H 12/34 (20060101); E21B 15/00 (20060101); E21B 21/06 (20060101);