SHAFT SEAL ASSEMBLY

An improved shaft seal assembly is disclosed having a stator including a main body and axial and radial projections therefrom. The rotor is radially extended and encompasses the axial and radial projections from said stator. The passageway formed between the radial projection of the stator and the rotor results in an axial passageway having its opening facing rearwardly from the rotor and away from the source of impinging coolant and/or contaminant. The dimension of interface gap between the rotor and the radial projection from the stator, which the access to the shaft of any impinging material, is fixed at a predetermined value and does not vary with the relative movement between the rotor and the stator. The novel seal assembly of this invention thus provides improved rejection or warding off of contaminates from ingress into the labyrinths and ultimately restrained from attacking the bearing environment.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] This invention relates generally to shaft sealing devices for use with rotating equipment. Adequate maintenance of rotating equipment is difficult to obtain because of extreme equipment duty cycles, the lessening of service factors, design and the lack of spare rotating equipment in many processing plants. This is especially true of machine tool spindles, wet end paper machine rolls, aluminum rolling mills and steam quench pumps and other equipment utilizing extreme contamination affecting lubrication.

[0002] Various forms of shaft sealing devices have been utilized to try to protect the integrity of the bearing environment, including rubber lip seals, clearance labyrinth seals, and attraction magnetic seals. Lip seals or O-ring shaft seals can quickly wear out and fail and are also known to permit excessive amounts of moisture and other contaminants to immigrate into oil reservoir of the operating equipment even before failure had the interface between the rotor and the stator exposed to the contaminates or lubricants at the radial extremity of the seal.

[0003] Labyrinth-type seals involving closely related stator and rotor rings, which do not contact each other but define labyrinth passages between them have been devised and utilized and are illustrated in Orlowski, U.S. Pat. Nos. 4,706,968; 4,989,883; 5,069,461; and the additional patents to Orlowski cited therein. As described in Orlowski U.S. Pat. Nos. 4,989,883 and 5,069,461, improvements in labyrinth seals are disclosed including the utilization of various forms of O-ring seals to improve the static sealing action when the shaft is at rest and non-contact dynamic sealing action is provided when the shaft is rotating.

[0004] An improvement over these labyrinth seals and o-ring seals is described in U.S. Pat. No. 5,378,000. There the isolator or seal provides a sealing ring inserted in recesses in the rotor and the stator to lock together the rotor and stator in an axial direction. This actual lock up of rotor and stator dramatically reduces the possibility of migration of rotor from stator. The resultant is a reduced radial interface gap variation from that which had existed previously between the rotor and the stator.

[0005] An objective of the present invention is to provide an improvement to seals or bearing isolators to prevent leakage of lubricant and entry of contaminants by encompassing the stator within the rotor to create an axial directed interface at the radial extremity of the rotor. Prior art seals traditionally had the interface between the rotor and the stator exposed radially to the contaminants or lubricants at the radial extremity of the seal.

[0006] The projection of an axial portion of the stator into the rotor has been expanded radially. This projection or protruding member of the stator into the rotor has been expanded radially beyond the diameter of the major portion or body of the stator.

[0007] The rotor and the recess in the rotor, which previously surrounded the stator projection or insertion, is also extended radially beyond the major portion of the stator. The rotor now encompasses the stator, or a substantial portion of the stator projection, in such a manner that the interface presented to the ingress of the lubricant or contaminates is facing axially and rearwardly. The axial facing interface presents a limited access to the internal of the seal and a constant dimensional interface between the rotor and the stator regardless of any axial movement of the rotor with respect to the stator.

[0008] A groove may be machined into the stator to accentuate the novel radial extension of the rotor and the stator. This groove improves the ability of the seal to prevent contaminates from entering the axial interface gap between the rotor and the stator.

[0009] This novel improvement i.e. the encapsulation of the stator by the rotor enables the interface gap between the accessible portions of the stator and the rotor to be of a predetermined dimension. The improvement also means that there is no fluctuation or variation in the interface gap resulting from any relative axial movement between the rotor and the stator.

[0010] This novel seal or bearing isolator will operate to vastly improve the rejection or ingress of contaminants into the interface gap between the rotor and stator. The entrance to the interface gap is facing or directed away from the normal flow of contaminants i.e. along the axis of the shaft toward the housing. The interface gap can be machined to extremely close tolerances because there is no movement radially between the rotor and the stator and any axial movement does not affect the interface.

[0011] Other objects, advantages embodiments of the invention will become apparent upon the reading the following detailed description and upon reference to drawings and the prior art patents.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a sectional view showing the sealing structure of the prior art with a shaft.

[0013] FIG. 2 is a sectional view showing the improved sealing structure of this invention with a shaft.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION

[0014] FIG. 1 shows the prior art having the most control over the relative axial movement between rotor and stator. The prior art essentially had the interfacing gap opening radially into the lubrication or contaminant substantially as shown in FIG. 1.

[0015] The novelty of this invention is as shown in FIG. 2 and as described herein. The invention can also be utilized on seals or bearing isolators using only labyrinths as shown in much of the prior art referenced.

[0016] It should be noted, as shown in FIG. 2, that the location of the gap with respect to rotor and stator surfaces and the direction of the opening interface gap are both important to this invention.

[0017] In FIG. 1, axial movement of the rotor 13 relative to the stator 14 will change the size of the radial interface gaps 20 and 21. Radial interface gap 21 is also receptive to contaminants, especially in extreme conditions presented to the surfaces 13a and 14a of the rotor 13 and the stator 14 regardless of the dimension of the interface gap 21.

[0018] As shown in FIG. 2 this invention extends the rotor 13 radially well beyond the major diameter of the stator 14. This permits the rotor 13 to encompass the also radially extended projection 19 of the stator 14. It is important that this radial extension of the rotor 13 extends beyond the basic radial dimension of stator 14. This requires a departure from the prior art wherein the rotor 13 was radially co-extensive with the major diameter of the stator 14.

[0019] The interface gap 21 between the rotor 13 and stator 14 that is exposed to the contamination or lubricants is now fixed in dimension and independent of any relative axial movement between the rotor 13 and the stator 14. The interface gap 20 is still subject to variation in dimension by any relative movement between the rotor 13 and the stator 14. This relative movement is not significant to the operation in as much as only a small amount of contaminates have been able to enter the labyrinth because of size and location of the interface gap. The removal of the interface gap 21 from variations is more important in seals where the stator 13 and the rotor 14 are not restrained from relative movement.

[0020] The orientation of the opening of the interface gap of 21 is important regardless of relative movement between the rotor and stator. The interface gap 21 being axially oriented to control entrance of contaminates is novel and important. The opening of the interface gap 21 is now facing rearwardly toward the housing and away from the contaminates stream. The contaminate or cooling stream will normally be directed along the axis of the shaft 10 and toward the housing 11.

[0021] A groove 22 may be cut in stator 14. This groove 22 enhances and accentuates the benefits of the radial extension of the rotor 13 and the stator 14 with the resultant orientation and independence of interface gap 21.

[0022] This seal may be made from any machinable metal such as bronze or stainless steel or machineable plastics such as Teflon® or other machinable plastics.

[0023] Variations and other aspects of the preferred embodiment will occur to those versed in the art all without departure from the spirit and scope of the invention.

Claims

1. A seal for sealing a rotating shaft entering a housing comprising:

a. a stator surrounding a shaft and affixed to a housing, said stator having a main body and a projection extending both axially and radially beyond said main body;
b. a rotor surrounding said shaft and rotatively connected to said shaft;
c. said rotor and said stator abutting each other on said shaft;
d. said rotor encompassing said projection of said stator.

2. A seal, according to

claim 1 wherein said rotor axially and radially extends beyond said projection on said stator.

3. A seal, according to

claim 1, wherein the space between said rotor and said stator projection forms passages.

4. A seal, according to

claim 3, wherein said passages include an axial passage opening to the space between said housing and radial extension of the rotor and stator.

5. A seal, in accordance to

claim 3, wherein dimension of said axial passage is constant.

6. A seal, in accordance to

claim 5, wherein the dimension of said axial passage is predetermined.

7. A seal, in accordance to

claim 4, wherein said opening of said axial passage faces the stator.

8. A seal, in accordance to

claim 4, wherein said opening of said axial passage faces away from said coolant, said rotor and towards said housing.

9. A seal, according to

claim 1, wherein there is at least one labyrinth formed between the main body of said stator and said rotor.

10. A seal, according to

claim 1, wherein said rotor and said stator are restrained from relative axial movement between each other.

11. A seal, according to

claim 1, wherein a groove is formed in said main body of said stator, said groove augmenting the radial extension of said projection from said stator.

12. A seal, according to

claim 1, wherein a groove formed in said body of said stator, augments the axial extension of said projection of said body of said stator.

13. A seal, according to

claim 2, wherein said main body of said stator surrounds a portion of said rotor.

14. A seal, according to

claim 3, wherein the radius of the radial internal surface of the rotor encompassing said stator is greater than the radius of the exterior surface of said radial projection of said stator.

15. A method of sealing a shaft exit a housing, the method comprising:

a. fixing a stator having a main body and a projection extending both radially and axially beyond the main body of said stator to the housing concentrically about the shaft;
b. mounting a rotor sealed on the shaft in close relation to the housing for rotation with the shaft;
c. the rotor encompassing the radially extremity of the radial projection of the stator and having overlapping radially spaced surfaces forming an axial passage between the surfaces of the rotor and the stator extension;
d. the opening of said axial passage faced away from said rotor and toward the body of said stator.

16. The method of

claim 15, including at least one labyrinth between the rotor and the main body of the stator.

17. The method of

claim 15, including the steps of rotatively connecting the stator to the rotor to prevent relative axial movement between the stator and the rotor.
Patent History
Publication number: 20010002742
Type: Application
Filed: Aug 25, 1998
Publication Date: Jun 7, 2001
Applicant: H . VICENT HARSHA
Inventor: DAVID C. ORLOWSKI (MILAN, IL)
Application Number: 09139499
Classifications
Current U.S. Class: Multiple Sealing Faces (e.g., Double Seals, Etc.) (277/361)
International Classification: F16J015/34;