Sheet material attachment system

A sheet material attachment system including at least one longitudinal beam having a web, and at least one flange having first and second opposite sides, the web extending from the flange second side. A sheet material attachment element overlies the flange first side, the sheet material attachment element having a hardness which is less than the hardness of the flange. The sheet material attachment element is attached to the beam by a fastener, the fastener being substantially U-shaped and having a first leg which engages a side of the sheet material attachment element and a second leg which engages the flange second side. A piece of sheet material is anchored to the sheet material attachment element.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

[0001] Continuation-in-part of U.S. patent application Ser. No. 09/273,381, filed Mar. 22, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 08/884,717, filed Jun. 30, 1997, now U.S. Pat. No. 5,927,036.

BACKGROUND OF THE INVENTION

[0002] 1. Field of Invention

[0003] The invention relates generally to building construction and more particularly floor joist systems and systems for the attachment of sheet material (e.g., subflooring, and ceiling and wall panels) in building construction, especially in residential construction.

[0004] 2. Background Art

[0005] Floor joists used in residential and some smaller commercial building construction are typically made of wooden 2 inch by 10 inch planks or beams of engineered wood having an I shaped cross section with a 2 inch wide flange and a 10 inch height which extend longitudinally between opposite side walls of a house or its foundation, resting on the top surfaces thereof, providing support for the floor of each individual building story. In residential construction, the subfloor adjacent the joists is usually ¾ inch thick wood plyboard or wooden particle board. Generally, wooden joists are limited in their length or span to about 14 or 16 feet, at which point they must be supported from beneath, usually by an intermediate load bearing wall or a girder (or header) extending in directions perpendicular to the joists, the girder itself perhaps partially supported by a support post or column and/or the side walls between which the girder extends. The girder may be comprised of a plurality of 2 inch by 12 inch planks disposed side by side to provide additional thickness or may be an engineered wood beam or steel I beam. Other types of joists and/or girders used in larger commercial buildings, which often have poured concrete floors, include steel or iron I beams which have integrated flanges and webs or which are assembled from components, as disclosed in U.S. Pat. Nos. 669,639 (Hessel et al.), 4,151,694 (Sriberg et al.) and 3,800,490 (Conte). Concrete floors and metal joist systems are not generally used for residential construction due to the higher costs involved and their not being readily adapted to conventional housing designs.

[0006] A plurality of parallel floor joists laid out across the area bounded by the supporting side walls provides a series of generally coplanar surfaces to which the subfloor is attached, usually by adhesives and nails or screws. The attachment of the subfloor to the topmost surfaces of the joists prevents the joists from moving, although it is common to provide braces therebetween to stabilize them. The joists and girders are oriented so as to expose their maximum bending moments against the loading of the above floor; this normally entails setting the joists on the side walls in an upright manner upon one of their shorter rectangular sides or their I beam flanges, the opposite short rectangular side or I beam flange abutting the lower surface of the supported floor. A pocket or recess provided in the girder bearing side wall provides a surface upon which the girder rests, the surface disposed a distance below the top of the side wall somewhat equivalent to the height of the girder. This arrangement allows the bottommost surface of the joist to rest on the top surface of the side wall and the girder. Disposing the girder as such and disposing the joists thereupon, however, compromises the ceiling height of the below room at least partially or otherwise forces the floor of the above room to be higher. Furthermore, the below room ceiling height may be further compromised, at least locally, by pipes, wiring or ventilation ducts routed below the girder.

[0007] Joists are usually transversely spaced in a parallel fashion at a fixed distance from each other in accordance with the weight bearing characteristics of the materials used and the designed building load requirements. Typically, in residential construction, wooden joists of either the plank or engineered beam variety are spaced 16 inches on center. Wooden plank and engineered wood floor joists are maintained in their upright positions, i.e., kept from falling over, and their spacing relative to one another by lateral braces which do not interface the lower surface of the floor or support or help distribute its weight. Steel I beam type floor joists such as used in commercial building construction may likewise be maintained in position by braces interconnected with the webs thereof, although the wide bottom flange of most steel I beams is sufficient to prevent its inadvertently falling over.

[0008] Wooden floor joists of the plank or engineered beam variety are generally limited to 14 or 16 foot spans between supports and 16 inch on center spacing relative to one another, requiring many joists and supporting girders be provided in a house of conventional size and design. Joists thus comprise an appreciable portion of the cost of required building material, particularly if the more expensive engineered wood beams are used. As a further result, wooden plank or engineered beam floor joist systems are rather expensive in terms of labor because of the quantity of joists required to be installed. Moreover, wooden plank joists may be irregular, undesirably having crowns, or cupping, sagging or bowing. Often, significant effort and cost are required to correct these conditions during construction, or to correct their effects after the building is completed. Engineered wood beam joists resolve many of these issues, but are rather more expensive than plank joists and have no appreciably greater load bearing capability.

[0009] Wooden planks, being lumber, are considered to be commodities, and thus their cost is greatly influenced by fluctuating market prices, which can make estimating future building costs more difficult. Engineered wood beams, comprised to a great extent of wood chips and more labor intensive to produce, are not so readily influenced, although they are generally more expensive.

[0010] There is a need for a floor joist system which is relatively stronger and less labor intensive than previous systems employing wooden plank or engineered wood beam joists, provides a consistently flat flooring surface, more efficiently uses vertical space, and is not greatly influenced by commodity market price fluctuations. Further, there is a need for a floor joist system to which subflooring is quickly attached with customary fastening means, such as, for example, by nails, particularly nails which are driven through the flooring and into the floor joists pneumatically.

[0011] In providing such a floor joist system, there is a need to accommodate the quick and easy attachment of traditional ceiling panel materials to the overhead structure provided by that floor joist system. Typically, ceiling panels, which may be, for example, prefabricated plaster wall board, abuttingly underlie the bottom edges or flanges of conventional wooden plank or engineered beam floor joists, respectively, and are attached thereto by means of screws driven through the wall board and into the plank or engineered beam. It is therefore desirable that a ceiling panel attachment system be provided by which conventional methods, tools and fasteners may continue to be used in attaching the ceiling panels to the overhead structure.

[0012] Wall panels, both interior and exterior, are conventionally nailed or screwed, as appropriate, into vertically-oriented, longitudinal wooden studs, usually of 2 inch by 4 inch or 6 inch size and spaced 16 inches on center. Like wooden plank floor joists, wooden studs are considered to be commodities, and thus their cost is greatly influenced by fluctuating market prices. Typical interior wall panels include plaster wall board or sheets of wooden paneling; exterior wall panels typically include wooden plyboard or particle board later covered by siding. Under some circumstances, for example where a high load must be carried by a wall or it is preferable to have fewer studs, it may be desirable to use steel I beam studs in lieu of the conventional arrangement of two inch by four inch or six inch wooden studs. In such circumstances, it is preferable to attach the wall panels to the steel studs in a conventional manner. Thus, a wall panel attachment system which facilitates the attachment of interior or exterior wall panels to walls including steel I beam studs, using conventional methods, tools and fasteners, and which is not greatly influenced by commodity market prices, is desirable.

[0013] Further, it is well-known to support overhead beams, girders or floor joists with support columns or pillars extending between the floor and ceiling or other overhead structure of the below room (e.g., the basement), in which the columns or pillars are located. Often, these columns or pillars are in the form of steel I beams. Often, too, it is desirable to enclose them using wall panel material, thereby providing the room with a more finished appearance. A system for easily and quickly attaching wall panel material to I beam columns or pillars, using conventional tools and fasteners, would also be desirable.

SUMMARY OF THE INVENTION

[0014] The present invention provides a floor joist system preferably made of commercially available heavy gauge steel and having girders and interconnected joists which may have an I shaped cross section. The I beam girders are preferably castellated, providing a high bending moment and large web openings, and have vertical slots formed in their web sections. The girders extend between opposing side walls of a building or the foundation thereof, the ends of the girders supported by the side walls. Much stronger than wooden plank or engineered wood beam girders of comparable height, castellated beam girders may span greater distances without requiring intermediate underlying support between outside walls, thus requiring relatively fewer intermediate support columns. In accordance with the present invention, steel I beam joists having tongues formed and extending from the web sections thereof are disposed perpendicularly and equidistantly along each side of a girder, the tongues of each equidistant pair of joists extending into a common vertical slot formed in the girder web and overlapping each other therein. These overlapping pairs of tongues may be interconnected using compliant pins on each side of the girder web or otherwise retained in overlapping relation to each other to maintain their position during assembly of the floor joist system. The interconnection of joists and cross beams continues in this manner to provide a complete floor joist system across the area to be floored. The subfloor is secured to the upper surface of the upper girder and joist flanges by, for example, adhesives and/or drill point screws.

[0015] The I beam joists of the present invention provide much greater bending resistance than wooden plank or engineered wood beam joists, and thus may be longer and spaced farther apart. In conventional residential construction of a given design using a ¾ inch subfloor, 8 inch tall I beam joists according to the present invention may span 20 feet between the side wall and/or the girders and be spaced 24 inches on center, compared to 14 to 16 foot spans and 16 inch on center spacing required of wooden 2 inch by 10 inch plank joists or 10 inch tall engineered wood beams. The joists of the present invention may be spaced 32 inches on center where a less common ⅞ inch thick subfloor is used. Moreover, the I beam joists of the present invention do not exhibit irregularities such as crowns, cupping, sagging or bowing, as are common in wooden plank joists and which often require time consuming correction during construction or may cause undesirable related effects thereafter.

[0016] The steel joists and girders of the inventive floor joist system may be made completely of recyclable material and are themselves completely recyclable. Furthermore, the joists and girders of the present invention will not support a flame, providing a further advantage over wooden floor joist systems.

[0017] The girders and joists of the present invention have coplanar upper flange surfaces, thus the load of the floor is directly supported along two directions rather than only one, thereby providing a firmer floor with its weight better distributed among its supporting members. A further advantage of the inventive floor joist system is that the height of the joist is contained within the height required for the girder and large openings are provided in the girder web which extend well below the bottom-most surface of the joist to better accommodate the routing of pipes, wiring, ventilation ducts and so forth above the bottom-most surface of the girders. Thus, the present invention provides a more vertically compact floor joist system than can be achieved by stacking the joists upon the girders, as previous floor joist systems require, thus allowing comparatively greater ceiling heights in rooms above or below the joists.

[0018] Normally, assembly of the floor joist system of the present invention would require only the simplest of hand tools for installation, including bending the compliant interconnecting pin and, in some cases, for drilling and/or bolting the spliced ends of abutting girders together. Furthermore, compared to wooden plank joists, the components of the inventive joist system are not so greatly influenced by commodity market prices and thus provide for more easily estimated construction costs.

[0019] The present invention provides a floor joist system comprising at least one girder having an upper flange surface and a web with vertical slots located therein, the girder supported at opposite ends, a plurality of joists having an upper flange surface and at least one tongue, two of the joist tongues being inserted into each girder slot from opposite sides of the girder web to form an overlapping relationship therein, each joist supported at opposite ends, the upper flange surfaces of the girder and joists being coplanar, and flooring attached to the girder and joist upper flange surfaces.

[0020] Another embodiment of the present invention provides a floor joist system which may be installed using conventional carpenters' tools for attaching the subflooring to the joists and girders, and which may or may not include the above-described inventive aspects. Such conventional tools may include pneumatic nail guns, the use of which is expected to further reduce the installation labor cost, as well as the cost of the attaching fasteners. Viz., the present invention also provides a floor joist system including at least one girder having an upper surface and a plurality of joists interconnected with the girder, each joist also having an upper surface, the upper surfaces of the girder and the joist being substantially coplanar. A plurality of individual flooring attachment elements are attached to the upper surfaces of the girder and joists. The flooring attachment elements have a hardness which is less than the hardness of both the girder and the joists, and are substantially incompressible to provide firm support to the overlying subfloor and fix the distance between the opposed surfaces of the subfloor and girder and joists. Flooring is supported by the upper surfaces of the girder and joists through their respective flooring attachment elements, and the flooring is attached to the flooring attachment elements.

[0021] In accordance with the present invention, subflooring, roof decking, or wall or ceiling panels may be respectively attached to metal I beam floor joists, studs or overhead structures using conventional methods, tools and fasteners. One embodiment of a sheet material attachment system in accordance with the present invention also provides a means for encasing I beam columns or pillars with wall panel materials to provide the room in which they are located with a more finished appearance.

[0022] The present invention provides a sheet material attachment system including at least one longitudinal beam having a web, and at least one flange having first and second opposite sides, the web extending from the flange second side. A sheet material attachment element overlies the flange first side, the sheet material attachment element having a hardness which is less than the hardness of the flange. The sheet material attachment element is attached to the beam by a fastener, the fastener being substantially U-shaped and having a first leg which engages a side of the sheet material attachment element and a second leg which engages the flange second side. The system also includes a piece of sheet material being anchored to the sheet material attachment element.

[0023] The sheet material attachment elements are also substantially incompressible, and therefore provide firm support for the overlying sheet material anchored thereto, and fix the distance between the opposed surfaces of the sheet material and the beam.

[0024] The present invention also provides a ceiling panel attachment system including a plurality of nonvertical beams each having a lower surface, the beam lower surfaces being substantially coplanar. A plurality of individual ceiling panel attachment elements is attached to the beam lower surfaces, the ceiling panel attachment elements having a hardness which is less than the hardness of the beam lower surfaces. At least one ceiling panel is suspended from the beams through their respective ceiling panel attachment elements, the ceiling panel being anchored to the ceiling attachment elements.

[0025] The present invention also provides a wall panel attachment system including a least one nonhorizontal beam having a surface, at least one wall panel attachment element attached to the beam surface, the wall panel attachment element having a hardness which is less than the hardness of the beam surface, and at least one wall panel supported by the beam through its wall panel attachment element, the wall panel being anchored to the wall panel attachment element. The beam may be a wall stud or a column.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:

[0027] FIG. 1 is an exploded view from below illustrating the interconnection of a pair of opposed joists to a girder according to a first embodiment of the present invention;

[0028] FIG. 2 is a perspective view from below of the assembled joists and girder of FIG. 1;

[0029] FIGS. 3A-3C are fragmentary sectional side views of the assembled girder and joist along line 3-3 of FIG. 2, showing the installation sequence of the interconnecting pin of one embodiment of the present invention;

[0030] FIG. 4 is a fragmentary elevation showing a splice connecting two abutting girder ends;

[0031] FIG. 5 is a fragmentary perspective view from below of a floor joist system according to the first embodiment of the present invention and the supported floor;

[0032] FIG. 6A is a fragmentary sectional side view of the floor joist system according to the first embodiment of the present invention along line 6-6 of FIG. 5, showing a supporting side wall and intermediate column;

[0033] FIG. 6B is a fragmentary sectional side view of the floor joist system of FIG. 6A, taken along a line parallel to and to the right of line 6-6 of FIG. 5;

[0034] FIG. 7A is a perspective view from above of a joist according to a first embodiment of the present invention and its supporting side wall, showing one method of anchoring the joist end to the side wall;

[0035] FIG. 7B is a perspective view from above showing an alternative to the method of anchoring the joist end to the side wall shown in FIG. 7A;

[0036] FIG. 8 is a sectional view along line 8-8 of FIG. 6B;

[0037] FIG. 9 is a plan view of the floor joist system according to the first embodiment of the present invention, showing a portion of the floor;

[0038] FIG. 10 is a sectional end view of a floor joist according to a second embodiment of the present invention, showing flooring attached thereto;

[0039] FIG. 11A is a plan view of a U-shaped fastener for use with the floor joist of FIG. 10;

[0040] FIG. 11B is a side view of the fastener of FIG. 11A;

[0041] FIG. 11C is a perspective view of the fastener of FIG. 11A;

[0042] FIG. 12 is a fragmentary perspective view from below of a floor joist system according to the second embodiment of the present invention and the supported floor;

[0043] FIG. 13A is a fragmentary sectional side view of the floor joist system according to the second embodiment of the present invention along line 13-13 of FIG. 12, showing a supporting side wall and intermediate column;

[0044] FIG. 13B is a fragmentary sectional side view of the floor joist system of FIG. 13A, taken along a line parallel to and to the right of line 13-13 of FIG. 12;

[0045] FIG. 14 is a perspective view from above of a joist according to a second embodiment of the present invention and its supporting side wall, showing one method of anchoring the joist end to the side wall;

[0046] FIG. 15 is a fragmentary perspective view from below of a ceiling panel attachment system according to a third embodiment of the present invention, shown as part of a floor joist system according to a second embodiment of the present invention, or as part of a roof support system;

[0047] FIG. 16 is a sectional view of the ceiling panel attachment system of FIG. 15 along line 16-16;

[0048] FIG. 17 is a sectional vertical view of a first wall panel attachment system according to a fourth embodiment of the present invention; and

[0049] FIG. 18 is a sectional vertical view of a second wall panel attachment system according to a fifth embodiment of the present invention.

[0050] Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the present invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present invention. The exemplifications set out herein are not to be construed as limiting the scope of the invention in any manner.

DETAILED DESCRIPTION OF THE INVENTION

[0051] The embodiments disclosed below are not intended to be exhaustive or limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize its teachings.

[0052] Referring now to the drawings and particularly to FIG. 1, a floor joist system according to a first embodiment of the present invention provides girder 20 which may be in the form of a castellated I beam having web 22 and upper and lower flanges 28 and 30, respectively. Web 22 is formed of upper and lower web portions 24 and 26, respectively, which, when joined at a plurality of welded joints 34, provide a plurality of large openings 32. Located between adjacent openings 32 and repetitively spaced at, for example, 24 inch increments along upper web portion 24 are formed vertical slots 36, which are cut through the web material. The dimensions and location of slots 36 will be further described below. Upper flange 28 has upper surface 29 and lower flange 30 has lower surface 31. In an embodiment of a floor joist system according to the present invention which is adapted to residential construction of ordinary type, the distance between surfaces 29 and 31 is approximately 12 inches. An example of a castellated beam of this approximate dimension, and into which slots 36 may be formed, is produced by Castellite and designated CB1215.

[0053] FIG. 1 further shows that girder 20 is intersected by I beam joists 38, each of which comprises web 40 and upper and lower flanges 42 and 44, respectively. Upper flange 42 has upper surface 43 and lower flange 44 has lower surface 45. The distance between surfaces 29 and 31 of girder 20 is substantially greater that the distance between surfaces 43 and 45 of joist 38. In an embodiment of a floor joist system according to the present invention which is adapted to residential construction of ordinary type, the distance between surfaces 43 and 45 is approximately 8 inches. Formed and extending from web 40 at each end of joist 38 is tongue 46 having a height substantially that of web 40 and equivalent thickness. Slot 36 is sized to slideably receive tongues 46 of two joists 38 in an easily yet closely fitting manner, tongues 46 entering slot 36 from opposite sides of girder web 22 and overlapping therein.

[0054] As shown, four holes 48 arranged as two pairs of vertically aligned holes may be provided in each tongue 46. As tongues 46 of opposing joists are overlapped through slot 36, the leading pair of vertically aligned holes 48 in one tongue becomes superimposed on the trailing pair of holes 48 in the adjacent tongue, the leading pair and trailing pair of holes 48 in a given tongue located on opposite sides of girder web 22. Joist upper flange 42 may be cut away farther along web 40 than is joist lower flange 44 by a distance of approximately one half the width of girder upper flange 28 less one half the thickness of web upper portion 24, the resulting edge of flanges 42 and 44 lying in planes substantially perpendicular to web 40, such that joist tongue 46 is inserted into slot 36 until the edge of joist lower flange 44 abuts girder web 22 and the edge of joist upper flange 42 abuts the side of girder upper flange 28. By this means tongues 46 may be extended a consistent distance into slot 36, thereby aligning holes 48 in each.

[0055] As shown, pin 50 may be of circular cross section and formed from a rod of compliant metal, such as aluminum or soft steel. Pin 50 is configured to provide central portion 52 having a length matching the distance between vertically aligned holes 48, from which extend perpendicularly thereto and in the same direction short leg 54 and long leg 56, best seen in FIG. 3A. Referring in sequence to FIGS. 3A-3C, pin 50 is inserted through aligned holes 48 on each side of girder web 22 such than central portion 52 lies alongside one of tongues 46, with short leg 54 and long leg 56 extending through aligned holes 48 (FIG. 3B). Short leg 54 and long leg 56 are bent towards each other using an appropriate, common tool such as a hammer. Pin 50 hence prevents relative movement of opposing joists 38 and positively interconnects them with girder 20, ensuring joists 38 do not come out of position during assembly of the floor joist system. Attachment of the subfloor to the upper flange surfaces of joists 38 and girder 20, discussed below, will permanently maintain the position of each joist. The use of pin 50 is but one way of maintaining the position of the joists during assembly; other suitable means are contemplated as being within the scope of the present invention. It should be noted that interconnecting joists 38 by the use of pins 50 or other suitable means is not a necessary aspect of practicing the present invention. Interconnecting the joist tongues with pins as discussed above serves primarily to ensure joists 38 do not fall out of engagement with girder 20 during assembly of the floor joist system, providing an extra measure of safety for the workers. Once joists 38 have been fitted into an anchored girder and are themselves anchored to the sidewall of the building or foundation, or fitted between adjacent, anchored girders, they would be restrained from such accidental disengagement despite a lack of pins 50.

[0056] The ends of joists 38 which do not overlappingly engage another joist within girder slot 36 are supported by side walls 62 of the building or its foundation, depending upon whether multiples stories are accommodated, and are spaced therealong equidistantly, and maintain a perpendicular relationship between joist 38 and girder 20. Side walls 62 may form a perimeter around the building or its foundation. Below lower joist flange 44, and attached to top surface 61 of foundation side walls 62, is mud sill 74. Mud sill 74 extends along the inner perimeter of side wall top 61 is attached thereto in a known way, such as by nuts 78 threaded onto bolts 80 which are embedded in wall 62, are spaced at specified distances along top 61, and extend vertically through a hole in mud sill 74, as shown in FIG. 7A. Mud sill 74 may be a plurality of common 2 inch by 4 inch or 6 inch board or, where a 6 inch tall joist 38 is used with a 12 inch tall girder 20, a 4 inch by 4 inch wooden beam. As shown in FIGS. 6A-7B, rim joists 76, which may be a plurality of 2 inch by 10 inch boards, may extend around the perimeter of the building wall or foundation and are attached to mud sill 74 by nails or screws (not shown), closing off the uppermost interior of the below room from the exterior of the building.

[0057] The ends of joists 38 supported by side wall 62 rest atop mud sill 74 and may be prevented from moving therealong by being bolted to rim joist 76 through angled brackets 82, as shown in FIG. 7A or, alternatively, by disposing blocks 84 between adjacent joists 38, as shown in FIG. 7B, the ends of blocks 84 abutting webs 40 of the joists. Blocks 84 are disposed above mud sill 74 and prevent movement of joists 38 therealong by at least one of blocks being fastened to wall 62 by bolt 80a, which extends through aligned holes in mud sill 74 and block 84. Nut 78 and bolt 80a hold fastened block 84 in place; the other blocks are restrained from moving longitudinally by joist webs 40. Blocks 84 may also be further secured by being nailed to mud sill 74. It is preferable that the end of joist 38 which rests upon mud sill 74 do so upon its lower flange 44. Therefore, joists 38 which extend between side wall 62 and girder 20 may be preformed with tongue 46 at only one end thereof, and joists 38 which extend between adjacent girders 20 may be preformed with tongues 46 at both ends thereof. Alternatively, one joist design having tongue 46 at each end may be used, with tongue 46 cut off of the end of the joist which is supported by side wall 62 as required. As seen in FIGS. 6A, 6B and 8, pockets 65 formed in adjacent side walls 62 support the ends of girder 20, the pockets providing a supporting surface 63 disposed below the top 61 of side wall 62 to accommodate the greater depth of girder 20 vis-a-vis joist 38, thus keeping girder upper flange surface 29 and joist upper flange surface 43 at a common level. The distance from the top of mud sill 74 to supporting pocket surface 63 is therefore equivalent to the difference in height between girder 20 and joist 38. Slot 36 is also vertically positioned such that when girder 20 and joist 38 are assembled, girder upper flange surface 29 and joist upper flange surface 43 lie in a common plane. As best seen in FIG. 8, web 22 of girder 20 is sandwiched between ends of the board comprising mud sill 74. Abutting the ends of mud sill 74 boards against web 22 further stabilizes girder 20 against falling over and, where pocket 65 is substantially wider than lower girder flange 30, positively positions girder 20 transversely.

[0058] Where the above-described floor joist system embodiment is adapted to residential construction, the 8 inch high I-beam joists 38 spaced 32 inches on center may extend up to approximately 20 feet. In this case, therefore, pockets 65 provided in side walls 62 for girders 20 may be spaced at approximately 20 foot intervals from the adjacent side walls which support an end of a joist 38. To simplify assembly where joists 38 are to be fitted between two girders 20, the tongues 46 at the commonly oriented joist ends should be engaged into their mating slots 36 in the first girder before the second girder is moved into its final position. Girders 20 adapted to such use as described above may span up to approximately 18 feet between side walls or intermediate support columns 64 (FIG. 6A). Abutting or adjacently aligned girders 20 may be joined as shown in FIG. 4, where the adjacent ends of girders 20 have a series of splice holes 66, which may be preformed at both or only one end of each girder 20 or which may be drilled or otherwise formed in situ during construction. Splice plates 68, preferably formed of plate steel and having two sets of holes 70 arranged to match holes 66, are disposed on both sides of webs 22 of the adjacent girders 20 and fastened together through holes 66, 70 with bolts 72 and nuts (not shown). Support column 64 should be placed beneath a spliced girder joint to ensure the integrity of the floor joist system.

[0059] As shown in FIGS. 5 and 6, subfloor 58 is applied to the upper surfaces of the inventive joist system. Subfloor 58 may be wooden plyboard or wooden particle board, as discussed above, or may comprise corrugated sheets of steel upon which concrete is poured. Generally, the latter type of floor is used in larger commercial building construction and may require girders 20 and joists 38 of somewhat larger size than described above, although such construction is to be considered within the scope of the present invention. Subfloor 58 is applied to this floor joist system embodiment in commonly known ways. Generally, adhesive is first applied to upper flange surfaces 29 and 43 of girders 20 and joists 38, respectively, and the subfloor is then laid. Rather than using nails, however, drill point screws (not shown) are driven through the subfloor and into surfaces 29 and 43. Attachment of subfloor 58 to girders 20 and joists 38 permanently restricts movement of these beams. FIG. 9 shows an assembled floor joist system according to one embodiment of the present invention. Those of ordinary skill in the art will appreciate that the above-described floor joist system may also be adapted to support a roof having decking comprised of sheet material similar to that used for subflooring 58. In such case, the joists serve as roof rafters.

[0060] Referring now to FIG. 10, there is shown a second embodiment of the present invention by which customary fastening means, rather than drill point screws, may be used for attaching flooring to the floor joist system, thereby relatively decreasing the time and costs associated with floor installation. Such customary fastening means include nails which pierce the subflooring 58 and the underlying joist, and which may be of the ordinary type which are driven by a hand-held hammer, or of a type which are driven by a pneumatic nail gun. Those of ordinary skill in the art will appreciate that the above-described floor joist system may also be adapted to support a roof having decking comprised of sheet material similar to that used for subflooring 58. In such case, the joists serve as roof rafters.

[0061] Depicted girder assembly 86 of the second embodiment floor joist system comprises girder 20a, which may be identical to girder 20 of the first embodiment, and flooring attachment element 88 attached to its upper flange surface 29. It is important to note that girder 20a of the second embodiment need not be identical to girder 20, or interconnect with its associated joists in the manner above-described. Indeed, a floor joist system according to the second embodiment need not comprise a floor joist system according to the first embodiment, although common elements are discussed below and depicted in the accompanying drawing for illustrative purposes.

[0062] Flooring attachment element 88 is made of a material such as wooden plyboard or particle board, thereby obviating the need for drill point screws as used in the first embodiment and allowing subflooring 58 to be attached to girder assembly 86 by conventional fastening means, e.g., by nailing, particularly with a pneumatic nail gun, thereby providing the advantage vis-a-vis the floor joist system of the first embodiment of allowing ordinary and customary carpenters' tools and methods to be used in installing the floor, whereby the installation labor and fastener costs may be reduced.

[0063] Element 88 is of sufficient thickness to accommodate the depth required for fastening floor 58 thereto by conventional fastening means used by carpenters, e.g., with ordinary or pneumatically-driven nails 90. For example, element 88 may be made from ¾ inch plyboard. Element 88 is cut to substantially match the size and shape of upper flange surface 29 of girder 20a, and may be attached thereto with an appropriate adhesive, such as exterior construction glue, which is well-known in the construction industry. Element 88 may also comprise a plurality of shorter abutting pieces distributed along surface 29. Additionally, or alternatively, element 88 may be attached to girder 20a by means of U-shaped fasteners 92, one of which is shown in FIGS. 11A-11C. Each fastener 92 is made of a flat metal strip, such as, for example, galvanized or zinc-plated steel, which may be 16 or 14 gauge thickness. Fastener 92 has first 94 and second 96 legs interconnected by intermediate portion 98. One embodiment of fastener 92 is approximately ¾ inch wide, side-to-side, and wherein leg 94 has a length extending between its terminal end 100 and intermediate portion 98 of approximately ¾ inch, leg 96 has a length extending between its terminal end 102 and intermediate portion 98 of approximately 1 inch, and intermediate portion 98 has a depth between legs 94, 96 of approximately ½ inch. Terminal end 100 of first leg 94 has sharp serrations provided therein to allow fastener 92 to easily penetrate side surface 104 or 106 of element 88. Fasteners 92 are provided at 12 inch increments along the length of girder assembly 86, alternatively attached therealong in staggered fashion to side surfaces 104, 106. Second leg 96 of each fastener 92 is slidably engaged with underside surface 108 of upper flange 28. The thickness of flange 28 continuously increases slightly from its lateral sides towards web 22, causing leg 96 to resiliently flex away from leg 94 as terminal end 102 of leg 96 slides along underside surface 108 of flange 28 towards web 22, thereby increasing the clamping force between element 88 and girder 20a as leg 94 increasingly penetrates side surface 104 or 106.

[0064] Similarly, depicted joist assembly 110 of the second embodiment comprises joist 38a, which may or may not be identical to joist 38 of the first embodiment, and flooring attachment element 112 attached to its upper surface 43. Here, too, flooring attachment element 112 is made of a material such as, for example, wooden plyboard or particle board, which is considerably softer and more readily pierced than joist 38a, thereby allowing flooring 58 to be attached to joist assembly 110 by conventional fastening means.

[0065] In the depicted embodiment, upper surfaces 29 and 43 of girder 20a and joist 38a, respectively, are coplanar, as in the first embodiment. Element 112 is therefore identical in thickness to element 88, thereby maintaining a plurality of coplanar grid surfaces to which flooring 58 is attached. As described above regarding element 88, element 112 may be made from ¾ inch wooden plyboard or particle board, cut to substantially match the size and shape of upper flange surface 43 of joist 38a, and is similarly attached thereto with fasteners 92 and/or adhesive. Element 112 may also comprise a plurality of shorter, abutting pieces distributed along surface 43. As in the case of girder assembly 86, joist assembly 110 has its fasteners 92 placed in staggered fashion between opposite lateral sides of element 112, and placed at 12 inch increments along each side. Also, as described above with respect to girder 20a, the thickness of upper flange 42 of joist 38a continuously increases slightly from its lateral sides towards web 40 (FIG. 13A), thus increasing the clamping force between element 112 and joist 38a as leg 94 increasingly penetrates a lateral side surface of flooring attachment element 112.

[0066] Referring now to FIG. 12, it can be seen that flooring 58 is supported by the upper surfaces of flanges 28 and 42 of girder 20a and joists 38a, respectively, through their respective individual flooring attachment elements 88, 112 attached thereto. Flooring attachment elements 88, 112 are substantially incompressible, and therefore provide firm support for overlying subfloor 58 anchored thereto, and fix the distance between the opposed surfaces of the flooring and the girder and joists. Notably, vis-a-vis the first embodiment floor joist system, a corresponding increase in height accompanies the addition of the flooring attachment elements to the upper surfaces of girders 20a and joists 38a, if they are identical in height to girders 20 and joists 38. The elevation at which flooring 58 is located may be maintained between the first and second embodiments by appropriately selecting girders and joists 20a, 38a which are respectively shorter than girders and joists 20, 38, thereby maintaining a common height between girder 20 of the first embodiment and girder assembly 86 of the second embodiment, and likewise between joist 38 and joist assembly 110. Those skilled in the art will recognize other methods of so maintaining a common floor elevation between the first and second embodiments of the present invention should such a need arise.

[0067] Should girders 20, 20a and joists 38, 38a be respectively identical in height, a floor joist system according to the second embodiment may use ¾ inch taller rim joist 76a (FIG. 13, 14) in lieu of inch shorter rim joist 76 (FIG. 6, 7).

[0068] Referring now to FIG. 15 there is shown a third embodiment of the present invention. As shown, the this ceiling attachment system, like the above-described floor joist system of the second embodiment, includes flooring attachment elements 88 and 112 attached to the upper flanges of the girders and joists. Girder 20a is provided with sheet material attachment element 114 attached to its downwardly facing lower flange lower surface 31. Sheet material attachment element 114 may be identical to attachment element 88, and is attached to the lower flange of the girder by means of adhesive and/or fasteners 92 as described above. Joist 38b differs from above-described joist 38a in that its height is substantially equivalent to the height of girder 20a. As shown, girder 38b comprises a plurality of truss rods 118 which extend between its upper and lower flanges to form its web, rather than having a web formed integrally with the flanges. A plurality of sheet material attachment elements 116 are attached to downwardly facing surface 45 of the lower flange of joists 38b by means of adhesive and/or fasteners 92 as described above. The lowermost surfaces of sheet material attachment elements 114 and 116 are co-planer and substantially horizontal.

[0069] Ceiling panels 120, which may be plaster wall board, are attached to the sheet material attachment elements 114, 116 by means of screws 122. Sheet material attachment elements 114, 116 are substantially incompressible, and therefore provide firm support for the underlying ceiling panel 120 which is anchored thereto, and fix the distance between the opposed surfaces of the ceiling panel and the girder and joists. Sheet material attachment elements 114 and 116 may be respectively identical to flooring attachment elements 88, 112 and are, for example, wooden plyboard or wooden particle board.

[0070] As clearly shown in FIG. 15, there is provided clearance and openings for ductwork, piping and/or wiring (not shown) to be routed between subflooring 58 and ceiling panel 128 through the openings in the castellated girder and the space between truss rods 118 of the joists.

[0071] As noted above, those of ordinary skill in the art will recognize that the third embodiment of the present invention may provide a either a floor joist system (as shown) or a roof support system, in which the joists serve as roof rafters. The latter system includes roof decking comprised of sheet material similar to that used for subflooring 58. As shown in FIG. 16, in embodiments of a roof support system according to the present invention, roofing material 124 overlies the upper surface of roof decking sheet material 58. Roofing material 124 may comprise, for example shingles or any other suitable, conventional material used for roofing.

[0072] Referring now to FIG. 17, there is shown a first wall panel attachment system according to a fourth embodiment of the present invention. This wall panel attachment system is adapted to a vertical, load-bearing column 130 which extends from the floor to, for example, an overhead girder for supporting the latter. Column 130 comprises steel I beam 132 which has web 134 extending between its parallel flanges 136 and 138, respectively provided with outer surfaces 140 and 142. Extending along, and attached to flange surfaces 140 and 142, by means of adhesive and/or fasteners 92 as described above, are elongate sheet material attachment elements 144 and 146. Sheet material elements 144 and 146 may be identical, and made of wooden plyboard or wooden particle board.

[0073] Sheet material attachment elements 144 and 146 are each provided with lateral surfaces 148 which are aligned with the lateral edges of flanges 136, 138 and into which first legs 94 fasteners 92 are driven in the manner discussed above. Fasteners 92 also engage the inner, opposed surfaces of flanges 136 and 138 as shown in FIG. 17 to retain the sheet material attachment elements to the flanges in the manner described above. Sheet material attachment elements 144 and 146 each provide outwardly facing surfaces 150. A plurality of wall panel or sheet material pieces 152a-d, which may be made of plaster wall board or wooden paneling, are arranged about I beam 132 and sheet material elements 144, 146 as shown, to define the outer surface of column 130 and encase the I beam. Sheet material pieces 152a-d are anchored to the sheet material attachment elements by means of screws 122. The outer surface of column 130 may then be finished in any conventional manner to provide a more finished appearance to the room in which column 130 is located. Sheet material attachment elements 144 and 146 are substantially incompressible, therefore providing firm support to overlying sheet material anchored thereto and fix the respective distances between flange surfaces 140, 142 and the opposed surfaces of sheet material pieces 152a and 152b.

[0074] FIG. 18 shows a second wall panel attachment system according to a fifth embodiment of the present invention. Wall 160 comprises a plurality of vertically extending studs 162 which are comprised of horizontally spaced I beams 163 each having opposite flanges and a web extending therebetween. Attached to the outer face of each I beam flange, and extending therealong, is elongate sheet material attachment element 164, which may be wooden plyboard or wooden particle board. As described above, these sheet material attachment elements are substantially incompressible, and therefore provide firm support for wall panels 166 and 168 which are anchored thereto by means of screws 122. Further, the incompressible sheet material attachment elements fix the distance between the opposed I beam flange and the wall panel surfaces. Wall panels 166 and 168 may both be interior wall panels, substantially similar or substantially different in composition. Alternatively, one of wall panels 166 and 168 may be an interior wall panel and the other an exterior wall panel. Sheet material suitable for an interior wall panel includes, for example, plaster wall board or wood paneling. Sheet material suitable for an exterior wall panel, may be substantially different than that used for interior wall panels, and includes, for example, wooden plyboard or wooden particle board. In the manner described above, sheet material attachment elements 164 may be affixed to the flanges of I beams 163 by means of adhesive and/or fasteners 92 in the manner described above. Wall panels 166, 168 may be anchored to elements 164 by means of screws 122 or nails (not shown).

[0075] While this invention has been described as having an exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims

1. A sheet material attachment system comprising:

at least one longitudinal beam having a web, and at least one flange having first and second opposite sides, said web extending from said flange second side;
a sheet material attachment element overlying said flange first side, said sheet material attachment element having a hardness which is less than the hardness of said flange;
at least one fastener, said sheet material attachment element attached to said beam by said fastener, said fastener being substantially U-shaped and having a first leg which engages a side of said sheet material attachment element and a second leg which engages said flange second side; and
a piece of sheet material anchored to said sheet material attachment element.

2. The sheet material attachment system of claim 1, wherein said beam is metallic, and said sheet material attachment element is nonmetallic.

3. The sheet material attachment system of claim 2, wherein said beam is steel, and said sheet material attachment element is wooden.

4. The sheet material attachment system of claim 3, wherein said sheet material attachment element is plyboard.

5. The sheet material attachment system of claim 1, wherein said beam is substantially vertically-oriented.

6. The sheet material attachment system of claim 5, wherein said beam is a wall stud.

7. The sheet material attachment system of claim 6, wherein said piece of sheet material is a wall panel.

8. The sheet material attachment system of claim 7, wherein said wall panel is plaster wall board.

9. The sheet material attachment system of claim 7, wherein said wall panel is wooden.

10. The sheet material attachment system of claim 6, wherein said flange is a first flange, said sheet material attachment element is a first sheet material attachment element, said piece of sheet material is a first piece of sheet material, said fastener is a first said fastener, and said stud has a second flange having first and second opposite sides, said web extending between said second sides of said first and second flanges, and further comprising a second sheet material attachment element overlying said second flange first side and attached to said stud by a second said fastener, and a second piece of sheet material anchored to said second sheet material attachment.

11. The sheet material attachment system of claim 10, wherein said first and second pieces of sheet material are substantially identical in composition.

12. The sheet material attachment system of claim 10, wherein said first and second pieces of sheet material are substantially different in composition.

13. The sheet material attachment system of claim 5, wherein said beam is a support column.

14. The sheet material attachment system of claim 13, wherein said column is at least partially encased by a plurality of pieces of said sheet material.

15. The sheet material attachment system of claim 14, wherein said flange is a first flange, said sheet material attachment element is a first sheet material attachment element, said fastener is a first said fastener, and said column has a second flange having first and second opposite sides, said web extending between said second sides of said first and second flanges, and further comprising a second sheet material attachment element overlying said second flange first side and attached to said column by a second said fastener, each piece of said plurality of pieces of said sheet material anchored to a said sheet material attachment element.

16. The sheet material attachment system of claim 1, wherein said piece of sheet material is a ceiling panel.

17. The sheet material attachment system of claim 16, wherein said beam is substantially horizontally-oriented.

18. The sheet material attachment system of claim 16, wherein said ceiling panel is plaster wall board.

19. The sheet material attachment system of claim 16, wherein said beam is one of a floor joist and a roof rafter, said flange first side being downwardly facing.

20. The sheet material attachment system of claim 19, wherein said floor joist or roof rafter has a second flange having first and second opposite sides, said second flange first side being upwardly facing, said web extending between said second sides of said flanges, and further comprising a said sheet material attachment element overlying said second flange first side and attached to said floor joist or roof rafter by at least one said fastener, and one of flooring and roof decking material respectively anchored to the said sheet material attachment element which overlies said floor joist or roof rafter second flange first side.

21. The sheet material attachment system of claim 16, wherein said flange is a first flange, said fastener is a first said fastener, and said beam has a second flange having first and second opposite sides, said web extending between said second sides of said first and second flanges, and further comprising a second sheet material attachment element overlying said second flange first side and attached to said beam by a second said fastener, and one of flooring and a roof deck anchored to said second sheet material attachment element.

22. The sheet material attachment system of claim 1, wherein the distance between said piece of sheet material and said flange first side is substantially fixed by said sheet material attachment element.

23. The sheet material attachment system of claim 22, wherein said sheet material attachment element is substantially incompressible.

24. A ceiling panel attachment system comprising:

a plurality of nonvertical beams each having a lower surface, said beam lower surfaces being substantially coplanar;
a plurality of individual ceiling panel attachment elements fixed to said beam lower surfaces, said ceiling panel attachment elements having a hardness which is less than the hardness of said beam lower surfaces; and
at least one ceiling panel suspended from said beams through their respective ceiling panel attachment elements, said ceiling panel being anchored to said ceiling attachment elements.

25. The ceiling panel attachment system of claim 24, wherein said ceiling panel is substantially horizontal.

26. The ceiling panel attachment system of claim 25, wherein at least one of said beams is one of a floor joist and a roof rafter.

27. The ceiling panel attachment system of claim 24, wherein a said individual ceiling attachment element is elongate and extends along the said lower surface to which that said individual ceiling attachment element is attached.

28. The ceiling panel attachment system of claim 24, wherein a said individual ceiling panel attachment element is attached to one of said beams by means of a fastener, said fastener being substantially U-shaped, said fastener having a first leg which engages a side of said ceiling panel attachment element, and a second leg which engages a surface of said one of said beams.

29. A wall panel attachment system comprising:

a least one nonhorizontal beam having a surface;
at least one wall panel attachment element fixed to said beam surface, said wall panel attachment element having a hardness which is less than the hardness of said beam surface; and
at least one wall panel supported by said beam through its wall panel attachment element, said wall panel being anchored to said wall panel attachment element.

30. The wall panel attachment system of claim 29, wherein said wall panel is substantially vertical.

31. The wall panel attachment system of claim 30, wherein said beam is a wall stud, and further comprising a plurality of said wall studs, each of said plurality of wall studs has a said surface, said wall stud surfaces being substantially coplanar, and a said wall panel attachment element is fixed to each said wall stud surface.

32. The wall panel attachment system of claim 31, wherein each of said plurality of studs has a second surface located opposite its said surface, said wall stud second surfaces being substantially coplanar, and a said wall panel attachment element is fixed to the said second surface of each of said plurality of studs, said plurality of studs being disposed between two said wall panels, each said wall panel being anchored to a said wall panel attachment element.

33. The wall panel attachment system of claim 32, wherein said two wall panels between which said studs are disposed are substantially identical in composition.

34. The wall panel attachment system of claim 32, wherein said two wall panels between which said studs are disposed are substantially different in composition.

35. The wall panel attachment system of claim 29, wherein said beam is a column having a second surface located opposite its said surface, and further comprising a wall panel attachment element fixed to said second surface, said column at least partially encased by a plurality of said wall panels, each of said plurality of wall panels being anchored to one of said wall panel attachment elements.

36. The wall panel attachment system of claim 29, wherein said wall panel is plaster wall board.

37. The wall panel attachment system of claim 29, wherein said wall panel attachment element is elongate and extends along said beam surface.

38. The wall panel attachment system of claim 29, wherein said wall panel attachment element is attached to said beam by means of a fastener, said fastener being substantially U-shaped, said fastener having a first leg which engages a side of said wall panel attachment element, and a second leg which engages a surface of said beam.

Patent History
Publication number: 20020005022
Type: Application
Filed: May 4, 2001
Publication Date: Jan 17, 2002
Inventor: LeRoy Matthews (Jacksonville, FL)
Application Number: 09849568