Space transportation system

The invention presents a new concept of spacecraft vehicle design and method of utilization in space flight operations. The system examines the major elements of launch, to orbit flight and return format. The system relies heavily on current space flight technology. Two spacecraft vehicles are utilized in conjunction to achieve Earth orbit. The vehicles are launched simultaneously in a joined configuration. Reaching approximately half distance to orbit, the vehicles separate with the booster vehicle returning to land and the transport vehicle continuing to Earth orbit. Terminating orbit space flight, the transport vehicle reenters the atmosphere returning to land. The details of spacecraft construction and space flight operations are complex and will not be discussed.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] The invention applies the physical action of aerodynamics, rocket propulsion, and atmospherical reentry conditions.

[0002] The aerodynamic principles utilized are consistent with current technology applied to spacecraft design. The spacecraft vehicle will normally contain a fuselage or capsulated structure, a wing to provide aerodynamic lift, and control surfaces for guidance. The fuselage may be designed to generate aerodynamic lift.

[0003] Rocket engines are generally classified as using either solid fuel or liquid fuel to provide propulsion. Current technology utilizes both types of engines to achieve Earth orbiting space flight.

[0004] The act of terminating space flight to return to the Earth surface is a process requiring relatively rapid deceleration. To solve this problem current technology utilizes a combination of methods, attitudes, and spacecraft integrity. This system is concerned with methods and the spacecraft vehicle integrity.

SUMMARY OF THE INVENTION

[0005] The objective of the invention is to provide specific information concerning spacecraft vehicle design and the utilization of these vehicles.

[0006] In accordance with features of the invention, a space flight launch and return system comprising:

[0007] An autonomous return booster (ARB) vehicle, containing two solid rocket engines and one liquid rocket engine.

[0008] An astronaut crew transport (ACT) vehicle, containing three liquid rocket engines.

[0009] Because of the complexity of spacecraft vehicles, the relative specifications will be limited to; aerodynamic shape and approximate size, rocket engine type and location in the vehicles, and flight operations format.

[0010] In launch configuration the ARB vehicle and the ACT vehicle are joined together utilizing current technology. Ascending simultaneously, the vehicles separate approximately half distance to orbit altitude. The ARB vehicle then descends utilizing autonomous guidance controls and lands like a conventional aircraft. The ACT vehicle continues on the orbit insertion trajectory. The ACT vehicle terminates orbiting space flight and reenters the Earth atmosphere utilizing current technology.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 The ARB vehicle as seen from the top.

[0012] FIG. 2 The ARB vehicle as seen from the side.

[0013] FIG. 3 The ACT vehicle as seen from the top.

[0014] FIG. 4 The ACT vehicle as seen from the side.

[0015] FIG. 5 The ARB vehicle and the ACT vehicle in launch configuration.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The invention is comprised of two spacecraft vehicles working in conjunction to transport humans into Earth orbit. The transport system relies heavily on space flight technology developed over the last fifty years. Each vehicle will be described according to shape, size, engine configuration and role in the flight operation.

[0017] Autonomous Return Booster (ARB) Vehicle

[0018] The primary function of the ARB vehicle is to provide propulsion and fuel for the astronaut crew transport (ACT) vehicle. Somewhat similar to current technology, the ARB vehicles ascending flight is terminated before reaching orbit. Theoretical in nature, the ARB vehicles flight path would not include orbit reentry speed or temperature extremes.

[0019] The shape chosen to meet the requirements for such a vehicle is a modified delta wing rocket. The aerodynamically proven wing is used with a single vertical (perpendicular to the wing) stabilizer to lift and guide the rocket body. The rocket body, or fuselage, is relatively large in accordance with the function of containing the solid rocket engines and the main fuel supply for the liquid rocket engines. In addition, the ARB vehicle contains one liquid rocket engine for launch and return flight propulsion. The vehicle body is a modified cylinder with a semi-conical front section or nose. The body is flattened on the bottom to accommodate the ACT vehicle in the launch configuration and to generate lift in descending flight.

[0020] (See FIGS. 1 and 2)

[0021] The ARB vehicle contains two solid fuel rocket engines located in alignment with the wing and most outboard in the body. The liquid fuel engine is located between and upward from the solid rocket engines (as seen from level attitude). Nozzle locations for the three engines are in alignment and extending from the rearward body.

DETAILED DESCRIPTION OF THE INVENTION

[0022] The liquid fuel tanks are located forward from the liquid fuel engine and between the solid fuel engines. All engines and engine related equipment remain with the vehicle during the course of the flight.

[0023] The guidance system utilized with the ARB vehicle is autonomous computer consistent with current technology. Computer program software coordinate all flight operation functions. Theoretically, the ARB vehicle is completely reusable. The ARB vehicle is approximately two times the size of the ACT vehicle (by volume).

[0024] Astronaut Crew Transport (ACT) Vehicle

[0025] The primary function of the ACT vehicle is to transport humans from Earth surface to Earth orbit and return to Earth surface. The ACT vehicle is utilized in conjunction with the ARB vehicle to achieve this goal. The ACT vehicles ascending flight continues, after separating from the ARB vehicle, to Earth orbit. Terminating orbit space flight, the ACT vehicle must reenter the Earth atmosphere and is subjected to temperature extremes.

[0026] The shape chosen to meet the requirements for such a vehicle is an integrated delta wing lifting body. The aerodynamic lifting body transit the delta wing to form a shape with greater lifting properties than the wing alone. The lifting body expanded surface creates greater resistance during reentry and improves the glide ratio. Stability is accomplished with twin semi-vertical fins located on the outward edges of the wing. The spacecraft is relatively small in accordance with the function of containing the astronaut crew and the fuel supply for the three liquid rocket engines. The ACT vehicle does not contain a large cargo bay.

[0027] (See FIGS. 3 and 4)

[0028] The ACT vehicle engine configuration is one main engine utilized for launch and reentry burn. Two smaller engines are utilized for orbit maneuvering. The main engine is an Aerospike liquid fuel type located in the center rearward body. The smaller engines are conventional liquid fuel type located outward from the main engine. The fuel supply for the main engine is directed from the ARB vehicle until the vehicles separate. A large portion of the ACT vehicle body/wing supplies the remaining fuel.

[0029] The guidance system utilized with the ACT vehicle is computer controlled consistent with current technology. Computer program software control most flight operation functions with the exception of space orbit docking maneuvers and landing. The ACT vehicle is completely reusable. The ACT vehicle is approximately one half the size of the ARB vehicle (by volume). The ACT vehicle is equipped with a thermal protection system.

DETAILED DESCRIPTION OF THE INVENTION

[0030] Spacecraft are normally built utilizing aluminum alloy metal, steel alloy metal, titanium metal and synthetic composite material. In concept, the ARB vehicle would primarily utilize aluminum alloy metal. In concept, the ACT vehicle would primarily utilize titanium metal. The technology required to produce spacecraft vehicles is so immense and specialized that no explanation is included.

[0031] In conclusion, the invention illustrates, with drawings, a space transportation system where the spacecraft vehicles are completely reusable. Theoretically, the cost of space flight operations could be reduced substantially. The ARB vehicle and the ACT vehicle work together to transport humans to Earth orbit. Notably, the ACT vehicle is limited in capacity and designed for an astronaut crew.

[0032] (See FIG. 5)

[0033] Both the ARB vehicle and the ACT vehicle are the product of extensive research concerning aerodynamic design. These airframe designs could also be utilized in lower atmosphere flight operations. Substitution of turbojet engines for the rocket engines would transform the vehicles for conventional aircraft use.

Claims

1. An airframe design, including engine location, designated the Autonomous Return Booster (ARB) Vehicle which may be powered by rocket engines for space flight or turbojet engines for conventional flight.

2. An airframe design, including engine location, designated the Astronaut Crew Transport (ACT) Vehicle which may be powered by rocket engines for space flight or turbojet engines for conventional flight.

3. A space transportation system comprised of the ARB vehicle and the ACT vehicle which are launched in a joined configuration and then separate approximately half distance to Earth orbit with the ARB vehicle returning to a landing location and the ACT vehicle continuing to Earth orbit.

Patent History
Publication number: 20030052232
Type: Application
Filed: Sep 17, 2001
Publication Date: Mar 20, 2003
Inventor: Allison Earl Hall (Houston, TX)
Application Number: 09953930
Classifications
Current U.S. Class: 244/172
International Classification: B64G001/40; B64G001/42;