Inhibition of the depletion of metal values from pregnant lixiviant solutions

Methods for inhibiting depletion of mineral values from pregnant lixiviant solutions comprise contacting the requisite metal ore with a preg-robbing inhibition agent (PRIA) comprising (I) alkyl polyglucoside surfactants; (II) imidazoline based amphoteric surfactants; and (III) hydroformylation products of lower (C2-C8) alkanes in an organic solvent medium.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

[0001] The present invention relates to methods for inhibiting the “robbing” or depletion of metal values from “pregnant” lixiviant solutions that have extracted the desired metal value from the requisite ore.

BACKGROUND OF THE INVENTION

[0002] Leaching is a cost effective method for recovering precious metals such as gold or silver from ores. In the process, a lixiviant system, comprising a ligant and an oxidant is used to dissolve out the desired precious metal from the ore. As used herein, the phrases “lixiviant system” and “lixiviant solution” will be used interchangeably and do not imply a true chemical solution—only a chemical combination adapted to extract the mineral value in the ore.

[0003] In heap leaching, the metal bearing ore may be obtained from an open pit mine or the like and is crushed to produce an aggregate that is coarse enough to expose the desired mineral values but fine enough to allow intimate contact of the lixiviant system or solution therewith. The lixiviant solution may be distributed over the top of the metal ore heap via sprinklers, wobblers, or other similar equipment. The barren lixiviant “percolates” through the heap to perform its desired function with the metal and the resulting “pregnant” solution is then collected by an impervious leach pad or the like located at the bottom of the heap. The pregnant solution is then subjected to conventional mineral recovery techniques to obtain the desired precious metal.

[0004] In gold heap mining operations, a lixiviant system comprising cyanide, air and lime is commonly used under highly alkaline conditions (pH 9-11.5) to form the pregnant solution, (i.e., a complex or ligand coordinated with a gold cation). The gold cation complex or ligand leaches from the ore heap and is recovered. The gold is then separated from the lixiviant complex via conventional separation techniques such as the conventional method of adsorption on an activated carbon column or bed.

[0005] It has been discovered that in some leach mining operations, the metal ore itself can rob or adsorb the metal value that is complexed with the lixiviant in the pregnant lixiviant solution. That is, the amount of metal contained within the pregnant lixiviant solution is depleted by the metal ore itself. This undesirable action is referred to as “preg-robbing” since the pregnant lixiviant solution is robbed or depleted of the desired solubilized metal. Although applicants are not to be bound to any scientific explanation as to the reason for this phenomenon, it is thought that the problem may be caused by presence of graphite or other carbonaceous matter in the raw metal ore.

[0006] Presently, preg-robbing is inhibited by the addition of kerosene, which is highly flammable. In other cases, the ore is roasted or treated in autoclaves at high temperatures. These latter two alternatives are energy intensive, resulting in overall high metal recovery costs.

[0007] It is therefore an object to provide an effective alternative to present day preg-robbing inhibition treatments and methods.

SUMMARY OF THE INVENTION

[0008] The present invention is directed toward methods for inhibiting the depletion of metal values from pregnant lixiviant solutions in which certain preg-robbing inhibition agents are brought into contact with the metal ore. The preg-robbing inhibition agent (PRIA) may, for example, be applied by itself to the heaped metal ore either before or after the heap is formed. Also, the preg-robbing inhibition agents may be combined directly with the lixiviant for concurrent percolation of the combined lixiviant/PRIA throughout the heaped mass.

[0009] The PRIAs may be brought into contact with the crushed metal ore via drip or spray application or may be applied as a foam to the ore. Generally from about 0.024 kg to about 6.0 kg of the PRIA are applied to the metal ore based upon 1 ton of the ore. More preferably, about 0.5 kg to about 2.0 kg of PRIA are applied per ton of ore. Also, the PRIAs may be used in combination with other conventional treatments.

[0010] Other objects and advantages of the invention will be apparent from the following description and the appended claims.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0011] The preg-robbing inhibition agents in accordance with the invention can be chosen from the groups I-III as explained hereinafter.

[0012] I.

[0013] Group I comprises non-ionic surfactants that are members of the alkyl polyglucoside class. These are the mono and oligomeric alkyl polyglucosides having alkyl groups of about 4-20 carbon atoms, preferably about 8 to about 16 carbon atoms and from about 1-4 glucose units. Preferred alkyl polyglucosides are alkyl and (+&bgr;) mono and oligo glucopyranoside (CASRN 110615-47-9); D-Glucose, decyl, octyl ethers, oligomeric (CAS No. 68515-73-1); and mixtures of an alcohol ethoxysulfate (ammonium salt) poly (oxy-1,2-ethanediyl), alpha-sulfa-omega-hydroxy-C10-C16 alkyl ethers, ammonium salts, (CAS No. 67762-19-0), D-Glucose, decyl, octyl ethers oligomerics (CAS No. 68515-73-1) and D-glucopyranoside, C10-C16 alkyl oligomerics (110615-47-9).

[0014] II.

[0015] Group II comprises the imidazoline based amphoteric surfactants such as the amphopropionate, amphodipropionate, amphoacetate, and amphodiacetate surfactants. These are reported in U.S. Pat. No. 5,744,063, and as stated in that patent, they are prepared by reacting an aminoalkyl alkanol amine or an ethylene or propylene alkylene triamine with a fatty acid to form the desired substituted imidazoline. The so formed imidazoline is then hydrolyzed to an amido amine followed by alkylation of the product with a monohaloacetic acid or its sodium salt.

[0016] The preferred imidazoline amphoteric surfactants are the amphopropionates, amphodipropionates, amphoacetates and amphodiacetates. Exemplary members of this class include:

[0017] disodium cocoamphodipropionate

[0018] disodium capryloamphodipropionate

[0019] disodium lauroamphodipropionate

[0020] cocoamphodipropionic acid

[0021] sodium cocoamphopropionate

[0022] sodium capryloamphopropionate

[0023] alkyl imidazoline propionate ester

[0024] alkyl imidazoline propionate salt

[0025] oleoamphopropionic acid

[0026] disodium cocoamphodiacetate

[0027] disodium capryloamphodiacetate

[0028] disodium lauroamphodiacetate

[0029] disodium soyamphodiacetate

[0030] disodium wheat germ amphodiacetate

[0031] Especially preferred members of Group II are:

[0032] disodium capryloamphodiacetate

[0033] CAS 68608-64-0 and

[0034] disodium cocoamphodipropionate

[0035] CAS 68604-71-7

[0036] III.

[0037] As to the third group of compounds that may be used as preg-robbing inhibition agents, these may be described as hydroformylation products of lower alkenes (C2-C8; C2-C4 preferred) in a C3-C24 solvent medium.

[0038] The preferred composition III is 1  5-15% 2-ethylhexanol (000104-76-7)  1-5% 2-methylpentanol (000105-30-6)  1-5% 2-ethylhexanal (000123-05-7)  1-5% 2-methylhexanol (000624-22-6) 10-20% ester alcohol and isomers 60-80% others

[0039] Based upon presently available data, the PRIAs preferred for use are the family III hydroformylation products provided in a C3-C24 solvent medium.

EXAMPLES

[0040] The invention will be further explained in conjunction with the following examples which are included for illustrative purposes only and are not to be construed as limitations to the invention.

[0041] Procedures for Cyanide Leaching of Preg-Robbing Ores

[0042] Procedure

[0043] Feed Sample Preparation

[0044] The ore sample is staged crushed to minus 10 mesh. A head sample is riffled out for analysis of Au, C(total) and C(graphitic). The remainder is riffled into test charges (500 g and/or 1000 g). These charges are then ground in a laboratory ball mill to achieve optimum size for extraction. The optimum size is determined by a series of grinding tests.

[0045] Cyanidation

[0046] a) Carbon-in-Leach Cyanidation

[0047] In order to simulate carbon-in-leach (CIL) extraction, activated carbon (typically 20 g fresh, preattritioned, +16 mesh GRC-22 carbon presoaked in water for 24 hours is added to 500 g of the conditioned pulp. The required amount of sodium cyanide (1 g/L NaCN) is added, and the bottle is rolled for 48 hours. The cyanide and the pH are maintained at the desired levels (1 g/L NaCN and pH 11) during the leach.

[0048] Following CIL, the loaded carbon is recovered by screening on a 20 mesh screen. The carbon is washed and dried. The dry carbon is weighed and prepared for gold assay. The barren pulp is filtered, and the filter cake is washed with water. The filtrate and the wash are combined for gold analysis. Owing to the low concentration of gold in solution (<0.05 mg/L), 40 mL of solution is fire assayed. Following cupelling, the precious metal bead is dissolved in aqua regia to 10 mL for gold reading on an atomic adsorption spectrometer (AA). The combined barren wash solution is analyzed for residual NaCN and lime. The leach residue is dried, and a sample is riffled out for fire assay for gold using a 30-g sample.

[0049] b) Standard Cyanidation

[0050] The required amount of sodium cyanide (1 g/L NaCN) is added to the conditioned pulp, and the bottle is rolled for 48 hours. The cyanide and the pH are maintained at the desired levels (1 g/L NaCN and pH 11) during leaching. Solution samples (30-40 mL) are taken at 6, 24, and 32 hours into the leach for gold analysis. The bottle is weighed before each sampling time to determine the actual volume of solution in the bottle for calculation of the intermediate gold extraction.

[0051] Following leaching, the pulp is filtered and the filter cake is washed with water. The filtrate and the wash are combined for gold analysis. The leach residue is dried, and a sample is riffled out for fire assay for gold using 30-g sample.

[0052] Gold Extraction and Reagent Consumption

[0053] Gold extractions and sodium cyanide and lime (calculated a CaO) consumption are calculated from the analytical results and reported.

[0054] Test Results

[0055] Table 1 illustrates the efficacy of the treatments by themselves: 2 TABLE 1 Gold Preg-Robbing Tests Dosage Treatment Percent of Gold Treatment kg/ton Time Extraction after Chemical Name of ore (hours) 48 hours None 0 0 14.6 Kerosene 2.0 24 34.1 Kerosene 4.0 24 35.8 Alkyl &agr; (+&bgr;)-Mono and oligo Ex. 1 4.0 24 29.5 glucopyranoside (CASRN 110615-47-9) D-Glucose, decyl, octyl ethers, Ex. 2 4.0 24 41.3 oligomeric (CAS No. 68515-73-1) Mixture of ammonium laureth Ex. 3 4.0 24 33.9 (CAS No. 67762-19-0) D- Glucose, decyl, octyl ethers- oligomeric (CAS No. 68515-73-1) and D-glucopyranoside, C10-C16 alkyl oligomeric (110615-47-9) Disodium capryloamphodiacetate Ex. 4 4.0 24 29.8 (CAS No. 68608-64-0) Mixture of disodium Ex. 5 4.0 24 35.2 cocoamphodiproponate (CAS No. 68604-71-7) Mixture of 2-ethylhexanol; 2- Ex. 6 4.0 24 39.4 methylpentanol; 2-ethylhexanal; 2-methylhexanol; ester alcohol and isomers; C3-C24 alcohols, aldehydes, and esters

[0056] Table 2 illustrates the increase in efficacy when the treatments are blended with kerosene. 3 TABLE 2 Synergistic effect of treatments when blended with kerosene to a total dosage of 4 kg/t. Percent Gold of Gold Treatment Ratio Extraction after 48 hours Ex. 2/Kerosene 2/2 47.0 Ex. 3/Kerosene 2/2 43.7 Ex. 1/Kerosene 2/2 43.3 Ex. 6/Kerosene 2/2 45.2 Ex. 2/Kerosene 1/3 36.8 Ex. 3/Kerosene 1/3 43.3 Ex. 1/Kerosene 1/3 38.3 Ex. 6/Kerosene 1/3 43.9 Kerosene * — 35.8 * 4.0 kg/ton

[0057] Table 3 illustrates the increase in gold recovery when the treatment is used with activated carbon. 4 TABLE 3 Increase in Gold recovery when treatment is used with activated carbon. Treatment Activated Percent of Gold Dosage Carbon Extraction after Treatment kg/t G/L Solution 48 hours None 0 0 6.8 None 0 20.0 68.2 Ex. 6 0.024 20.0 72.5 Ex. 6 0.050 20.0 73.5 Ex. 6 0.075 20.0 74.9 Ex 6 0.10 20.0 77.6 Ex. 6 0.20 20.0 75.0 Ex. 6 2.0 20.0 75.8 Ex. 6 4.0 20.0 73.2 Ex. 6 0.024 0 11.0 Ex. 6 0.050 0 15.5 Ex. 6 0.075 0 18.3 Ex. 6 0.10 0 20.6 Ex. 6 0.20 0 27.8 Ex. 6 2.0 0 51.6 Ex. 6 4.0 0 57.5

[0058] Although the invention finds specific utility in the field of inhibiting the depletion of gold from cyanide based lixiviants by heaped gold metal ore, it is also applicable to other mining environments such as precious metal heap mining in general.

[0059] The invention is generally applicable to methods of leaching metals from metal ores in which a lixiviant solution is placed in contact with the metal ore to extract the metal therefrom in the form of a pregnant lixiviant solution. As indicated previously, in some cases, the desired metal value is depleted from the pregnant lixiviant solution by contact of the pregnant lixiviant solution with the metal ore. In these methods, the improvement comprises contacting the metal ore with an effective amount of a preg-robbing inhibition agent comprising a member or members selected from the groups consisting of I, II, and III as previously identified.

[0060] The invention may be further viewed as being useful in a metal pulp environment comprising a gold metal ore and a pregnant lixiviant solution containing gold cyanide complexes. The method is directed toward inhibition of the adsorption of the gold cyanide complexes by the gold metal ore and comprises contacting the gold metal ore with an effective preg-robbing inhibition agent comprising a member selected from the groups consisting of I, II, and III and mixtures, as described above.

[0061] Additionally, the invention serves to improve gold extraction in gold refining processes in which activated carbon solutions are used to extract gold from pregnant lixiviant solutions.

[0062] While the present invention has been described with respect to particular embodiments thereof, it is apparent that other forms and modifications of the invention will be obvious to those skilled in the art. The appended claims and this invention generally should be construed to cover all such obvious forms and modifications which are within the true spirit and scope of the present invention.

Claims

1. In the leaching of metals from a metal ore in which a lixiviant solution is placed in contact with said metal ore to extract said metal therefrom in the form of a pregnant lixiviant solution, a method of inhibiting depletion of said extracted metal from said pregnant lixiviant solution, said method comprising contacting said metal ore with an effective amount of a preg-robbing inhibition agent (PRIA) comprising a member selected from the groups consisting of I, II, and III and mixtures of said groups wherein I is an alkyl polyglucoside surfactant, II is an imidazoline based amphoteric surfactant, and III comprises hydroformylation products of C2-C8 alkenes in a C3-C24 medium.

2. Method as recited in claim 1 wherein from about 0.024-about 6 kg of said PRIA is brought into contact with said metal ore based upon 1 ton of said metal ore.

3. Method as recited in claim 2 wherein from about 0.5-about 2.0 kg of said PRIA is brought into contact with said metal ore based upon 1 ton of said metal ore.

4. Method as recited in claim 1 wherein said metal ore comprises a precious metal.

5. Method as recited in claim 4 wherein said precious metal ore comprises gold.

6. Method as recited in claim 5 wherein said pregnant lixiviant solution comprises a cyanide solution.

7. Method as recited in claim 1 wherein I is present and comprises an alkyl group of about 4-20 carbon atoms and about 1-4 glucose units.

8. Method as recited in claim 7 wherein in I, said alkyl group has from about 8 to about 16 carbon atoms.

9. Method as recited in claim 1 wherein II is present and said amphoteric imidazoline surfactant comprises i) an amphopropionate compound; ii) an amphodipropionate compound; iii) an amphoacetate compound; or iv) an amphodiacetate compound.

10. Method as recited in claim 9 wherein said amphoteric imidazoline surfactant comprises disodium capryloamphodiacetate.

11. Method as recited in claim 10 wherein said amphoteric imidazoline surfactant comprises disodium cocoamphodipropionate.

12. Method as recited in claim 1 wherein III is present and said C1-C8 alkene hydroformylation products comprise 2-ethylhexanol, 2-methylpentanol, 2-ethylhexanal; 2-methylhexanol in a medium containing C3-C24 alcohols, aldehydes and esters.

13. Method as recited in claim 1 wherein said preg-robbing inhibition agent further comprises kerosene.

14. In a metal pulp comprising a gold metal ore and a pregnant lixiviant solution containing gold cyanide complexes, a method of inhibiting adsorption of said gold cyanide complexes by said gold metal ore comprising contacting said gold metal ore with an effective preg-robbing inhibition agent (PRIA) comprising a member selected from the groups consisting of I, II, and III and mixtures of said groups wherein I is an alkyl polyglucoside surfactant, II is an imidazoline based amphoteric surfactant, and III comprises hydroformylation products of C2-C8 alkenes in a C3-C24 medium.

15. Method as recited in claim 14 wherein from about 0.024-about 6 kg of said PRIA is brought into contact with said gold metal ore based upon 1 ton of said gold metal ore.

16. Method as recited in claim 15 wherein from about 0.5kg -about 2 kg of said PRIA is brought into contact with said gold metal ore based upon 1 ton of said gold metal ore.

17. Method as recited in claim 14 wherein I is present and comprises an alkyl group of about 4-20 carbon atoms and about 1-4 glucose units.

18. Method as recited in claim 17 wherein in I, said alkyl group has from about 8 to about 16 carbon atoms.

19. Method as recited in claim 14 wherein II is present and said amphoteric imidazoline surfactant comprises i) an amphopropionate compound; ii) an amphodipropionate compound; iii) an amphoacetate compound; or iv) an amphodiacetate compound.

20. Method as recited in claim 19 wherein said amphoteric imidazoline surfactant comprises disodium capryloamphodiacetate.

21. Method as recited in claim 20 wherein said amphoteric imidazoline surfactant comprises disodium cocoamphodipropionate.

22. Method as recited in claim 14 wherein III is present and said hydroformylation products comprise 2-ethylhexanol, 2-methylpentanol, 2-ethyhexanal; 2-methylhexanol in a medium containing C3-C24 alcohols, aldehydes and esters.

23. Method as recited in claim 14 wherein said preg-robbing inhibition agent further comprises kerosene.

24. In a gold extraction process in which a lixiviant solution is brought into contact with a gold bearing ore to form a pregnant lixiviant solution, and wherein said pregnant lixiviant solution is contacted with activated carbon to aid in separating said gold from said pregnant lixiviant solution, the improvement comprising contacting said activated carbon with a member selected form the groups consisting of I, II, and III and mixtures of said groups wherein I is an alkyl polyglucoside surfactant, II is an imidazoline based amphoteric surfactant, and III comprises hydroformylation products of C2-C8 alkenes in a C3-C24 medium.

Patent History
Publication number: 20030228244
Type: Application
Filed: Jun 5, 2002
Publication Date: Dec 11, 2003
Inventors: Libardo A. Perez (Morrisville, PA), David M. Polizzotti (Yardley, PA)
Application Number: 10163700
Classifications
Current U.S. Class: With A Cyanide Compound (423/29)
International Classification: C22B011/08;