Hard metal or cermet cutting material and the use thereof

The invention relates to a hard metal or cermet cutting material for cutting chromium-alloy steel parts. Said cutting material comprises a hard phase containing carbides, nitrides and/or carbonitrides and a binder phase based on iron, cobalt and nickel. The aim of the invention is to prevent an agglomeration of the cutting material during cutting operations. For this purpose, the binder phase contains 10% by weight to 75% by weight of Co, 10% by weight to 75% by weight of Ni, 5% by weight to 30% by weight of Cr, ≧20% by weight to 60% by weight of Fe, the total of Co, Ni, Cr and Fe not exceeding 100% by weight.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The invention relates to a hard metal or cermet cutting material for the machining of chromium-containing metal workpieces like for example austenitic, nickel-based alloys, stellites or steel with a carbide, nitride and/or carbonitride-containing hard material phase and a binder phase constituting 3 to 25% mass percent (%) of iron, cobalt and nickel.

The invention relates further to a use of the hard metal or cermet cutting material for the chip-removing machining of metal workpieces.

In hard metals like cermets, the binder serves to form a liquid phase at the sintering temperature which is in equilibrium with the hard material phase and can wet the latter. The liquid binder phase should have a significant solubility for the hard material phase at the sinter temperature but should upon cooling precipitate the latter again. Reactions of the binder phase with the hard material phase which can result in a decomposition or consumption of the binder phase should be suppressed as much as possible. Furthermore, the binder phase should have mechanical properties which correspond to the intended use at the temperatures which prevail in use so that the binder can function as much as possible for the fixed but ductile retention of the hard metal or cermet body together.

It is already known that Cr3C2 with about 8 to 18% nickel as a binder can provide enhanced corrosion resistance for the hard metal.

In machining operations like turning, milling and drilling of certain types of steel, especially austenitic steel, an adhesion of the hard metal or cermet cutting material with the steel workpiece can occur, which because of the resulting increased wear of the cutting tool and the poor machining quality of the workpiece, is undesirable.

It is the object of the present invention to provide a cutting material and a method which can obviate this drawback.

According to the invention the hard metal or cermet cutting material comprises a binder phase with 10 mass % to 75 mass % Co, 10 mass % to 75 mass % Ni, 5 mass % to 30 mass % Cr, >20 mass % to 60 mass % Fe, whereby the sum of the metals Co, Ni, Cr and Fe does not exceed 100%. Further features of this cutting material are described in claims 2 to 5.

Thus the binder phase can in addition, contain respectively up to 5% by weight V, Mo and/or Al, up to the solubility limits of Ti, W, Ta/Nb, Zr and/or Hf, as well as up to 15 weight % Mn. Furthermore, the binder can contain oxygen, nitrogen and/or boron up to their maximum solubilities. The content of carbon in the cutting material as so set that no n-phase and no C-porosity is present. Preferably the binder phase has no hexagonal component [proportion].

Basically the hard metal or cermet body of the invention utilizes the concept that between the metals being machined and the cutting material, with respect to the chromium content, there should be no difference in the concentrations of the alloying components between the workpiece and the tool or only a difference which is as small as possible. As a consequence an interdiffusion of the cobalt from the metal or cermet cutting material on the one hand and the alloying elements of the steel on the other hand during machining should be minimized. For this purpose the binder phase of the cutting material must contain apart from iron, nickel and cobalt also chromium, whereby a good wetability of the nickel and cobalt is ensured by the presence of at least 10% and a maximum of 75% content in the binder phase. By contrast with the Co—Ni—Fe binder known from WO 99/10549 with 40 to 90% by weight cobalt, the balance iron and nickel with at least 4 weight % but not more than 36 weight % nickel or iron whereby the Ni—Fe ratio lies between 1.5:1 to 1:1.5, whereas with the present material for machining, the binder must contain chromium. By contrast with a cobalt binder phase with a hexagonal structure, the binder of the invention has a fcc structure. Above all the adhesion tendency of the cutting material can be avoided only by significant Cr content in the binder.

While the mechanism of the reactions and interactions between the metals contained in the steel and carbon are very complex, it has been surprisingly found in the machining of chromium-containing metal workpieces with a cutting material that optimum results can be obtained when the Cr in the binder phase of the cutting material is approximately equal to the Cr proportion in the workpiece material.

Claims

1. A hard metal or cermet cutting material for the machining of chromium-alloyed steel workpieces, with a carbide, nitride and/or carbonitride containing hard material phase and a binder phase of iron, cobalt and nickel,

characterized in that,
the binder phase contains 10 mass % to 75 mass % Co, 10 mass % to 75 mass % Ni, 5 mass % to 30 mass % Cr, >20 mass % to 60 mass % Fe, whereby the sum of the Co, Ni, Cr and Fe does not exceed 100 mass %.

2. The hard metal or cermet cutting material according to claim 1, characterized in that, the binder phase additionally contains respectively each up to 5 mass % V, Mo and/or Al, up to the maximum solubility limit of Ti, W, Ta/Nb and/or up to 15 mass % Mn.

3. The hard metal or cermet cutting material according to claim 1, characterized in that, the binder contains O, N and/or B up to the maximum solubility limits thereof.

4. The hard metal or cermet cutting material according to claim 1, characterized in that, the C content in the cutting material is so adjusted that no q-phase and C-porosity is present.

5. The hard metal or cermet cutting material according to claim 1, characterized in that, the binder phase does not contain any hexagonal component.

6. The use of the hard metal or cermet cutting material according to claim 1 for the chip removal machining of steel workpieces, preferably of workpieces of chromium-containing alloys.

7. The use of a cutting material according claim 1 for the chip removal machining of chromium-containing metal workpieces, characterized in that, the chromium content in the binder phase of the cutting tool material is not within the chromium proportion in the steel alloy of the workpiece.

Patent History
Publication number: 20050115742
Type: Application
Filed: Mar 21, 2003
Publication Date: Jun 2, 2005
Inventors: Hans Daub (Koln), Klaus Dreyer (Essen), Dieter Kassel (Witten), Walter Lengauer (Leobendorf), Klaus Rodiger (Bochum)
Application Number: 10/509,304
Classifications
Current U.S. Class: 175/426.000