Fast hydrating guar powder, method of preparation, and methods of use

A guar or a guar derivative powder having a D50 particle size of less than 40μ which reaches at least 70% hydration within 60 seconds at about 21° C., is disclosed. It has been found that the improved hydration can be seen at temperatures as low as 0.6° C. The powder can be used in applications such as drilling fluid; fracturing fluid; gravel packing fluids; completion fluid; animal litter; explosive; foodstuff; paperstock; floor covering; synthetic fuel briquettes; water thickener for firefighting; shampoo; personal care lotion; household cleaner; catalytic converter catalyst; electroplating solution; diapers; sanitary towels; super-adsorbent in food packaging; sticking plasters for skin abrasions; water-adsorbing bandages; foliar spray for plants; suspension for spraying plant seeds; suspension for spraying plant nutrients; flotation aid; and flocculent.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This Continuation-In-Part patent application claims priority from U.S. Ser. No. 10/955,102 filed Sep. 30, 2004.

BACKGROUND OF THE INVENTION

Guar gum comes from a legume-type plant that produces a pod, much like a green bean. In the pod there are seeds that, upon heating, split open exposing the endosperm and meal. The exposed endosperm contains a polymer of great use for thickening industrial and commercial fluids. The polymer is a polysaccharide material known as polygalactomannan. This material develops a high viscosity via hydration of the fluid to be thickened, similar to the action of starch. The guar endosperm polymer is much more efficient than starch in developing viscosity, however.

Guar gum, or “guar,” as used herein, has numerous applications in the oil industry, particularly, as additives to fracturing, gravel packing and completion fluids. Guar derivatives also have numerous applications in the oil industry. Common guar derivatives include hydroxyalkyl guar, carboxyalkyl guar, carboxyalkyl hydroxyalkyl guar, cationic guar, and hydrophobically modified guar.

Other guar and guar derivative applications include, among others, animal litter; explosive; foodstuff; paperstock; floor covering; synthetic fuel briquettes; water thickener for firefighting; shampoo; personal care lotion; household cleaner; catalytic converter catalyst; electroplating solution; diapers; sanitary towels; super-adsorbent in food packaging; sticking plasters for skin abrasions; water-adsorbing bandages; foliar spray for plants; suspension for spraying plant seeds; suspension for spraying plant nutrients; flotation aid; and flocculent. In each of these applications, the guar or guar derivative is hydrated. It is well known that faster hydration of the guar or guar derivative for any of these applications would be an advantage.

Fast hydration of guar and guar derivatives is especially important in oilfield stimulations, the standard technique being to hydrate the guar or guar derivative to full hydration in a large hydration tank as quickly as possible so as to waste as little product as possible. Rapid hydration also enhances fluid pumping performance. Fast hydrating guars, would be advantageous to simplify the hydration process by eliminating the conventional hydration unit or minimizing it to a very small volume. Also, by eliminating the hydration unit or minimizing the size of the hydration unit, better real-time control of the fracturing operation could be achieved by appropriately adjusting the fluid concentration depending on the response. Also, fast hydrating guars and guar derivatives could be added directly in water, a brine as a powder or dispersed in a solvent and then added to water or other hydrating fluid such as brine.

Chowdhary, et al., U.S. patent Publication 20020052298, assigned to Economy Mud Products Company, teach guar gum prepared by a process which includes a step of extruding hydrated and flaked guar splits prior to grinding and drying. Chowdhary, et al., claimed a powder product which achieves about 90% hydration after about 5 minutes at about 70 degrees F. (21° C.) and achieves about 50% hydration after about 60 seconds at about 70 degrees F. (21° C.) and about 50% after about 90 seconds at about 40 degrees F. (4.4° C.)

The extrusion step of Chowdhary, et al., is expensive and difficult to perform and the resulting powder does not hydrate fast enough for certain oil field applications.

It would be desirable to provide a guar or guar derivative which has extremely fast hydration characteristics and a process for making it which does not require extrusion. It would also be desirable to provide methods of using such faster hydrating guar or guar derivatives in oilfields, i.e., subterranean formations, as well as other environments.

SUMMARY OF THE INVENTION

The present invention provides such a guar or guar derivative with extremely fast hydration characteristics and a process for making it which does not require extrusion. A guar powder wherein the guar is guar or a guar derivative having a D50 particle size of less than 40μ, which reaches at least 70% hydration within 60 seconds at about 70 degrees F. (21° C.), has been found to be novel and surprisingly advantageous. Powder which reaches 80% hydration under such conditions is preferred, and powder which reaches 90% hydration under such conditions is more preferred. It is especially advantageous to prepare the powder without using the extrusion step of the prior art processes.

The guar and guar derivatives of the invention also give very fast hydration at low temperatures. The guars can be used as a guar slurry without a hydration tank or guar powder can be mixed directly with water and blended without a hydration tank at temperatures as low as 33° F. (0.6° C.) while still achieving high rates of hydration. At about 50° F. (10° C.), the particles can reach at least 70% hydration in one minute when the D50 particle size is less than 25μ, and even at temperatures as low as 40° F. (4.4° C.) or 33° F. (0.6° C.), such rates of hydration can be achieved. In some cases the particle sizes (D50) of 17μ or 15μ are used to achieve such low temperature quick hydration rates.

DETAILED DESCRIPTION

As used hereinafter, the term guar shall include guar derivatives. A powder in accordance with the invention (hereinafter referred to as “guar powder”) can be prepared by reducing the particle size of the guar for a sufficient time to reduce the D50 particle size of the guar to less than 40μ. A preferred guar powder has a D50 particle size of less than 30μ, and more preferably less than 20μ. Any suitable means may be used to reduce the particle size of the guar. It has been found that ball milling, sieving, and combinations thereof are such suitable means. For example, ball milling can be carried out on a batch attritor which contains stainless steel balls as the internal grinding media. Other larger scale milling methods, preferably, fluidized jet mills can be used. Sieving of a milled guar powder can be used to lower the D50 particle size by 20 to 40% in some cases, and by even more in certain embodiments. It is not necessary to extrude the guar polymer and it is highly preferred not to include such an extrusion step in the preparation of the guar powder. Guar powder in accordance with the invention reaches at least 70% hydration, preferably at least 80%, and more preferably about 90%, within 60 seconds at about 70 degrees F. (21° C.).

Either underivatized guar or derivatized guar can be used. Derivatized guars are any known in the art, for example hydroxyalkyl guar, carboxyalkyl guar, carboxyalkyl hydroxyalkyl guar, cationic guar, and hydrophobically modified guar. The guar can also be genetically modified. Guar powder may also comprise polygalactomannan.

A guar powder in accordance with the invention can be an agent in any host product where faster hydration is desirable, for example (a) drilling fluid; (b) fracturing fluid; (c) animal litter; (d) explosive; (e) foodstuff; (f) paperstock; (g) floor covering; (h) synthetic fuel briquettes; (i) water thickener for firefighting; (j) shampoo; (k) personal care lotion; (l) household cleaner; (m) catalytic converter catalyst; (n) electroplating solution; (o) diapers; (p) sanitary towels; (q) super-adsorbent in food packaging; (r) sticking plasters for skin abrasions; (s) water-adsorbing bandages; (t) foliar spray for plants; (u) suspension for spraying plant seeds; (v) suspension for spraying plant nutrients; (w) flotation aid; (x) flocculent; (y) gravel packing fluid; and (z) completion fluid.

The guar powder is preferably hydrated for less than 30 seconds, followed by crosslinking with a crosslinker. The hydrating step is preferably conducted in the presence of one or more surfactants and buffers. In oilfield applications, typical oilfield additives such as salts, clay stabilizers, surfactants, emulsifiers and demulsifiers would be used and hydration can be in water or completion brines. Completion brines are concentrated brines of salts such as ammonium chloride, sodium chloride, potassium chloride, sodium bromide, potassium bromide, calcium chloride, calcium bromide, zinc bromide or mixtures of the above.

In drilling and fracturing fluid oilfield applications, the guar powder can be hydrated without the use of the typical hydrating tank because it is such a fast hydrating polymer and thus requires relatively short residence time between the hydration and the crosslinking step. The hydration time generally means the time between the introduction of the guar powder to the water and the addition of the crosslinker to the hydrated guar powder. With regard to the present invention, preferably the hydration time is less than 2 minutes, more preferably less than 1 minute, and most preferably less than 0.5 minute. Such short hydration times allow for the elimination of a conventional hydration tank, as hydration can occur in process without the need of holding time and/or holding equipment, which is a surprising advantage of the invention.

Following hydration, the crosslinker is added to form a well-treating fluid. Suitable crosslinkers are well known in the art, and include, borax, boric acid, antimony, or metal crosslinker selected from aluminum, zirconium or titanium compounds.

The well-treating fluid of the invention can then be introduced to a wellbore at a temperature and a pressure sufficient to treat subterranean formation.

EXAMPLES

The examples below are illustrative and are not intended to limit the invention. Those skilled in the art will appreciate that other methods or apparatus may be used without deviating from the scope and spirit of the claimed invention.

Example 1

The control, Example 1, is an underivatized guar, Guar 1. The molecular weight of Example 1 was measured by gel permeation chromatography using a 55 mM sodium sulfate and 0.02% sodium azide aqueous mobile phase and a refractive index detector. The molecular weight was calculated based on a calibration curve generated from three reference polymers: stachyose (molecular weight=667), guar (molecular weight=58,000), and guar (molecular weight, two million). Table 1 shows the molecular weight of Example 1.

The particle size distribution of Example 1 was determined by suspending the guar particles of Example 1 in isopropanol and measuring the scattering from the solution using a LS-130 Coulter analyzer. Particle size was calculated as D50% and D90%. 50% of the particles have a particle diameter that is smaller than D50%, whereas 90% of the particles have a particle diameter that is smaller than D90%. Table 1 shows the values of D50% and D90% for Example 1.

To measure the hydration rate, 2.0 pph potassium chloride, 0.14 pph of sodium bicarbonate, and 0.0080 pph of fumaric acid were dissolved in 250 mL of deionized water and placed in a Waring blender jar. In a separate vial, a slurry of guar powder of Example 1 in 8-10 mL of isopropanol was made and then added to the aqueous solution in the Waring blender jar so that the resulting solution yields 0.48 pph (parts per hundred) of guar powder. Table 1 shows the ingredients of the Example 1 formulation. All amounts are listed as parts by weight per 100 g of water (pph) unless otherwise indicated.

The resultant mixture was mixed using the blender for thirty seconds. After thirty seconds, the mixing was stopped and the solution was transferred to a beaker. The viscosity was then measured using a Fann 35 viscometer at 300 rpm at one, two, three, four, five, and ten minute intervals. After ten minutes, the sample was covered and placed in a water bath at 75-80° F. After sixty minutes in the water bath, the sample was removed and the viscosity was measured at sixty minutes. Full hydration was assumed to be achieved at sixty minutes. The % hydration was calculated by dividing the viscosity at the one, two, three, four, five, ten, and sixty minute intervals by the viscosity at sixty minutes and multiplying by 100. Table 1 shows the viscosity and % hydration at each time interval.

Example 2

Example 2 was prepared by ball milling underivatized guar, Guar 1, using a Model 01-HD batch attritor from Union Process. The attritor contained stainless steel balls as the internal grinding media and was equipped with a jacket. To prepare Example 2, 150 g of Guar 1 was loaded in the milling chamber of the attritor along with 100 mL of 2.5 mm-diameter stainless steel balls and 100 mL of 5 mm-diameter stainless steel balls. The agitation was then run at 300 rpm for forty minutes. The ground powder, Example 2, was then removed from the attritor and separated from the stainless steel balls. The particle size of Example 2 was measured as described for Example 1. The reduction in particle size relative to the control, Example 1, was then calculated. Table 1 shows the particle size results for Example 2.

Next, the viscosity and % hydration at one, two, three, four, five, ten, and sixty minute intervals, was measured as described for Example 1. Table 1 indicates the formulation amounts for the hydration study and summarizes the results of these experiments.

Examples 3 and 4

Examples 3 and 4 were prepared by the ball milling technique described for Example 2, starting with underivatized guar, Guar 1. Examples 3 and 4 were milled for 50 minutes at 300 rpm and 205 minutes at 400 rpm, respectively. The particle size, viscosity, and % hydration were measured as described for Example 1. The molecular weight of Example 4 was also measured as described for Example 1. Table 1 indicates the formulation amounts for the hydration study and summarizes the results of these experiments.

Examples 5-8

The control, Example 5 is an underivatized guar, Guar 2, that was not subjected to ball milling. Examples 6-8 were prepared by the ball milling technique described for Example 2, but starting from underivatized guar, Guar 2. Examples 6-8 were milled at 350 rpm for 135, 370, and 600 minutes, respectively. The particle size, viscosity, and % hydration were measured as described for Example 1 (Table 2).

As evident from the data in Tables 1 and 2, the ball milling technique was useful in reducing the particle size of the underivatized Guar 1 and Guar 2 guar samples. Examples 2-4 showed particle size reductions of 28.03-52.55% relative to the control, Example 1. Similarly, Examples 6-8 displayed particle size reductions of 26.33-66.45% relative to the control, Example 5. The observed particle size reductions were directly related to the milling time with the lowest particle sizes being attained at the longest milling times.

As indicated by the data in Tables 1 and 2, the particle size reduction technique was effective in increasing the hydration rate for the guar samples. The hydration rate was inversely proportional to the particle size with Examples 2-4 displaying a greater % hydration than Example 1 at the same time interval. Example 4 with the smallest particle size displayed 85% hydration at the one minute interval as compared to only 52% hydration for Example 1. Example 4 reached full hydration in approximately five minutes, whereas Example 1 did not reach full hydration until ten to sixty minutes later.

Similarly, Examples 6-8 showed increased hydration rates relative to the unmilled control, Example 5. Notably, Example 8 with the smallest particle size displayed 84% hydration at the one minute interval versus a mere 34% hydration for the control, Example 5.

TABLE 1 Examples 1 2 3 4 Type of Guar Guar 1 Guar 1 Guar 1 Guar 1 Size Control Ball Ball Ball Reduction Grinding Grinding Grinding Technique Milling Time 40 50 205 (min) Molecular 2.32 1.60 Weight × 106 Particle size, 34.77 25.01 21.14 16.5 D50% (μm)/% (28.07%) (39.22%) (52.55%) reduction Particle size, 69.96 50.16 43.53 39.03 D90% (μm)/% (28.03%) (37.78%) (44.21%) reduction Formulation Water (g) 250 250 250 250 Potassium 2.0 2.0 2.0 2.0 chloride (pph) Sodium 0.14 0.14 0.14 0.14 bicarbonate (pph) Fumaric acid 0.0080 0.0080 0.0080 0.0080 (pph) Guar (pph) 0.48 0.48 0.48 0.48 Isopropanol 8-10 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 17.0 22.6 22.4 21.0  2 22.4 27.0 25.6 23.0  3 25.0 28.8 26.8 23.6  4 27.0 29.6 27.4 24.0  5 28.0 30.2 28.0 24.2 10 30.0 31.0 29.2 24.6 60 33.0 32.4 30.4 24.6 % Hydration Time (min)  1 52 70 74 85  2 68 83 84 93  3 76 89 88 96  4 82 91 90 98  5 85 93 92 98 10 91 96 96 100 60 100 100 100 100

TABLE 2 Examples 5 6 7 8 Type of Guar Guar 2 Guar 2 Guar 2 Guar 2 Size Control Ball Ball Ball Reduction Grinding Grinding Grinding Technique Milling Time 0 135 370 600 (min) Particle size, 48.77 34.01 23.63 16.36 D50% (μm)/% (30.26%) (51.55%) (66.45%) reduction Particle size, 91.44 67.36 53.42 38.66 D90% (μm)/% (26.33%) (41.58%) (57.72%) reduction Formulation Water (g) 250 250 250 250 Potassium 2.0 2.0 2.0 2.0 chloride (pph) Sodium 0.14 0.14 0.14 0.14 bicarbonate (pph) Fumaric acid 0.0080 0.0080 0.0080 0.0080 (pph) Guar (pph) 0.48 0.48 0.48 0.48 Isopropanol 8-10 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 16.4 19.0 24.0 24.6  2 26.6 28.0 30.0 26.4  3 33.6 32.0 33.0 27.0  4 36.4 34.0 35.0 27.4  5 39.4 36.0 36.0 27.6 10 45.6 39.0 38.0 28.4 60 48.2 42.0 40.6 29.2 % Hydration Time (min)  1 34 45 59 84  2 55 67 74 90  3 70 76 81 92 4 76 81 86 94  5 82 86 89 95 10 95 93 94 97 60 100 100 100 100

Examples 9-11

The control, Example 9, is an derivatized guar with a molecular substitution, M.S., of 0.4-0.6 hydroxypropyl groups, HPG 1. Examples 10 and 11 were prepared by the ball milling technique described for Example 2 starting from HPG 1 guar. Accordingly, Examples 10 and 11 were milled at 350 rpm for 195 and 640 minutes, respectively. The particle size, viscosity, and % hydration were measured as described for Example 1, except that 0.50 pph of monosodium phosphate was substituted for the sodium bicarbonate/fumaric acid buffer (Table 3).

Examples 12 and 13

Examples 12 and 13 were prepared from a derivatized guar, HPG 2, with an M. S. of 0.4-0.6 hydroxypropyl groups by the ball milling technique described for Example 2. Accordingly, Examples 12 and 13 were milled at 350 rpm for 180 and 360 minutes, respectively. The particle size, viscosity, and % hydration were measured as described for Example 1, except that 0.50 pph of monosodium phosphate was substituted for the sodium bicarbonate/fumaric acid buffer (Table 3).

As was observed for the underivatized guar examples, the ball milling technique was effective in reducing the particle size of a derivatized guar, i.e., hydroxypropyl guar. Accordingly, the ball milling technique reduced the particle size of Examples 10 and 11 by 40.17-55.58 % relative to the control, Example 9. The decrease in particle size was directly related to the milling time. Of the HPG 1 hydroxypropyl guar samples, Example 11 had the lowest particle size after milling for 640 minutes. Similarly, for the HPG 2 hydroxypropyl guar, Example 13 had a lower particle size than Example 12 after milling twice as long.

The reduced particle size hydroxypropyl guar samples also showed increased rates of hydration. Accordingly, Example 11 achieved 96% hydration at the one minute interval versus 56% hydration for the larger particle size control, Example 9. Similarly, Example 13 was 90% hydrated at the two minute interval, whereas the larger particle size Example 10 was only 77% hydrated at the same time interval. Hence, particle size reduction was effective in increasing the hydration rate for both underivatized and derivatized guar.

TABLE 3 Examples 9 10 11 12 13 Type of Guar HPG 1 HPG 1 HPG 1 HPG 2 HPG 2 Size Control Ball Ball Ball Ball Reduction Grinding Grinding Grinding Grinding Technique Milling time 0 195 640 180 360 (h) Particle size, 59.99 33.50 26.98 36.99 28.92 D50% (μm)/% (40.17%) (51.81%) reduction Particle size, 121.60 62.72 54.01 77.31 64.03 D90% (μm)/% (48.42%) (55.58%) reduction Formulation Water (g) 250 250 250 250 250 Potassium 2.0 2.0 2.0 2.0 2.0 chloride (pph) Monosodium 0.50 0.50 0.50 0.50 0.50 phosphate (pph) Guar (pph) 0.60 0.72 0.72 0.48 0.48 Isopropanol 8-10 8-10 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 20.8 36.0 32.6 17.0 19.0  2 28.0 39.6 33.8 21.0 21.6  3 32.6 40.8 34.2 23.0 22.6  4 34.4 41.2 34.2 24.6 23.0  5 35.8 41.6 34.4 25.2 23.4 10 37.4 41.4 34.2 26.4 23.6 60 37.4 41.0 34.0 27.2 24.0 % Hydration Time (min)  1 56 88 96 63 79  2 75 97 99 77 90  3 87 100 101 85 94  4 92 100 101 90 96  5 96 101 101 93 98 10 100 101 101 97 98 60 100 100 100 100 100

Example 14

The control, Example 14, is an underivatized guar, Guar 1. The particle size, the viscosity and % hydration were measured as described for Example 1 and are reported in Table 4.

Example 15

Example 15 was prepared by a sieving method from an underivatized guar, Guar 1. A 400 mesh screen was used to sift and collect the smaller particle size guar. The guar powder which did not pass through the screen was discarded. The particle size, viscosity, and % hydration were then measured as described for Example 1 and are reported in Table 4.

Example 16

Example 16 was prepared by the sieving method described for Example 15 except that a 620 mesh screen was used to sift the guar powder. The particle size, viscosity, and % hydration were then measured as described for Example 1 and are reported in Table 4.

As evident from the data in Table 4, the sieving technique was effective in lowering the particle size of underivatized guar by approximately 20 to 40%. Furthermore, the lower particle size guar examples prepared by the sieving technique also show an increased rate of hydration versus the control examples. Accordingly, Examples 15 and 16 showed a higher % hydration for a given time interval than the control, Example 14. Example 16 with the smallest particle size showed the highest % hydration at the shortest time intervals.

The data in Tables 1-4 indicates that the ball milling and sieving techniques were effective in lowering particle size of underivatized and hydroxypropyl guar samples. Furthermore, the resultant reduced particle size guar particles attained full hydration in a shorter time period than the unprocessed guar samples.

TABLE 4 Examples 14 15 16 Type of Guar Guar 1 Guar 1 Guar 1 Size Control Sieving Sieving Reduction Technique Molecular 2.2 2.1 Weight × 106 Particle size, 33.75 26.74 18.75 D50% (μm)/% (20.77%) (44.44%) reduction Particle size, 63.27 46.81 38.62 D90% (μm)/% (26.02%) (38.96%) reduction Formulation Water (g) 250 250 250 Potassium 2.0 2.0 2.0 chloride (pph) Sodium 0.14 0.14 0.14 bicarbonate (pph) Fumaric acid 0.0080 0.0080 0.0080 (pph) Guar (pph) 0.48 0.48 0.48 Isopropanol 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 21.8 22.2 24.6  2 28.4 26.0 25.6  3 31.2 27.4 26.0  4 32.6 28.0 26.2  5 33.4 28.4 26.4 10 35.2 29.6 27.0 60 36.2 30.6 28.0 % Hydration Time (min)  1 60.2 72.5 87.9  2 78.5 85.0 91.4  3 86.2 89.5 92.9  4 90.1 91.5 93.6  5 92.3 92.8 94.3 10 97.2 96.7 96.4 60 100 100 100

Examples 17-20

The control, Example 17, is a guar derivatized with 0.4-0.6M.S. (Molar Substitution) of hydroxypropyl groups, HPG 1. The sieving technique described in Example 15 was used to make these examples. Accordingly, Examples 18-20 were prepared by passing hydroxypropyl guar, HPG 1, through 325, 400, and 620 mesh screens, respectively. The particle size, viscosity, and % hydration were measured as described for Example 1, except that 0.50 pph of monosodium phosphate was substituted for the sodium bicarbonate/fumaric acid buffer. The results are reported in Table 5.

Example 21

Example 21 was prepared by the sieving technique described for Example 15, using a 620 mesh screen and starting from hydroxypropyl guar, HPG 2. The particle size, viscosity and % hydration were measured as described for Example 1, except that 0.50 pph of monosodium phosphate was substituted for the sodium bicarbonate/fumaric acid buffer. The results are reported in Table 5.

As is evident from Table 5, similar results were obtained for the derivatized, hydroxypropyl guar samples. Accordingly, Examples 18-20, prepared by the sieving method, had smaller particle sizes and a higher % hydration than the control, Example 17. Example 20, with the smallest particle size, had the highest rate of hydration.

TABLE 5 Examples 17 18 19 20 21 Type of Guar HPG 1 HPG 1 HPG 1 HPG 1 HPG 2 Size Control Sieving Sieving Sieving Sieving Reduction Technique Molecular 2.4 2.4 2.46 2.25 Weight × 106 Particle size, 59.99 43.13 39.28 22.46 21.22 D50% (μm)/% (28.10%) (34.52%) (62.56%) reduction Particle size, 121.60 74.90 70.1 43.58 37.61 D90% (μm)/% (38.40%) (42.35%) (64.16%) reduction Formulation Water (g) 250 250 250 250 250 Potassium 2.0 2.0 2.0 2.0 2.0 chloride (pph) Monosodium 0.50 0.50 0.50 0.50 0.50 phosphate (pph) Guar (pph) 0.60 0.60 0.60 0.60 0.48 Isopropanol 8-10 8-10 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 20.8 28.8 32.4 21.0 21.0  2 28.0 34.6 35.4 21.8 22.0  3 32.6 36.2 36.4 22.2 22.4  4 34.4 36.6 36.6 22.4 22.6  5 35.8 36.8 36.6 22.6 22.8 10 37.4 36.6 36.4 22.6 23.0 60 37.4 35.0 35.4 22.2 22.4 % Hydration Time (min)  1 55.6 78.3 88.5 92.9 91.3  2 74.9 94.0 96.7 96.5 95.7  3 87.2 98.4 99.5 98.2 97.4  4 92.0 99.5 100 99.1 98.3  5 95.7 100 100 100 99.1 10 100 100 100 100 100 60 100 95.1 96.7 98.2 97.4

Examples 22-25

Guars from Example 1, Example 15, Example 4, and Example 5 were crosslinked after hydrating for 30 sec as follows: After introducing 250 ml of DI water in a blender jar, 0.75 gm of guar powder was introduced in a vial and then about 5-6 ml of IPA (isopropanol) was added. The speed of the blender was adjusted to 2800 rpm and the contents of the vial was introduced into the blender and the timer started and mixing conducted for 30 sec and then 1 ml of (25% by wt) potassium carbonate solution and 0.75 ml of borate crosslinker were added. Mixing was continued for another 15-20 sec and then the contents poured in a Fann 50 cup and tested for crosslinking viscosity at 130° F. (54.4° C.). Guar 2 did not crosslink and form a gel and therefore the Fann 50 was not continued. All the other materials formed a gel and the Fann 50 test was performed. The samples took approximately 15 minutes to reach the test temperature.

The viscosity of the samples decreased with temperature as the sample temperature slowly increased to the bath temperature over a period of about 10-15 minutes. The viscosity reaches a minimum around 10-15 minutes and then slowly increased with time. Since, the sample did not have sufficient time to completely hydrate before the crosslinker was added, the sample was slowly hydrating and this is the reason for the slow increase in viscosity. For fracturing purposes, a crosslinked viscosity of 100 cP is generally considered as a minimum viscosity. The following table, Table 6, contains the final crosslinked viscosity, minimum crosslinked viscosity and the ratio of the minimum crosslinked viscosity to final crosslinked viscosity.

TABLE 6 Examples 22 23 24 25 Polymer type Guar 1 Guar 1(−400 Guar Guar 2 mesh) 1(Ball milled) D50 34.77 26.74 16.5 48.77 particle(microns) 30 sec Crosslinks Crosslinks Crosslinks No crosslinking Crosslinking Minimum    70 cP 170 cP 150 cP N/A Viscosity @ 80/sec Final Viscosity @ 300-400 cP 450 cP 250 cP N/A 80/sec Ratio of 0.2  0.378  0.6 N/A Minimum Viscosity/Final Viscosity

As the particle size decreases, the ratio of the minimum to final viscosity increases. This is an indication of better hydration in the initial 30 sec before the crosslinker was added. Guar 2 has the largest particle size and the hydration was so slow that when the crosslinker was added after 30 sec, the material did not crosslink.

The control, Example 26, is an underivatized guar, Guar 3, that was not subjected to jet milling.

Example 27 was prepared by grinding underivatized guar, Guar 3, by the jet milling technique, using a model 100 AFG from Hosokawa Micron Powder Systems. Air was used at a pressure of 90 psi (6.2 BAR) to reduce the guar particle size. The classifying wheel was turning at 9,000 rpm.

Examples 28 and 29 were prepared by the jet milling technique described for Example 27, starting with underivatized guar, Guar 3. Examples 28 and 29 were milled with the wheel turning at 7,000 rpm and 5,000 rpm, respectively. The particle size, viscosity, and % hydration were measured as described for Example 1 and are reported in Table 7. Table 7 indicates the formulation amounts for the hydration study and summarizes the results of these experiments.

TABLE 7 Examples 26 27 28 29 Type of Guar Guar 3 Guar 3 Guar 3 Guar 3 Size Control Jet Mill Jet Mill Jet Mill Reduction Technique Particle size, 50 15 (70%) 23 (54%) 35 (30%) D50% % (μm)/% Reduction Particle size, 102 30 (71%) 48 (53%) 68 (33%) D90% % (μm)/% Reduction Formulation Water (g) 250 250 250 250 Potassium 2.0 2.0 2.0 2.0 chloride (pph) Monosodium 0.5 0.5 0.5 0.5 phosphate (pph) Disodium 0.5 0.5 0.5 0.5 phosphate (pph) Guar (pph) 0.48 0.48 0.48 0.48 Isopropanol 8-10 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 11 28 22 17  2 19 29.6 28 24  3 25 30.4 30.8 28.4  4 29 30.8 32.2 31  5 31.8 31 33 32.4 10 37 31.2 35 35 60 42 32 37 38 % Hydration Time (min)  1 26 88 59 45  2 45 93 76 63  3 60 95 83 75  4 69 96 87 82  5 76 97 89 85 10 88 98 95 92 60 100 100 100 100

The control, Example 30, is a derivatized guar with a molecular substitution, M.S., of 0.4-0.6% hydroxypropyl groups, HPG 3.

Example 31 was prepared by grinding derivatized guar, HPG 3, using a model 100 AFG from Hosokawa Micron Powder Systems. In a fluidized bed jet mill, particle size reduction occurs mainly by particle to particle collisions. Turbulent air jets are generated to accelerate the particles and to provide the energy for particle breakage. The size reduced particles travel upwards to the centrifugal classifier where rotor speed will define what particles will go through: coarse particles get rejected back to the milling chamber for further grinding. Air was used at a pressure of 90 psi (6.2 BAR) to reduce the guar particle size. The classifying wheel was turning at 18,000 rpm.

Examples 32, 33, 34 and 35 were prepared by the jet milling technique described for Example 27, starting with derivatized guar, HPG 3. Examples 32, 33, and 34 were milled with air at a pressure of 90 psi (6.2 BAR) and with the classifying wheel turning at 18,000 rpm, 9,000 rpm, 7,000, and 5,500 rpm, respectively. Example 35 was prepared by grinding derivatized guar, HPG 3, with air at a pressure of 70 psi (4.8 BAR) and the classifying wheel turning at 3,500 rpm. The particle size, viscosity, and % hydration were measured as described for Example 9 and are reported in Table 8. Table 8 indicates the formulation amounts for the hydration study and summarizes the results of these experiments.

TABLE 8 Examples 30 31 32 33 34 35 Type of Guar HPG 3 HPG 3 HPG 3 HPG 3 HPG 3 HPG 3 Size Control Jet Jet Jet Jet Jet Mill Reduction Mill Mill Mill Mill Technique Particle size, 58 5 15 25 30 49 D50% % (91%) (74%) (57%) (48%) (16%) (μm)/% Reduction Particle size, 119 11 30 47 56 91 D90% % (91%) (75%) (60%) (53%) (24%) (μm)/% Reduction Formulation Water (g) 250 250 250 250 250 250 Potassium 2.0 2.0 2.0 2.0 2.0 2.0 chloride (pph) Monosodium 0.5 0.5 0.5 0.5 0.5 0.5 phosphate (pph) Guar (pph) 0.48 0.48 0.48 0.48 0.48 0.48 Isopropanol 8-10 8-10 8-10 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min) time(min)  1 15 16.8 26 26 26 18.6  2 21 16.8 26.8 28.8 28 24  3 24.6 16.8 27.2 29.8 28.6 27  4 26.6 16.8 27.4 30 29 28.2  5 28 16.8 27.4 30.2 29.2 29.4 10 30 16.8 27.6 30.4 29.6 30.6 60 31 16.8 27.6 30.4 29.4 31 % hydration Time (min)  1 48 100 94 86 88 60  2 68 100 97 95 95 77  3 79 100 99 98 97 87  4 86 100 99 99 98 91  5 90 100 99 99 99 95 10 97 100 100 100 100 99 60 100 100 100 100 100 100

As evident from the data in Tables 7 and 8, the fluidized bed jet mill technology was useful in reducing the particle size of the underivatized Guar 3 and of the derivatized HPG 3. Examples 27-29 showed particle size reductions of 30-70% relative to the control, Example 26. Similarly, Examples 31-35 displayed particle size reductions of 24-91% relative to the control, Example 30. The observed particle size reductions were directly related to the residence time within the milling chamber with the lowest particle sizes being attained at the longest milling times.

As indicated by the data in Tables 7 and 8, the particle size reduction technique was effective in increasing the hydration rate for the guar samples. The hydration rate was inversely proportional to the particle size with Examples 27-29 displaying a greater % hydration than Example 26 at the same time interval. Example 27 with the smallest particle size displayed 88% hydration at the one minute interval as compared to only 26% hydration for Example 26.

Similarly, Examples 31-35 showed increased hydration rates relative to the unmilled derivatized HPG 3 control, Example 30. Notably, Example 31 with the smallest particle size displayed 100% hydration at the one minute interval versus a mere 48% hydration for the control, Example 30.

Tables 9 (Examples 36-38) and 10 (Examples 39-40), show the hydration of Guar 3 in 25% potassium bromide solution and 40% potassium bromide solution respectively. The results indicate that more than 70% hydration is achieved in 60 seconds or less in concentrated brine solutions.

Tables 11 (Example 41-43) and 12(Example 44-45) shows the hydration of HPG 3 in 25% potassium bromide solution and 40% potassium bromide solution respectively. This indicates that more than 70% hydration is achieved in 60 seconds or less in concentrated brine solutions.

TABLE 9 Hydration of Guar in 25% potassium bromide brine Examples 36 37 38 Type of Guar Guar 3 Guar 3 Guar 3 Size Control Jet Mill Jet Mill Reduction Technique Particle size, 50 15 (70%) 35 (30%) D50% % (μm)/% Reduction Particle size, 102 30 (71%) 68 (33%) D90% % (μm)/% Reduction Formulation 25% 250 250 250 potassium bromide brine (g) Monosodium 0.5 0.5 0.5 phosphate (pph) Disodium 0.5 0.5 0.5 phosphate (pph) Guar (pph) 0.36 0.36 0.36 Isopropanol 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 12 24 16  2 19 25.4 22  3 24 25.8 26  4 27 26 27.4  5 29 26 28.4 10 32 26.2 30 60 34 27 31.6 % Hydration Time (min)  1 26 88 45  2 45 93 63  3 60 95 75  4 69 96 82  5 76 97 85 10 88 98 92 60 100 100 100

TABLE 10 Hydration of guar in 40% potassium bromide brine Examples 39 40 Type of Guar Guar 3 Guar 3 Size Control Jet Mill Reduction Technique Particle size, 50 15 (70%) D50% % (μm)/% Reduction Particle size, 102 30 (71%) D90% % (μm)/% Reduction Formulation 40% 300 300 potassium bromide brine (g) Monosodium 0.5 0.5 phosphate (pph) Disodium 0.5 0.5 phosphate (pph) Guar (pph) 0.3 0.3 Isopropanol 8-10 8-10 (mL) Viscosity (cP) Time (min)  1 12 26  2 19.4 26.8  3 24.6 27  4 28 27.2  5 30 27.2 10 33.2 27.6 60 34 28 % Hydration Time (min)  1 26 88  2 45 93  3 60 95  4 69 96  5 76 97 10 88 98 60 100 100

TABLE 11 Hydration of HPG in 25% potassium bromide brine Examples 41 42 43 Type of HPG 3 HPG 3 HPG 3 Guar Size Control Jet Jet Reduction Mill Mill Technique Particle size, 58 15 (74%) 30 (48%) D50% % (μm)/% Reduction Particle size, 119 30 (75%) 56 (53%) D90% % (μm)/% Reduction Formulation 25%(wt) 250 250 250 potassium bromide solution (g) Monosodium 0.5 0.5 0.5 phosphate (pph) Guar (pph) 0.36 0.36 0.36 Isopropanol 8-10 8-10 8-10 (mL) Viscosity (cP) Time (min) time (min)  1 14 20 21  2 17.8 20.6 22.6  3 20 20.6 23  4 22 20.6 23.2  5 22.8 20.8 23.2 10 23.8 21 23.2 60 24.6 21 23.4 % hydration Time (min)  1 57 95 90  2 72 97 97  3 81 98 98  4 89 99 99  5 93 99 99 10 97 99 99 60 100 100 100

TABLE 12 Hydration of HPG in 40% potassium bromide brine Examples 44 45 Type of HPG 3 HPG 3 Guar Size Control Jet Reduction Mill Technique Particle size, 58 15 (74%) D50% % (μm)/% Reduction Particle size, 119 30 (75%) D90% % (μm)/% Reduction Formulation 40%(wt) 250 250 potassium bromide solution (g) Monosodium 0.5 0.5 phosphate (pph) Guar (pph) 0.3 0.3 Isopropanol 8-10 8-10 (mL) Viscosity (cP) Time (min) time (min)  1 12 21  2 16 21.4  3 20 21.6  4 22 21.8  5 23 22 10 25 22.2 60 25.6 22.4 Time (min)  1 47 94  2 72 95.5  3 81 96  4 89 97  5 93 98 10 97 99 60 100 100

Examples 46-54 Low Temperature Hydration of Guar

Guar 3 of 50μ and Guar 1 of 35μ were compared to the same guar ground to 35μ, 17μ, and 15μ (D50) sizes and tested at 32-37° F. (0-2.8° C.), 40° F. (4.4° C.), and 50° F. (10° C.) for hydration amounts and rates at times between 1 and 60 minutes, with results set forth in Table 13. The hydration procedure was to dissolve 1.2 g powder in 5 g IPA, added to 250 ml of 2% KCl, and mix for 30 sec. at 2800 rpm, at a pH as indicated in Table 13

TABLE 13 Examples 46 47 48 49 50 51 52 53 54 Type of Guar Guar 3 Guar 1 Guar 3 Guar 3 Guar 1 Guar 3 Guar 3 Guar 1 Guar 3 Size Reduction Control Control Jet Mill Control Control Jet Mill Control Control Jet Mill Technique Particle size, 50 35 15 50 35 15 50 35 15 D50% % (μm)/ (70%) (70%) (70%) % Reduction Particle size, 102 70 30 102 70 30 102 70 30 D90% % (μm)/ (71%) (71%) (71%) % Reduction Temperature  32-33 F.  32-33 F.  32-33 F.  40 F.  40 F. 40 .F 50 F. 50 F. 50 F.  0-0.6 C.  0-0.6 C.  0-0.6 C. 4.4 C. 4.4 C. 44 C. 10 C. 10 C. 10 C. pH 7.4 7.44 7.5 7.42 7.39 7.49 7.4 7.43 7.5 % hydration Time(min)  1 22% 40% 62% 26% 38% 69% 28% 42% 76%  2 34% 54% 79% 38% 57% 82% 43% 61% 85%  3 44% 64% 85% 50% 68% 87% 57% 71% 89%  4 54% 69% 87% 61% 73% 88% 67% 77% 91%  5 62% 71% 89% 68% 76% 89% 73% 81% 92% 10 81% 85% 91% 86% 88% 93% 87% 89% 94% 30 100%  96% 99% 98% 96% 97% 97% 98% 98% 60 100%  100%  100%  100%  100%  100%  100%  100%  100% 

Examples of 55-63 Low Temperature Hydration of HPG

HPG3 of 58μ (d50) was compared to samples having 15μ and 25μ (d50) 50° F. (10° C.)., 40° F. (4.4° C.)., and 32-33° F. (0-0.6° C.). and tested for hydration amounts and percentages at times between 1 minute and 60 minutes, using a hydration procedure wherein 1.2 g of powder was dissolved in 5 g IPA and added to 250 ml of 2% KCl, with 0.5% MSP in DI water, then mixed for 30 sec at 2800 rpm. The pH for each run and the results are shown in Table 14.

TABLE 14 Examples 55 56 57 58 59 60 61 62 63 Type of Guar HPG3 HPG3 HPG3 HPG3 HPG3 HPG3 HPG3 HPG3 HPG3 Size Reduction Control Jet Mill Jet Mill Control Jet Mill Jet Mill Control Jet Jet Technique Mill Mill Particle size, 58 15 25 58 15 25 58 15 25 D50% % (μm)/ (74%) (57%) (74%) (57%) (74%) (57%) % Reduction Particle size 119 30 47 119 30 47 119 30 47 D90% % (μm)/ (75%) (60%) (75%) (60%) (75%) (60%) % Reduction Temperature 32-33 F. 32-33 F. 32-33 F. 40 F. 40 F. 40 F. 50 F. 50 F. 50 F. (F.) (0-0.6° C.) (0-0.6° C.) (0-0.6° C.) (4.4° C.) (4.4° C.) (4.4° C.) (10° C.) (10° C.) (10° C.) pH 5.33 5.33 5.31 5.41 5.37 5.32 5.3 5.3 5.29 % hydration Time(min)  1 36% 80% 69% 71% 42% 80% 91% 54% 80%  2 50% 82% 80% 82% 59% 84% 92% 63% 87%  3 63% 84% 84% 87% 67% 87% 92% 68% 90%  4 67% 84% 86% 89% 75% 88% 93% 80% 90%  5 71% 84% 87% 89% 79% 88% 93% 84% 90% 10 84% 93% 94% 94% 88% 94% 96% 93% 95% 30 96% 99% 100%  98% 98% 99% 96% 99% 99% 60 100%  100%  100%  100%  100%  100%  100%  100%  100% 

Examples 64-72 Low Temperature Hydration of CMHPG

A carboxymethyl hydroxypropyl guar, CMHPG1 of 50-60μ (d50) particle size and and the same sample processed in a jet mill to reduce particle size to 27.5μ and 30μ (d50), were tested at 32-33° F.(0-0.6° C.)., 40° F.(4.4° C.). and 50° F.(10° C.) following the hydration procedure of Examples 55-64. The hydroxypropyl content characterized by the M.S.(molar substitution of HP groups) is about 0.3-0.4 and carboxymethyl content characterized by the D.S(degree of substitution of CM groups) is about 0.1-0.15. The pH, amount hydrated, and % hydrated are reported in Table 15

TABLE 15 Examples 64 65 66 67 68 69 70 71 72 Type of Guar CMHPG1 CMHPG1 CMHPG1 CMHPG1 CMHPG1 CMHPG1 CMHPG1 CMHPG1 CMHPG1 Size Control Jet Mill Jet Mill Control Jet Mill Jet Mill Control Jet Mill Jet Mill Reduction Technique Particle size, 47 27 (42%) 31 (34%) 47 27 (42%) 31 (34%) 47 27 (42%) 31 (34%) D50% % (μm)/% Reduction Particle size, 95 52 (45%) 61 (36%) 95 52 (45%) 61 (36%) 95 52 (45%) 61 (36%) D95% % (μm)/% Reduction Temperature 32-33 F. 32-33 F. 32-33 F. 40 F. 40 F. 40 F. 50 F. 50 F. 50 F. (0-0.6° C.). (0-0.6° C.). (0-0.6° C.). (4.4° C.) (4.4° C.) (4.4° C.) (10° C.) (10° C.) (10° C.) pH 5.12 5.1 5.15 5.2 5.15 5.18 5.18 5.11 5.14 % hydration Time(min)  1 40% 67% 60% 42% 75% 69% 47% 80% 75%  2 53% 83% 82% 64% 85% 81% 64% 92% 84%  3 70% 88% 88% 72% 89% 86% 75% 94% 87%  4 75% 90% 91% 79% 90% 88% 81% 96% 88%  5 80% 91% 91% 81% 90% 88% 84% 97% 88% 10 90% 92% 95% 92% 96% 95% 94% 99% 93% 30 99% 95% 100%  97% 100%  100%  100%  99% 95% 60 100%  100%  100%  100%  100%  100%  100%  100%  100% 

While the invention and its advantages have been described and exemplified in detail, other embodiments, substitutions, and alterations should become readily apparent to those skilled in this art without departing from the spirit and scope of the invention.

Claims

1. A powder having a D50 particle size of less than 40u which reaches at least 70% hydration within 60 seconds at about 21° C., wherein the powder is guar or a guar derivative.

2. The powder of claim 1, in which said powder achieves about 80% hydration within 60 seconds at about 21° C.

3. The powder of claim 1, in which said powder achieves about 90% hydration after about 60 seconds at about 21° C.

4. The powder of claim 1, in which said powder is an agent in a host product selected from the group consisting of: (a) drilling fluid; (b) fracturing fluid; (c) animal litter; (d) explosive; (e) foodstuff; (f) paperstock; (g) floor covering; (h) synthetic fuel briquettes; (i) water thickener for firefighting; (j) shampoo; (k) personal care lotion; (l) household cleaner; (m) catalytic converter catalyst; (n) electroplating solution; (o) diapers; (p) sanitary towels; (q) super-adsorbent in food packaging; (r) sticking plasters for skin abrasions; (s) water-adsorbing bandages; (t) foliar spray for plants; (u) suspension for spraying plant seeds; (v) suspension for spraying plant nutrients; (w) flotation aid; (x) flocculent; (y) gravel packing fluid; and (z) completion fluid.

5. The powder of claim 1 wherein the guar is a derivative selected from the group consisting of hydroxyalkyl guar, carboxyalkyl guar, carboxyalkyl hydroxyalkyl guar, cationic guar, and hydrophobically modified guar.

6. The powder of claim 1 having a D50 particle size of less than 30μ.

7. The powder of claim 1 having a D50 particle size of less than 20μ.

8. A powder prepared by a method comprising the step of forming a powder from guar gum or a guar derivative, wherein the method does not include any extrusion step and the powder which reaches at least 70% hydration within 60 seconds at about 21° C.

9. The powder of claim 8, in which the powder comprises polygalactomannan.

10. The powder of claim 6, in which the guar is a chemically modified derivative selected from the group consisting of hydroxyalkyl guar, carboxyalkyl guar, carboxyalkyl hydroxyalkyl guar, cationic guar, and hydrophobically modified guar.

11. The powder of claim 8, in which the guar has been genetically modified.

12.A hydrated, crosslinked guar or guar derivative prepared by hydrating a powder of claim 1 for up to 30 seconds, followed by crosslinking with a crosslinker.

13. The hydrated, crosslinked guar or guar derivative of claim 12 wherein the crosslinker is selected from the group consisting of borax, boric acid, antimony or metal crosslinker selected from aluminum, zirconium or titanium compounds.

14. The hydrated, crosslinked guar or guar derivative of claim 12 wherein the hydrating step is in the presence of one or more surfactants, buffers, or oilfield additives.

15. The hydrated, crosslinked guar or guar derivative of claim 12 wherein the hydrating step comprises introducing the powder to water or brine.

16. The hydrated, crosslinked guar or guar derivative of claim 12 wherein the hydrating step comprises introducing the powder to brine selected from the group consisting of ammonium chloride, sodium chloride, potassium chloride, sodium bromide, potassium bromide, calcium chloride, calcium bromide, zinc bromide and mixtures of two or more thereof.

17. A method of fracturing a subterranean formation comprising hydrating a powder of claim 1, introducing the well-treating fluid to a wellbore at a temperature and a pressure sufficient to treat the subterranean formation.

18. The method of claim 17 wherein the hydration is conducted with a hydration time of less than 2 minutes followed by adding a crosslinker, wherein the hydration time is between the introduction of water or brine to the powder and the addition of the crosslinker.

19. The method of claim 17 wherein the hydration is conducted with a hydration time of less than 1 minute followed by adding a crosslinker.

20. The method of claim 17 wherein the hydration is conducted with a hydration time of less than 0.5 minute followed by adding a crosslinker.

21. The method of claim 17 wherein the crosslinker is selected from the group consisting of borax, boric acid, antimony or a metal crosslinker selected from as aluminum, zirconium or titanium compounds.

22. The method of claim 17 conducted in the absence of a hydration unit.

23. The method of claim 17 wherein the particles reach at least 70% hydration within 60 seconds at about 10° C.

24. The method of claim 17 wherein the particles reach at least 70% hydration within 60 seconds at about 4.4° C. comprising reducing the guar or guar derivative to a D50 particle size of less than 25μ.

25. The method of claim 17 wherein the particles reach at least 70% hydration within 60 seconds at about o.6° C. comprising reducing the guar or guar derivative to a D50 particle size of less than 25μ.

26. A method of preparing guar or guar derivative particles which reaches at least 70% hydration within 60 seconds at about 21° C. comprising reducing the guar or guar derivative to a D50 particle size of less than 40μ.

27. The method of claim 26 wherein the particles reach at least 70% hydration within 60 seconds at about 10° C. comprising reducing the guar or guar derivative to a D50 particle size of less than 25μ.

28. The method of claim 26 wherein the particles reach at least 70% hydration within 60 seconds at about 4.4° C. comprising reducing the guar or guar derivative to a D50 particle size of less than 25μ.

29. The method of claim 26 wherein the particles reach at least 70% hydration within 60 seconds at about 0.6° C. comprising reducing the guar or guar derivative to a D50 particle size of less than 25μ.

30. The method of claim 26 wherein said reducing comprises milling.

31. The method of claim 26 wherein said reducing comprises sieving.

32. The method of claim 26 comprising reducing the guar or guar derivative to a D50 particle size of less than 30μ.

33. The method of claim 26 comprising reducing the guar or guar derivative to a D50 particle size of less than 20μ.

34. A method of preparing guar or guar derivative particles which reaches at least 70% hydration within 60 seconds at about 21° C. comprising milling the guar or guar derivative in a jet mill or fluidized jet mill to a D50 particle size of less than 40μ.

Patent History
Publication number: 20060068994
Type: Application
Filed: Oct 4, 2005
Publication Date: Mar 30, 2006
Inventors: Subramanian Kesavan (East Windsor, NJ), Phillipe Neyraval (Hamilton, NJ), Aziz Boukhelifa (Ewing, NJ)
Application Number: 11/243,144
Classifications
Current U.S. Class: 507/110.000
International Classification: C09K 8/08 (20060101); C09K 8/20 (20060101);