Constructive water resource recycling method

A constructive water resource recycling method is characterized in that great-sized water reservoirs, each of which has a drainpipe provided above for connecting to the ground surface, are buried in the underground soil; deep drainage trenches are selectively provided under the macadam stratum; the side walls of the deep drainage trenches have water inlets such that the rain can be led down to the soil via drainage bands, while trenches are covered by trench covers; the water contained in the water reservoirs can be drawn by water-drawing pipes to the ground surface for further utilization through a water pump of natural power; the great-sized water reservoirs are covered by soil and macadam stratum, and then an instantly permeable layer which is composed of macadam, pebbles or sand; finally, the instantly permeable layer is covered a concrete pavement and then drilled through to complete a constructive permeable pavement, thereby efficiently recycling the rain for fully utilization.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

(a) Technical Field of the Invention

The present invention relates to a constructive water resource recycling method, particularly to one that relates to constructing a concrete pavement on a walkway or roadway and drilling through pluralities of permeable holes, thereby accomplishing a constructive permeable pavement. The rain can therefore be instantly led into the underground soil layer for specifically and efficiently collected and accumulated. By way of building pipeline system and providing water pump equipment, the water accumulated in the underground can be drawn up to the ground surface for secondary use. Accordingly, the water resource can be fully utilized to reach the purpose of environmental protection.

(b) Description of the Prior Art

With respect to the construction for a ground surface of an environmental, permeable function of the prior art, the inventor of the present invention disclosed in 1999 “Construction of Environmental, Permeable Concrete Paving” which was filed in Taiwan under Application. No. 88110248 and has been approved. The design thereof is characterized in that the construction of an environmental, permeable concrete paving includes the following steps: paving a layer of sand, providing pluralities of frame units composed of water ducts with plugs in the sand layer, pouring concrete, taking off the plugs from the water ducts after the concrete is solidified.

The paving accomplished can lead the rain into the sand layer through the water conduits, and further drain into the underground soil, thereby accomplishing an environment, permeable effect.

However, as the mentioned design can only lead the rain into the underground for supplementing the underground water resource. To be more positive, the inventor has researched to disclose a method for accumulating the recycled rain in the invisible underground water reservoirs for further utilization, which is the primary concept of the invention.

SUMMARY OF THE INVENTION

The primary purpose of the present invention is to provide a constructive water resource recycling method which relates to constructing and drilling a permeable pavement on the ground surface, and burying underground water reservoirs, which include connection of pipelines, drawing the accumulated water to the ground surface via generators of natural power for secondary use such as irrigation, thereby efficiently maintaining the water resource for further utilization.

The secondary object of the invention is to provide a constructive water resource recycling method, which includes the provision of deep drainage trenches, the side walls of which have water inlets such that the rain can permeate to the underground soil. A drainage band is provided in the soil to serve as a connection of the water reservoirs an respective upper positions thereof. Trench bottoms of permeable paving are provided at pre-determined positions, such that when the surplus rain cannot be drain away through the drainage trenches, it can be permeate down to the underground soil through the permeable trench bottoms to supplement the underground water resource and also avoid water from accumulating on the ground to occur floods. A further object of the invention is to provide a constructive water resource recycling method, which can allow more water contained in the macadam stratum, such that when the atmosphere is burning hot, the water content can be transformed into vapor and released through the communicated pipeline, thereby regulating the integral temperature and humidity of the surrounding atmosphere, and avoid heat-island effect.

To obtain the above objection, the invention is characterized in that great-sized water reservoirs are pre-buried in the underground soil; deep drainage trenches are selectively provided under the macadam stratum; the side walls of the deep drainage trenches or trench bottoms provided at specific positions have water inlets such that the rain can be led down to the soil; drainage bands are provided in the macadam stratum for connecting the water reservoirs at respective upper positions thereof, the water contained in the water reservoirs can be drawn by water-drawing pipes to the ground surface for further utilization through a water pump of natural power; the great-sized water reservoirs are covered by soil, macadam stratum, and then an instantly permeable layer which is composed of macadam, pebbles or sand; finally, the instantly permeable layer is covered a concrete pavement and then drilled through to complete a constructive permeable pavement, thereby avoiding water accumulation on the ground, and efficiently recycling the rain for fully utilization.

The foregoing object and summary provide only a brief introduction to the present invention. To fully appreciate these and other objects of the present invention as well as the invention itself, all of which will become apparent to those skilled in the art, the following detailed description of the invention and the claims should be read in conjunction with the accompanying drawings. Throughout the specification and drawings identical reference numerals refer to identical or similar parts.

Many other advantages and features of the present invention will become manifest to those versed in the art upon making reference to the detailed description and the accompanying sheets of drawings in which a preferred structural embodiment incorporating the principles of the present invention is shown by way of illustrative example.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the structure of an embodiment of the invention.

FIG. 2 is a top view of the invention.

FIG. 3 is a partially enlarged view of the embodiment of the invention.

FIG. 4 shows production of the constructive permeable paving of the invention.

FIG. 5 partially shows the completed permeable paving of the invention.

FIG. 6 shows the structure of another embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODMENTS

The following descriptions are of exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.

Referring to FIGS. 1 and 2, the constructive water resource recycling method according to the invention includes digging the underground soil layer 10 and burring pluralities of great-sized water reservoirs 50. Meanwhile, deep drainage trenches 40 are built in the underground soil layer 10 which is paved with a macadam stratum 11 and then an instantly permeable layer 12 composed of macadam, pebbles or sand. A rigid ground surface 13 formed by reinforcing steels and concrete is paved on the instantly permeable layer 12 to serve as walkways 20 or roadways 30, which are subsequently drilled by drilling equipment 70 (as shown in FIG. 4) to form pluralities of water permeable holes 31 such that the rain accumulated on the ground can be led down to the underground.

The great-sized water reservoirs 50 buried in the underground soil layer 10 are peripherally provided with connecting pipes 51 for communicating with one another. The top of each water reservoir 50 is provided with a drainpipe 52, which has a cover 21 at the outlet end, for connecting to the ground surface. An underground water reservoir room 53 can be provided at a certain position where the connecting pipes 51 combine, while the water reservoir room 53 is further connected with a water-drawing pipe 54 to reach the ground surface. The water accumulated underground can be drawn up to the ground surface via a water pump 62 of natural power, while the end of the branches of the water-drawing pipe 54 may be installed with a sprayer 63 for sprinkling purpose (as shown in FIG. 3). The water accumulated in the water reservoirs 50 can be drawn up to the ground surface with the time and amount fixed automatically for flowering the road trees and flowers, such that the gardening job in the city can be done more easily and automatically. Said natural power can be generated by a wind power generator 60 or a solar generator 61, thereby reaching an environmental effect.

The deep drainage trenches 41 provided under the macadam stratum 11 are deeper than general trenches and substantially have a close bottom. Water inlets 41 are provided on the side walls at the level as the bottom of the macadam stratum 11 for leading the permeated rain. A drainage band 42 may be paved adjacent to the bottom of the macadam stratum 11 such that the water can be led into the water inlets 41, and instantly drained away along the deep drainage trenches 40. Part of the rain retained in the soil can be led into the water reservoirs 50 via drainage band 46 for accumulation purpose. The water 55 accumulated in the water reservoirs 50 can be drawn out by a water pump 62 for utilization. Depending on the specific needs, trench bottoms 44 of permeable paving can be provided in the deep drainage trenches 40 at a certain distance, such that when the surplus rain in the deep drainage trenches 40 can be drained away through the permeable holes 45 on the trench bottoms 44 to the underground soil to supplement the underground water resource. The top of the deep drainage trenches 40 can be covered by trench covers 33 and drainage grilles 34 for instantly draining away the water accumulated on the ground.

As shown in FIGS. 4 and 5, the instantly permeable layer 12 composed of macadam, pebbles or sand is installed under the roadways 30, which is emphasized in the afore-mentioned embodiment as a rigid ground paving 13 constructed by reinforcing steels 36 and concrete. Alternatively, the roadways 30 can be paved with permeable asphalt 14 to soften the roadways 30, thus reducing the noise occurred by the moving vehicle. Besides, the roadways 30 can be drilled by drills 71 of drilling equipment 70 to form pluralities of permeable holes 31, thereby instantly drawing the rain accumulated on the ground into the underground.

Referring to FIGS. 1 to 3, permeable holes 22 are provided on the walkways 20, i.e. the rigid ground paving 13 is made with tile lines by way of paper moldboard or pattern technique, and is drilled with drilling equipment 70 to form pluralities of permeable holes 31 at the border of the tiles. Accordingly, the rain can instantly permeate into the instantly permeable layer 12 and the macadam stratum 11.

It is worth a mention that the permeable holes 31 provided on the ground can have the function of instantly leading the water down to the underground. Therefore, when it rains, part of the rain can be led into the underground soil to supplement the water content of the soil, and concomitantly avoid floods. In case of hot weather and drought, the humidity contained in the soil can instantly vaporized upward through the permeable holes 31 (as a chimney effect), to obtain an automatic conditioning in terms of the temperature and humidity of the air, i.e. heat exchange effect (such as breathe effect), thereby reducing the temperature of the ground, avoiding softening of the asphalt 14 due to high temperature, and preventing sagging and impermeability of the roadways due to the vehicle's constantly running over. Meanwhile, it is also available to prevent the tires of the vehicle from heat melting and wearing due to the high temperature of the roadways. Moreover, the instantly permeable layer 12 can automatically condition the temperature to avoid the city from occurring heat-island effect.

As shown in FIGS. 1 and 2, the constructive water resource recycling method according to the invention can alternatively be applied to instantly defrost the frozen roadways. While the roadways 30 and the walkways 20 are provided with permeable holes 31 and 22, respectively, the great-sized water reservoirs 50 are buried under the ground. In view of terrestrial heat, the water contained in the water reservoirs 50 certainly has a temperature higher than that of the ground surface. Therefore, when it snows, the walkways 20 and roadways 30 can make the snow thereon gradually melted; and when the snow stops, they would speed melting of the snow, thereby reducing occurrence of traffic accidents.

Referring to FIG. 6, in the construction of the underground water reservoirs 50, a drainpipe 52 is connected at the top of each water reservoir 50 to reach the ground surface. The end of the drainpipe 52 may be covered by a cover 21, so that when it is intended to utilize the water in the water reservoirs 50 for the purposes of flushing roadways or distinguishing, an underwater motor 56 can be put down into the water reservoir 50 for drawing water up to the ground. Alternatively, the water pump 62 on the ground can be additionally provided with pipes 57 for deep going to the water reservoir 50 to draw the accumulated water up via the underground motor 56.

Concluded above, the constructive water resource recycling method according to the invention relates to providing constructive permeable paving on the ground surface; constructing under the permeable paving an instantly permeable layer, the macadam stratum, and the water reservoirs, which are connected with pipelines. By way of water pumps of natural power, the water contained in the water reservoirs can be drawn up to the ground for secondary use. Besides, deep drainage trenches are selectively provided under the macadam stratum; the side walls of the deep drainage trenches have water inlets such that the rain can be led down to the soil via drainage bands. As such, limit water resource can be efficiently recycled for fully utilization. In view of the novelty and environmental concept embraced by the present invention, as well as the value applicable to the filed, the inventor claims the invention as specified in the following claims.

It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above.

While certain novel features of this invention have been shown and described and are pointed out in the annexed claim, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing in any way from the spirit of the present invention.

Claims

1. A constructive water resource recycling method, including the provision of permeable concrete paving, an instantly permeable layer, a macadam stratum and the underground soil layer by layer from the ground surface to the underground, characterized in that:

great-sized water reservoirs, each of which has a drainpipe provided on the top thereof for connecting to the ground surface, are buried in the underground soil;
the great-sized water reservoirs are covered by soil, and then the macadam stratum;
the macadam stratum is covered by an instantly permeable layer, which is composed of macadam, pebbles or sand;
after completing a constructive permeable paving, which is a rigid paving of strong support solidified from liquid concrete, on the instantly permeable layer, the paving is drilled through via drilling equipment to allow permeability thereof.

2. The constructive water resource recycling method according to claim 1, wherein the pluralities of water reservoirs are connected to each other via a connecting pipe.

3. The constructive water resource recycling method according to claim 1, wherein between the macadam stratum and the water reservoirs are provided with deep drainage trenches, the side walls of which have water inlets.

4. The constructive water resource recycling method according to claim 3, wherein a drainage band buried in the macadam stratum goes through the water inlet of the deep drainage trench for instantly leading the water in the macadam stratum into the trench.

5. The constructive water resource recycling method according to claim 1, wherein a water reservoir room is provided underground, such that the connecting pipes of the water reservoirs will lead to the water reservoir room and connect to the ground surface via a water-drawing pipe, thereby the water accumulated underground can be drawn to the ground surface via a water-drawing equipment of natural powder.

6. The constructive water resource recycling method according to claim 1, wherein each of the water reservoirs has a drainage band, which is buried in the underground soil for instantly leading the water into the water reservoirs.

7. The constructive water resource recycling method according to claim 5, wherein the water-drawing equipment of natural powder is a water pump which is generated via wind power.

8. The constructive water resource recycling method according to claim 5, wherein the water-drawing equipment of natural powder is generated via solar power.

9. The constructive water resource recycling method according to claim 1, wherein asphalt can be paved on the constructive permeable paving.

10. The constructive water resource recycling method according to claim 1, wherein the ground surface is provided with water pumps, which can draw water for utilization via water pipes going deep inside the water reservoirs, and underwater motors.

Patent History
Publication number: 20060210358
Type: Application
Filed: Mar 17, 2005
Publication Date: Sep 21, 2006
Inventor: Jui-Wen Chen (Shu Lin City)
Application Number: 11/081,624
Classifications
Current U.S. Class: 404/2.000
International Classification: E01C 11/22 (20060101);