MICROGININ PRODUCING PROTEINS AND NUCLEIC ACIDS ENCODING A MICROGININ GENE CLUSTER AS WELL AS METHODS FOR CREATING NOVEL MICROGININS

- CYANO BIOTECH GMBH

The invention provides for nucleic acid molecules enabling the synthesis of microginin and microginin analogues. The invention also provides for methods for identifying microginins as well creating microginins which may not be found in nature.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to the fields of chemistry, biology, biochemistry, molecular biology. The invention provides for novel nucleic acid molecules enabling the synthesis of microginin and microginin analogues. Microginin finds an application in therapeutics. The invention thus extends into the field of mammalian therapeutics and drug development.

INTRODUCTION Cyanobacteria and Microginin

Cyanbacteria are gram-negative bacteria. Due to their ability to perform photosynthesis they were long thought to belong to the plant kingdom and were formerly classified as blue-green algae. Cyanbacteria have adapted to almost all ecological niches. Most of strains known up to date are found in fresh water lakes and oceans. In the last few years cyanobacteria have been recognised as a source for biologically active natural compounds.

Cyanobacteria are a group of microscopic organisms somewhere “in between” algae and bacteria and they are found in freshwater and marine areas throughout the world. Scientifically, they are considered to be bacteria, but because they can perform photosynthesis, they also used to be classified as “blue-green algae”.

Cyanobacterial peptides (cyanopeptides) are among the most ubiquitously found potentially hazardous natural products in surface waters used by humans. Though these substances are natural in origin, eutrophication (i.e. excessive loading with fertilising nutrients) has caused massive cyanobacterial proliferation throughout Europe. Thus, cyanopeptides now occur with unnatural frequency and concentration.

A large group among the diverse cyanopeptides are the oligopeptides (peptides with a molecular weight of <2KD). But while specific cyanopeptides—e.g. microcystins and nodularins—are well studied and recognised as being causative for many animal poisonings and human illness, a substantial and increasing body of evidence points toward a decisive role of other potentially toxic cyanopeptides in the causation of both acute and chronic human illnesses.

Freshwater and marine cyanobacteria are known to produce a variety of bioactive compounds, among them potent hepatotoxins and neurotoxins. Many of the toxic species of cyanobacteria tend to massive proliferation in eutrophicated water bodies and thus have been the cause for considerable hazards for animal and human health. One of the most widespread bloom-forming cyanobacteria is the genus Microcystis, a well-known producer of the hepatotoxic peptide microcystin. Microcystins are a group of closely related cyclic heptapeptides sharing the common structure. So far, more than 80 derivatives of microcystins have been identified, varying largely by the degree of methylation, peptide sequence, and toxicity.

The traditional botanical code describes the genus Microcystis as a coccal, unicellular cyanobacterium that grows as mucilaginous colonies of irregularly arranged cells (under natural conditions, while strain cultures usually grow as single cells). According to this tradition, morphological criteria such as size of the individual cells, colony morphology, and mucilage characteristics are used for species delimitation within Microcystis (i.e., morphospecies). Microcystin-producing strains as well as strains that do not synthesize microcystin have been reported for all species within the genus Microcystis. However, whereas most field samples and strains of Microcystis aeruginosa and Microcystis viridis studied to date were found to contain microcystins, strains of M. wesenbergii, M. novaceckii, and M. ichthyoblabe have only sporadically been reported to contain microcystins.

Beside microcystins, various other linear and cyclic oligopeptides such as anabaenopeptins, aeruginosins, microginins and cyanopeptolins are found within the genus Microcystis (Namikoshi, M., and K. L. Rinehart. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. 17:373-384.).

Similar to microcystins, these peptides possess unusual amino acids like 3-amino-6-hydroxy-2-piperidone (Ahp) in cyanopeptolins, 2-carboxy-6-hydroxyoctahydroindol (Choi) in aeruginosin-type molecules or 3-amino-2 hydroxy-decanoic acid (Ahda) in microginins and numerous structural variants also exist within these groups. These peptides show diverse bioactivities, frequently protease inhibition (Namikoshi, M., and K. L. Rinehart. 1996. Bioactive compounds produced by cyanobacteria. J. Ind. Microbiol. 17:373-384).

The occurrence of both microcystins and other oligopeptides such as anabaenopeptins, microginins and cyanopeptolins in natural Microcystis populations was recently demonstrated. It is well known that the species and genotype composition in natural Microcystis populations is heterogeneous, and both microcystin- and non-microcystin-containing strains have been isolated from the same sample. Just as strains producing microginin and strains not producing microginin have been found. These results suggest a considerable diversity of genotypes with different oligopeptide patterns in natural Microcystis populations.

By typing single Microcystis colonies, it was possible in 1999 to show for the first time that the actual peptide diversity in a natural population of this genus is extremely high. Many of the substances detected belong to well-known groups of cyanobacterial peptides like microcystins, anabaenopeptins, microginins, cyanopeptolins, and aeruginosins, of which many have been discovered in Microcystis spp. In addition, numerous unknown components have been detected in such colonies. However, the origin of these unknown components has yet to be investigated, since besides the observed epiphytic cyanobacteria and algae, heterotrophic bacteria are also known to be present in Microcystis colonies. Chemical screening of cyanobacterial samples (both from field samples and from culture strains) has demonstrated a wide variety of substances: e.g. an almost monospecific bloom of Planktothrix agardhii contained as many as 255 different substances, most of which were oligopeptides.

Thus, it may be concluded, that the situation with respect to the assignment of the capability of microginin production to certain species and strains, i.e. also a true understanding of the genotypes and species involved as well as their evolution has to date, not been possible. In fact PEPCY a research project supported by the European Commission concluded that present information shows that one species or “morphotype” (i.e. individuals with the same morphological characteristics) may comprise a range of genotypes that encode for different “chemotypes” (i.e. morphologically indistinguishable individuals containing different cyanopeptides).

Ace Inhibitors and Microginin

ACE catalyses the conversion of angiotensin I into angiotensin II within the mammalian renin-angiotensin system, leading to arterial stenosis, which in turn causes an increase of blood pressure. ACE inhibitors counteract this process and therefore play a role in human medicine as blood pressure lowering agents. Microginin is an important drug candidate for ACE inhibition. So far only 30 structural variants of microginin are known, making clinical development difficult.

Microginins are characterized by a decanoic acid derivate, 3-amino-2-hydroxy-decanoic acid (Ahda) at the N-terminus and a predominance of two tyrosine units at the C-terminus. They vary in length from 4 to 6 amino acids with the variability occurring at the C-terminal end (Microginins, zinc metalloprotease inhibitors from the cyanobacterium Microcystis aeruginosa, 2000, Tetrahedron 56:8643-8656). In the past it has only been possible by means of synthesis of 3-amino-2-hydroxy-decanoic acid to chemically generate microginin variants (J Org. Chem. 1999 Apr. 16; 64(8):2852-2859. Acylnitrene Route to Vicinal Amino Alcohols. Application to the Synthesis of (−)-Bestatin and Analogues. Bergmeier S C, Stanchina D M.) Alternatively cyanobacterial strains were screened for microginin activity, which was tedious and time consuming. It has so far not been possible to screen for strains efficiently due to the lack of species understanding and a methodology of efficiently distinguishing microginin producers from non-producers (see above). Further it was not possible to easily and efficiently alter and thus develop microginins in order to provide for a variety of lead compounds from which better ACE-inhibitors may be developed.

BRIEF DESCRIPTION OF THE INVENTION

From Microcystis aeruginosa a cluster of genes, spanning about 30 kbps has been isolated encoding a hybrid synthetase composed of non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS) and tailoring enzyme which as the inventors show is responsible for the biosynthesis of microginin. The strain from which this nucleic acid was first isolated by G. C. Kürzinger from Lake Pehlitz 1977].

The inventors provide for a biological system enabling not only the production of micoginins, the heterologous expression of microginin, but also a system for modifying microginin and thus developing so far unknown variants of microginin. The invention further provides for nucleic acids and methods for identifying strains which have the ability to produce microginin.

In particular the invention relates to one or more nucleic acids encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).

DETAILED DESCRIPTION OF THE INVENTION

As outlined above the invention in particular relates to one or more nucleic acids encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP 2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).

The inventors have found that microginin is the product of non-ribosomal synthesis. It is important to understand that microginin as previously identified in nature may also in part have been the product of ribosomal synthesis and further processed via various enzymatic reactions.

It is important to note that the nucleic acid claimed herein, i.e. a microginin synthetase enzyme complex may also be present in organisms other organisms than Microcystis sp., such as Nostoc, Anabaena, Plankthotrix or Oscillatoria. The term microginin shall thus not limit the invention to such nucleic acids producing synthetase enzyme complexes resulting in peptides officially termed “microginin”.

Herein, an adenylation domain (A*) is understood to activate octanoic acid as an acyl adenylate and an acyl carrier protein (ACP) is understood to bind the octanoic acid adenylate as a thioester.

An elongation module (EM) of polyketide synthases (PKS) is also known e.g. from the Jamaicamide synthetase gene cluster isolated from Lyngbya majuscula (Chem. Biol. Vol. 11, 2004 pp 817-833. Structure and Biosynthesis of the Jamaicamides, new mixed polyketide-peptide neurotoxin from the marine cyanobacterium Lyngbya majuscula) herein comprises at least the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) and (iii) acyl carrier protein (ACP2). The AT is responsible for the recognition of malonyl-CoA, the KS is responsible for the Claisen-type-condensation of the activated octanoic acid adenylate with malonyl-CoA and the ACP2 is responsible for binding of the resulting decanoic acid.

An aminotransferase (AMT) performs the β-amination of the decanoic acid.

The nucleic acid according to the invention may have three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising at least the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T). The A is responsible for the activation of carboxyl groups of amino acids, the T is responsible for the binding and the transport of the activated intermediate, the C is responsible for the condensation of the activated amino acids with the growing peptide chain.

Finally the nucleic acid according to the invention shall contain a thioesterase (TE) activity which performs the cleavage of the final product from the synthetase complex.

One may envision that the nucleic acid according to the invention is present in a vector or a bacterial chromosome, in which case one may envision that the portions designated above while being in one cell need not all, be in, or on, one molecule. It is essential to the invention however, that a cell meant to produce microginin synthetase enzyme complex contains the activities designated above in order to produce an enzyme complex according to the invention which in turn may produce a microginin. Thus, the invention also encompasses derivatives of the nucleic acid molecule as outlined above having the function of a microginin synthetase enzyme complex.

The molecule is characterized by a special adenylation domain (A*) which is unusual in that it is not similar to known adenlyation domains found in other molecules encoding non-ribosomal enzyme complexes such as the microcystin synthetase gene cluster (Chem. Biol. Vol. 7 2000, pp 753-764: Structural organisation of microcystin synthesis in Microcystis aeruginosa PCC 7806: In integrated peptide-polyketide-synthetase system) Molecules encompassed herein are those which carry this adenylation domain (A*) as depicted in SEQ ID NO. 1 and at least an ACP whereby this ACP may stem from another known non-ribosomal enzyme complex, at least one EM of PKS whereby this EM may stem from another known non-ribosomal enzyme complex comprising at least the following activities: (i) KS, (ii) AT (iii) ACP, an AMT whereby this AMT may stem from another known non-ribosomal enzyme complex three to five EMs comprising at least the following activities: (i) C, (ii) A, (iii) T whereby these EMs may stem from another known non-ribosomal enzyme complex and a TE whereby this TE may stem from another known non-ribosomal enzyme complex. Chimeras whereby parts of the above are on one or more vectors and or integrated in chromosomes are equally encompassed by the invention as long as all the components are in one cell.

The invention also pertains to isolated nucleic acid molecules encoding a microginin synthetase enzyme complex comprising an adenylation domain which is 85% identical to SEQ ID NO. 1, more preferred 90% identical to SEQ ID NO. 1 most preferred 95% identical to SEQ ID NO. 1. Sequence identity herein is in percent of total sequence of the adenylation domains when aligned with conventional nucleotide alignment software, such as the best fit and or pileup programs of the GCG package

The invention also pertains to a microginin synthetase enzyme protein complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an acyl carrier protein (ACP), an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS), (ii) acyl transferase (AT) (iii) acyl carrier protein (ACP 2), an aminotransferase (AMT), three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C), (ii) adenylation domain (A), (iii) thiolation domain (T) and a thioesterase (TE).

The invention in particular also relates to a nucleic acid molecule encoding an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1.

The invention in particular also relates to a peptide molecule, an adenylation domain (A*) wherein, the molecule comprises a peptide sequence according to SEQ ID NO. 1.

The invention in particular also relates to a nucleic acid molecule encoding an adenylation domain (A*) wherein, the molecule comprises a nucleic acid sequence according to SEQ ID NO. 25.

In a preferred embodiment of the invention the nucleic acid additionally and optionally comprises sequences encoding the following activities or domains: a monooxygenase (MO), an integrated N-methyltransferase domain (MT) within one or more elongation modules (EM) of NRPS, a non-integrated N-methyltrasferase (MT), a modifying activity (MA) wherein, said MA is selected from the group comprising the following activities: halogenase, sulfatase, glycosylase, racemase, O-methyltransferase and C-methyltransferase, two or more peptide repeat spacer sequences (SP) consisting of one or more repeats of being either glycine rich or proline and leucine rich, located adjacently upstream and downstream of the MO and/or another MA.

Herein MO is an enzyme catalyzing the hydroxylation of the decanoic acid, an integrated N-methyltransferase domain (MT) within one or more elongation modules (EM) of NRPS catalyses the methylation of the amide bond by the respective module and a non-integrated N-methyltrasferase (MT) catalyzes the methylation of an amino group of the microginin.

The term modifying enzyme stands for numerous enzymes such enzymes may add groups or create bonds, in a preferred embodiment MA is selected from the group comprising the following activities: halogenase, sulfatase, glycosylase, racemase, O-methyltransferase and C-methyltransferase.

Nucleic acids encoding two or more peptide repeat spacer sequences (SP) consisting of one or more repeats being either glycine rich or proline and leucine rich have astonishingly been found by the inventors to aid in integration of novel MAs into existing microginin synthetase enzyme complexes. By means of placing such SPs adjacently to MAs the inventors are able to create microginin synthetase enzyme complexes (MSEC) comprising activities previously not found in MSECs. This in turn allows for the creation of novel microginins with potentially novel therapeutic properties. Thus the invention relates to nucleic acids encoding two or more peptide repeat spacer sequences (SP) consisting of one or more repeats being either glycine rich or proline and leucine rich may be positioned adjacently to a MA such as but not limited to a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase. These SPs aid in ensuring that the “foreign” activity “works” in the enzyme complex. The inventors have found, that this is due to the lack of secondary structures in the SP peptide chains.

The nucleic acid according to the invention in a preferred embodiment optionally comprises the following sequences, nucleic acid sequences encoding protein sequences as follows:

An adenylation domain (A*) according to SEQ ID NO. 1, an acyl carrier protein (ACP) according to SEQ ID NO. 2, an elongation module of polyketide synthases responsible for the activation and the condensation of malonyl-Co A: (i) ketoacylsynthase domain (KS) according to SEQ ID NO. 3, (ii) acyl transferase domain (AT) according to SEQ ID NO. 4, an acyl carrier protein domain (ACP 2) according to SEQ ID NO. 5, an aminotransferase (AMT) according to SEQ ID NO. 6, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of alanin: (i) condensation domain (C) according to SEQ ID NO. 7, (ii) adenylation domain (A) according to SEQ ID NO. 8, (iii) thiolation domains (T) according to SEQ ID NO. 9, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of leucin: (i) condensation domain (C 2) according to SEQ ID NO. 10, (ii) adenylation domain (A 2) according to SEQ ID NO. 11, (iii) thiolation domain (T 2) according to SEQ ID NO. 12, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of tyrosine 1: (i) condensation domain (C 3) according to SEQ ID NO. 13, (ii) adenylation domain (A 3) according to SEQ ID NO. 14 (iii) thiolation domain (T 3) according to SEQ ID NO. 15, an elongation modules of non-ribosomal peptide synthetases responsible for the activation and condensation of tyrosine 2: (i) condensation domain (C 4) according to SEQ ID NO. 16, (ii) adenylation domain (A 4) according to SEQ ID NO. 17, (iii) thiolation domain (T 4) according to SEQ ID NO. 18, a thioesterase (TE) according to SEQ ID NO. 19, a monooxygenase (MO) according to SEQ ID NO. 20, two or more peptide repeat spacer sequences (SP1/SP2) according to SEQ ID NO. 21 and 22, an integrated N-methyltransferase domain (MT) within the elongation module (EM) of the NRPS responsible for the activation and condensation of leucin according to SEQ ID 23 and a non-integrated N-methyltrasferase (MT 2) according to SEQ ID NO. 24.

As outlined above, the minimal requirement according to the invention is a nucleic acid encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain comprises a peptide sequence according to SEQ ID NO. 1, an ACP according to SEQ ID NO. 2, an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS) according to SEQ ID NO. 3, (ii) acyl transferase (AT) according to SEQ ID NO 4, (iii) acyl carrier protein (ACP 2) according to SEQ ID NO. 5, an aminotransferase (AMT) according to SEQ ID NO. 6, three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C) according to SEQ ID NO. 7, (ii) adenylation domain (A) according to SEQ ID NO. 8, (iii) thiolation domain (T) according to SEQ ID NO. 9 and a thioesterase (TE) according to SEQ ID NO. 10. A molecule comprising the above sequences is preferred herein.

The invention explicitly also relates to analogs hereto, additionally comprising, e.g. other activities and/or spacer regions both transcribed and non-transcribed.

It is apparent to those skilled in the art, that amino acids may be exchanged maintaining the enzymatic activity required. Thus, the invention also relates to molecules with sequences which are not identical to those outlined above however, altered only in so far as the enzymatic activity desired is retained.

The nucleic acid according to the invention may contain nucleic acids selected from the group comprising: an adenylation domain (A*) according to SEQ ID NO. 25, an acyl carrier protein (ACP) according to SEQ ID NO. 26, an elongation module of polyketide synthases encoding for the activation and the condensation of malonyl-Co A: (i) ketoacylsynthase domain (KS) according to SEQ ID NO. 27, (ii) acyl transferase domain (AT) according to SEQ ID NO. 28, (iii) acyl carrier protein domain (ACP 2) according to SEQ ID NO. 29, an aminotransferase (AMT) according to SEQ ID NO. 30, an elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of alanin: (i) condensation domain (c) according to SEQ ID NO. 31, (ii) adenylation domain (A) according to SEQ ID NO. 32, (iii) thiolation domain (T) according to SEQ ID NO. 33, an elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of leucin: (i) condensation domain (C 2) according to SEQ ID NO. 34, (ii) adenylation domain (A 2) according to SEQ ID NO. 35, (iii) thiolation domain (T 2) according to SEQ ID NO. 36, elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of tyrosine 1: (i) condensation domains (C 3) according to SEQ ID NO. 37, (ii) adenylation domains (A 3) according to SEQ ID NO. 38, (iii) thiolation domains (T 3) according to SEQ ID NO. 39, elongation modules of non-ribosomal peptide synthetases encoding for the activation and condensation of tyrosine 2: (i) condensation domains (C 4) according to SEQ ID NO. 40, (ii) adenylation domains (A 4) according to SEQ ID NO. 41, (iii) thiolation domains (T 4) according to SEQ ID NO. 42, a thioesterase (TE) according to SEQ ID NO. 43, a monooxygenase (MO) according to SEQ ID NO. 44, two or more peptide repeat spacer sequences (SP1/2) according to SEQ ID NO. 45 and 46, an integrated N-methyltransferase domain (MT) within the elongation module (EM) of the NRPS encoding for the activation and condensation of leucin according to SEQ ID 47 and a non-integrated N-methyltrasferase (MT 2) according to SEQ ID NO. 48.

As outlined above, the minimal requirement according to the invention is a nucleic acid encoding a microginin synthetase enzyme complex with the following activities: an adenylation domain (A*) wherein, the adenylation domain is a nucleic acid sequence according to SEQ ID NO. 25, an ACP with a nucleic acid sequence according to SEQ ID NO. 26, an elongation module (EM) of polyketide synthases (PKS) comprising the following activities: (i) ketoacylsynthase (KS) with a nucleic acid sequence according to SEQ ID NO. 27, (ii) acyl transferase (AT) with a nucleic acid sequence according to SEQ ID NO 28, (iii) acyl carrier protein (ACP 2) with a nucleic acid sequence according to SEQ ID NO. 29, an aminotransferase (AMT) with a nucleic acid sequence according to SEQ ID NO. 30, three to five elongation modules (EM) of non-ribosomal peptide synthetases (NRPS) comprising the following activities: (i) condensation domain (C) with a nucleic acid sequence according to SEQ ID NO. 31, (ii) adenylation domain (A) with a nucleic acid sequence according to SEQ ID NO. 32, (iii) thiolation domain (T) with a nucleic acid sequence according to SEQ ID NO. 33 and a thioesterase (TE) with a nucleic acid sequence according to SEQ ID NO. 43. A molecule comprising the above sequences is preferred herein.

The invention also relates to nucleic acid molecules with sequences which are not identical to those outlined above however, altered only in so far as the enzymatic activity desired is retained. I particular one skilled in the art will know that positions in nucleic acid triplets may “wobble” and these positions may thus be altered with no influence on the peptide sequence. Further multiple amino acids are encoded by more than one DNA triplet. One skilled in the art will know that one may alter such triplets maintaining the amino acid sequence. Thus said sequences are equally encompassed by the invention.

The invention also pertains to isolated nucleic acid molecules encoding a microginin synthetase enzyme complex comprising an adenylation domain which is 85% identical to SEQ ID NO. 25, more preferred 90% identical to SEQ ID NO. 1 most preferred 95% identical to SEQ ID NO. 1. Sequence identity herein is in percent of total sequence of the adenylation domains when aligned with a conventional amino acid alignment software such as the best fit and or pileup programs of the GCG package.

In a preferred embodiment the one or more nucleic acids according to the invention are organized in sequence parts encoding the microginin synthetase enzyme complex in an upstream to downstream manner as depicted in FIG. 1. In a particularly preferred embodiment the activities and domains are arranged as shown and on one molecule.

The nucleic acid molecule may be part of a vector. Such vectors are in particular, bacterial artificial chromosomes (BAC), Cosmids or Fosmids, and Lambda vectors, Preferred plasmid vectors which are able to replicate autonomously in cyanobacteria are derived from the pVZ vectors. Preferred fosmid vectors which are able to replicate autonomously in cyanobacteria are derived from the pCC1FOS™ and pCC2FOS™ vectors (Epicentre Biotechnologies). The integration of the nucleic acid according to the invention into the vector is a procedure known to those skilled in the art (Molecular Cloning: A Laboratory manual, 1989, Cold Spring Harbour Laboratory Press) or in the manuals of manufactures of kits for creation of genomic libraries (e.g. Epicenter Biotechnologies).

In a preferred embodiment the invention concerns a microorganism transformed with a nucleic acid according to the invention. The nucleic acid according to the invention may integrated into the chromosome of the host organism or may present on a separate vector (see also examples). It is preferred that the phototrophic cyanobacterial host organism is selected for the group comprising: Synechocystis sp., Synechococcus sp., Anabaena sp., Nostoc sp., Spirulina sp., Microcystis sp. . . . Cells are cultured as follows:

Media: Bg 11 (for cultivation of cyanobacteria)
Aeration: air containing 0.3-3.0% carbon dioxide
Light intensity: 40-100 μE/m2*s (diameter of illuminated culture vessels of photobioreactor d=4-12 cm)
Cell density at harvest: OD750nm 1-2
And if the host is Microcystis aeruginosa:
Light quality: Additional red light illumination with 25 μE/m2*s for 24-48 hours before harvesting.

It is preferred that the heterotrophic host organism is selected for the group comprising: E. coli and Bacillus sp. due to a more suitable GC content and codon usage than other heterotrophic bacteria.

In case of using E. coli for the heterologues expression of the microginin synthetase a phosphopanthetein transferase (Ppt) has to be co-expressed in order to enable the synthesis of microginin. The co-expression of the Ppt from a microginin producing strain would be preferred. Other Ppt's with a broad specificity even from heterotophic organisms like Bacillus sp. are also suitable.

In one embodiment of the invention the invention relates to a method of producing a microginin, comprising culturing a cell under conditions under which the cell will produce microginin, wherein said cell comprises a nucleic acid encoding a recombinant microginin, according to the invention, and wherein said cell does not produce the microginin in the absence of said nucleic acid.

The inventors have identified nucleic acid sequences which for the first time make it possible to detect nucleic acids encoding a microginin synthetase enzyme complex. This has been extremely difficult, due to the fact that other gene clusters which encode non-ribosomal protein producing complexes share sequence similarity with the present cluster claimed herein. Such primers or probes according to the invention are selected from the group of, a) nucleic acid according to SEQ ID NO. 49 (Primer A), b) nucleic acid according to SEQ ID NO. 50 (Primer B), c) nucleic acid according to SEQ ID NO. 51 (Primer C), d) nucleic acid according to SEQ ID NO. 52 (Primer D), e) nucleic acid according to SEQ ID NO. 53 (Primer E), f) nucleic acid according to SEQ ID NO. 54 (Primer F), g) nucleic acid according to SEQ ID NO. 55 (Primer G), h) nucleic acid according to SEQ ID NO. 56 (Primer H), i) nucleic acid according to SEQ ID NO. 57 (Primer I) and j) nucleic acid according to SEQ ID NO. 58 (Primer J). It is known to one skilled in the art that such primers or probes may be altered slightly and still accomplishes the task of specifically detecting the desired target sequence. Such alterations in sequence are equally encompassed by the invention. The primers or probes according to the invention may be applied in hybridization reactions and/or amplification reactions. Such reactions are known to one skilled in the art.

The invention also concerns a method for detecting a microginin synthetase gene cluster in a sample wherein, one or more of the nucleic acids according to the invention are, applied in an amplification and/or a hybridization reaction.

In a preferred embodiment of the method according to the invention primers D and F or H and J or E and I or E and A are added to a PCR reaction mixture comprising a sample and wherein, presence of an amplification product represents presence of microginin synthetase gene cluster and absence of an amplification product represents absence of a microginin synthetase gene cluster. As can be seen from the examples (example 3 below), certain combinations are preferred. Samples may be isolated DNA, prokaryotic cells stemming from plates or liquid cultures.

When performing an amplification reaction with primers D and F the most preferred amplification conditions are as follows: a) denaturing, b) 48° C. annealing and c) elongation (product size: 675 bp). These temperatures may vary a bit in the range of 2-8 degrees C.

When performing an amplification reaction with primers H and J the most preferred amplification conditions are as follows: a) denaturing, b) 54° C. annealing and c) elongation (product size: 1174 bp). These temperatures may vary a bit in the range of 2-8 degrees C.

When performing an amplification reaction with primers E and I the most preferred amplification conditions are as follows: a) denaturing, b) 56° C. annealing and c) elongation (product size: 1279 bp). These temperatures may vary a bit in the range of 2-8 degrees C.

When performing an amplification reaction with primers E and A the most preferred amplification conditions are as follows: a) denaturing, b) 57° C. annealing and c) elongation (product size: 621 bp). These temperatures may vary a bit in the range of 2-8 degrees C. Molarity is most commonly 0.2-1.0 μM for the primers. Buffers and other reagents depending on polymerase used.

When performing hybridisation reactions the above nucleic acids are usually labeled. Such labels may be radioactive or non-radioactive, such as fluorescent. The nucleic acid primers or probes may be applied, e.g. for the screening of libraries.

The invention also relates to antibodies against a peptide according to SEQ ID NO. 1 (A*). The creation of such antibodies is known to one skilled in the art. The antibodies may be polyclonal or monoclonal. Such antibodies may be labeled or non-labeled, they may also be altered in other form, such as humanized.

The inventors have astonishingly found that newly identified peptide repeat spacer sequences (SP) may be placed adjacently to MAs I in order to create novel hybrid gene clusters. These SPs act by spacing the novel activity or domain so that it is functionally active in the microginin synthetase enzyme complex.

The invention thus, further relates to nucleic acids encoding a peptide repeat spacer sequence (SP) wherein, the peptide sequence comprises at least 4 glycin amino acids per single repeat unit (SRU) or, at least 5 proline and/or leucin amino acids per SRU, A SRU within the SP is between 7 and 15 amino acids in length and, the SP comprises between 2 and 10 SRUs.

The invention further relates to peptides of a peptide repeat spacer sequence (SP) wherein, the peptide sequence comprises at least 4 glycin amino acids or, at least 5 proline and/or leucin amino acids, the single repeat unit (SRU) within the SP is between 7 and 15 amino acids in length and, the SP comprises between 2 and 10 SRU. In a preferred embodiment of the invention the SRU is between 9 and 13 amino acids in length in a particularly preferred embodiment the SRU is eleven amino acids in length. In a preferred embodiment the SP comprises between 3 and 9 SRU.

In a preferred embodiment the nucleic acid encoding the peptide repeat spacer sequence (SP) according to the invention, encodes a peptide SRU as shown in SEQ ID NO. 20 or SEQ ID NO. 21. In a further embodiment the peptide repeat spacer sequence (SP) according to the invention, comprises or contains a sequence as shown in SEQ ID NO. 20 or SEQ ID NO. 21. In a further embodiment the nucleic acid according to the invention has a sequence as laid down in SEQ ID NO. 43 or SEQ ID NO. 44.

Not only by means of the above mentioned SPs but in particular because of these the inventors are able to create enzyme complexes resulting in microginin variants which may not be found in nature. This is an essential aspect of the present invention. The invention provides for, for the first time a simple method of producing recombinant microginin variants comprising, modifying the nucleic acid according to the invention in vitro or in vivo, growing a recombinant cell comprising said recombinantly modified nucleic acid encoding a microginin synthetase under conditions which lead to synthesis of a microginin and, recovering the synthesized microginin.

In a preferred embodiment of said method according to the invention, said modifying of said nucleic acid may be an action selected from the group of one or more of the following actions: a) inactivation of one or more of the MTs present, b) substitution of one or more of the MTs present with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, c) inactivation of the MO, d) substitution of the MO with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, e) inactivation of the AMT, f) substitution of the AMT with a halogenase, a sulfatase, a glycosylase, a racemase, an O-methyltransferase or a C-methyltransferase, g) inactivation of the PKS module, h) substitution of the entire PKS module with an alternative PKS module and/or substitution of one or more of the domains (KS, AT, ACP) therein, i) inactivation of the A* domain, j) substitution of the A* domain with alternative A domains, k) inactivation of one or more of the NRPS modules and 1) substitution of one or more of the NRPS modules with alternative NRPS modules and/or substitution of one or more of the domains (C, A, T) therein.

Halogenases, sulfatases, glycosylases, racemases, O-methyltransferases or C-methyltransferases are known from prokaryotes. These enzymes are encoded by genes of the secondary metabolism in particular NRPS/PKS systems.

Alternative PKS-systems, entire modules as well as single domains (KS, AT, ACP) are found in cyanobacteria as well as Actinomycetes, Myxobacteria, Bacillus among the bacteria.

Alternative NRPS-systems, entire modules as well as single domains (C, A, T) are found in cyanobacteria as well as Actinomycetes, Myxobacteria, Bacillus among the bacteria.

In a preferred embodiment the above are from cyanobacteria.

It is important to note, that said inactivation and/or substitution may done in many ways, e.g. inactivation may imply deleting the complete activity or domain, or may imply inactivation by means of a single nucleotide exchange.

The methods are known to those skilled in the art and comprise basic molecular biological methods such as DNA isolation, restriction digestion, ligation, transformation, amplification etc.

In a preferred embodiment said alternative modules or domains which are used for substitution of the original module or domain, additionally may comprise one or more SP nucleic acids according to the invention located adjacently upstream of the module or domain used for substitution and one or more SP nucleic acids according the invention located adjacently downstream of the module or domain used for substitution. Thus, in this embodiment of the invention a construct is made comprising the domain which is to be entered into the original nucleic acid according to the invention, further comprising one or more SPs located adjacently in an upstream and downstream manner. This construct is then ligated into the original microginin synthetase encoding nucleic acid. The resultant construct is then brought into a host by means of transformation for either a) integration into the host chromosome or b) with a self-replicating vector.

The polypeptides, i.e. proteins can be any of those described above but with not more than 10 (e.g., not more than: 10, nine, eight, seven, six, five, four, three, two, or one) conservative substitutions. Conservative substitutions are known in the art and typically include substitution of, e.g. one polar amino acid with another polar amino acid and one acidic amino acid with another acidic amino acid. Accordingly, conservative substitutions preferably include substitutions within the following groups of amino acids: glycine, alanine, valine, proline, isoleucine, and leucine (non polar, aliphatic side chain); aspartic acid and glutamic acid (negatively charged side chain); asparagine, glutamine, methionine, cysteine, serine and threonine (polar uncharged side chain); lysine, histidine and arginine; and phenylalanine, tryptophane and tyrosine (aromatic side chain); and lysine, arginine an histidine (positively charged side chain). It is well known in the art how to determine the effect of a given substitution, e.g. on pK1 etc. All that is required of a polypeptide having one or more conservative substitutions is that it has at least 50% (e.g., at least: 55%; 60%; 65%, 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 99.5%; or 100% or more) of the ability of the unaltered protein according to the invention.

In preferred embodiments the polynucleotides, i.e. nucleic acids of the present invention also comprise nucleic acid molecules which are at least 85%, preferably 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to those claimed herein.

The determination of percent identity between two sequences is accomplished using the mathematical algorithm of Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTP programs of Altschul et al. (1990) J. Mol. Biol. 215: 403-410. BLAST nucleotide searches are performed with the BLASTN program, score=100, word length=12, to obtain nucleotide sequences homologous to the nucleic acids according to the invention. BLAST protein searches are performed with the BLASTP program, score=50, wordlength=3, to obtain amino acid sequences homologous to the EPO variant polypeptide, respectively. To obtain gapped alignments for comparative purposes, Gapped BLAST is utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25: 3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs are used.

FIGURES

FIG. 1 depicts the structure of microginin.

FIG. 2 depicts the microginin synthetase gene cluster and the biosynthetic pathway of microginin.

EXAMPLES Example 1 Method for Detecting Gene Clusters According to the Invention

Strains carrying a gene cluster encoding a microginin synthetase complex can be distinguished from strains not carrying such a gene cluster performing a PCR reaction using RedTaq ReadyMix PCR Reaction Mix with MgCl2 (Sigma) and primer pairs and the corresponding annealing temperatures as described in Claims 11-12. In particular the PCR conditions are as follows: an initial denaturation for 1 minutes at 95° C., followed by 30 cycles of denaturation at 95° C. for 30 seconds, elongation at said annealing temperatures for 30 seconds and extension at 72° C. for 1 kb of product size.

Example 2 Method for Optimised Cultivation of Microginin Producing Microcystis spp.

Strains. Media: Bg 11 (for cultivation of cyanobacteria)
Aeration: air containing 0.3-3.0% carbon dioxide
Light intensity: 40-100 μE/m2*s (diameter of illuminated culture vessels of photobioreactor d=4-12 cm)
Light quality: Additional red light illumination with 25 μE/m2*s for 24-48 hours before harvesting.
Cell density at harvest: OD750nm 1-2

Tables

TABLE 1 SEQ ID MTINYGDLQEPFNKFSTLVELLRYRASSQPERLAYIFLRDGEIEEARLTYGELDQKARAI NO. 1 A* AAYLQSLEAEGERGLLLYPPGLDFISAFFGCLYAGVVAIPAYPPRRNQNLLRLQAIIADS QARFTFTNAALFPSLKNQWAKDPELGAMEWIVTDEIDHHLREDWLEPTLEKNSLAFLQYT SGSTGTPKGVMVSHHNLLINSADLDRGWGHDQDSVMVTWLPTFHDMGLIYGVIQPLYKGF LCYMMSPASFMERPLRWLQALSDKKATHSAAPNFAYDLCVRKIPPEKRATLDLSHWCMAL NGAEPVRAEVLKKFAEAFQVSGFKATALCPGYGLAEATLKVTAVSYDSPPYFYPVQANAL EKNKIVGATETDTNVQTLVGCGWTTIDTQIVIVNPETLKPCSPEIVGEIWVSGSTIAQGY WGKPQETQETFQAYLADTGAGPFLRTGDLGFIKDGELFITGRLKEIILIRGRNNYPQDIE LTVQNSHPALRPSCGAAFTVENKGEEKLVVVQEVERTWLRKVDIDEVKRAIRKAVVQEYD LQVYAIALIRTGSLPKTSSGKIQRRSCRAKFLEGSLEILG SEQ ID MSTEIPNDKKQPTLTKIQNWLVAYMTEMMEVDEDEIDLSVPFDEYGLDSSMAVALIADLE NO. 2 DWLRRDLHRTLIYDYPTLEKLAKQVSEP ACP SEQ ID MEPIAIIGLACRFPGADNPEAFWQLMRNGVDAIADIPPERWDIERFYDPTPATAKKMYSR NO. 3 QGGFLKNVDQFDPQFFRISPLEATYLDPQQRLLLEVTWEALENAAIVPETLAGSQSGVFI KS GISDVDYHRLAYQSPTNLTAYVGTGNSTSIAANRLSYLFDLRGPSLAVDTACSSSLVAVH LACQSLQSQESNLCLVGGVNLILSPETTVVFSQARMIAPDSRCKTFDARADGYVRSEGCG VVVLKRLRDAIQDGDRILAVIEGSAVNQDGLSNGLTAPNGPAQQAVIRQALANAQVKPAQ ISYVEAHGTGTELGDPIEVKSLKAVLGEKRSLDQTCWLGSVKTNIGHLEAAAGMAGLIKV VLCLQHQEIPPNLHFQTLNPYISLADTAFAIPTQAQPWRTKPPKSGENGVERRLAGLSSF GFGGTNSHVIL SEQ ID VFLFAGQGSQYVGMGRQLYETQPIFRQTLDRCAEILRPHLDQPLLEILYPADPEAETASF NO. 4 AT YLEQTAYTQPTLFAFEYALAQLWRSWGIEPAAVIGHSVGEYVAATVAGALSLEEGLTLIA KRAKLMQSLPKNGTMIAVFAAEERVKAVIEPYRTDVAIAAVNGPENFVISGKAPIIAEII IHLTAAGIEVRPLKVSHAFHSHLLEPILDSLEQEAAAISYQPLQIPLVANLTGEVLPEGA TIEARYWRNHARNPVQFYGSIQTLIEQKFSLFLEVSPKPTLSRLGQQCCPERSTTWLFSL APPQEEEQSLLNSLAILYDSQGAE SEQ ID ITLQTLVGNLLQLSPADVNVHTPFLEMGADSIVMVEAVRRIENTYNVKIAMRQLFEELST NO. 5 LDALATYL ACP 2 SEQ ID KEMLYPIVAQRSQGSRIWDVDGNEYIDMTMGQGVTLFGHQPDFIMSALQSQLTEGIHLNP NO. 6 RSPIVGEVAALICELTGAERACFCNSGTEAVMAAIRIARATTGRSKIALFEGSYHGHADG AMT TLFRNQIIDNQLHSFPLALGVPPSLSSDVVVLDYGSAEALNYLQTQGQDLAAVLVEPIQS GNPLLQPQQFLQSLRQITSQMGIALIFDEMITGFRSHPGGAQALFGVQADIATYGKVVAG GMPIGVIAGKAHYLDSIDGGMWRYGDKSYPGVDRTFFGGTFNQHPLAMVAARAVLTHLKE QGPGLQQQLTERTAALADTLNHYFQAEEVPIKIEQFSSFFRFALSGNLDLLFYHMVEKGI YVWEWRKHFLSTAHTEADLAQFVQAVKDSITELR SEQ ID GGDQVPLTEAQRQLWILAQLGDNGSVAYNQSVTLQLSGPLNPVAMNQAIQQISDRHEALR NO. 7 C TKINAQGDSQEILPQVEINCPILDFSLDQASAQQQAEQWLKEESEKPFDLSQGSLVRWHL LKLEPELHLLVLTAHHIISDGWSMGVILRELGELYSAKCQGVTANLKTPKQFRELIEWQS QPSQGEELKKQQAYWLATLADPPVLNLPTDKPRPALPSYQANRRSLTLDSQFTEKLKQFS RKQGCTLLMTLLSVYNILVHRLTGQDDILVGLPASGRGLLDSEGMVGYCTHFLPIRSQLA SEQ ID TYSELNCRANQLAHYLQKLGVGPEVLVGILVERSLEMIVGLLGILKAGGAYVPLDPDYPP NO. 8 A ERLQFMLEDSQFFLLLTQQHLLESFAQSSETATPKIICLDSDYQIISQAKNINPENSVTT SNLAYVIYTSGSTGKPKGVMNNHVAISNKLLWVQDTYPLTTEDCILQKTPFSFDVSVWEL FWPLLNGARLVFAKPNGHKDASYLVNLIQEQQVTTLHFVSSMLQLFLTEKDVEKCNSLKR VICSGEALSLELQERFFARLVCELHNLYGPTEAAIHVTFWQCQSDSNLKTVPIGRPIANI QIYILDSHLQPVPIGVIGELHIGGVGLARGYLNRPELTAEKFIANPFASLDPPLTPLDKG GDESYKTFKKGGEQPSRLYKTGDLARYLPDGKIEYLGRIDNQVKIRGFRIELGEIEAVLL SHPQVREAVV SEQ ID EAIAAIFGQVLKLEKVGIYDNFFEIGGNSLQATQVISRLRESFALELPLRRLFEQPTVAD NO. 9 T LALAV SEQ ID PRDGQLPLSFAQSRLWFLYQLEGATGTYNMTGALSLSGPLQVEALKQALRTIIQRHEPLR NO. 10 C 2 TSFQSVDGVPVQVINPYPVWELAMVDLTGKETEAEKLAYQESQTPFDLTNSPLLRVTLLK LQPEKHILLINMHHIISDGWSIGVFVRELSHLYRAFVAGKEPTLPILPIQYADFAVWQRE WLQGKVLAAQLEYWKRQLADAPPLLELPTDRPRPAIQTFQGKTERFELDRKLTQELKALS QQSGCTLFMTLLAAFGVVLSRYSGQTDIVIGSAIANRNRQDIEGLIGFFVNTLALRLDLS SEQ ID TYGELNHRANQLAHYLQSLGVTKEQIVGVYLERSLEMAIGFLGILKAGAAYLPIDPEYPS NO. 11 A 2 VRTQFILEDTQLSLLLTQAELAEKLPQTQNKIICLDRDWPEITSQPQTNLDLKIEPNNLA YCIYTSGSTGQPKGVLISHQALLNLIFWHQQAFEIGPLHKATQVAGIAFDATVWELWPYL TTGACINLVPQNILLSPTDLRDWLLNREITMSFVPTPLAEKLLSLDWPNHSCLKTLLLGG DKLHFYPAASLPFQVINNYGPTENTVVATSGLVKSSSSHHFGTPTIGRPIANVQIYLLDQ NLQPVPIGVPGELHLGGAGLAQGYLNRPELTAEKFIANPFDPPLTPLDKGGEEPSKLYKT GDLARYLPDGNVEFLGRIDNQVKIRGFRIETGEIEAVLSQYFLLAESVV SEQ ID AQLTQIWSEVLGLERIGVKDNFFELGGHSLLATQVLSRINSAFGLDLSVQIMFESPTIAG NO. 12 T 2 IAGYI SEQ ID ARDGHLPLSFAQQRLWFLHYLSPDSRSYNTLEILQIDGNLNLTVLEQSLGELINRHEIFR NO. 13 C 3 TTFPTVSGEPIQKIALPSRFQLKVDNYQDLDENEQSAKIQQVAELEAGQAFDLTVGPLIQ FKLLQLSPQKSVLLLKMHHIIYDGWSFGILIRELSALYEAFLKNLANPLPALSIQYADFA VWQRQYLSGEVLDKQLNYWQEQLATVSPVLTLPTDRPRPAIQTFQGGVERFQLDQNVTQG LKKLGQDQVATLFMTLLAGFGVLLSRYSGQSDLMVGSPIANRNQAAIEPLIGFFANTLAL RINLS SEQ ID TYTELNHRANQLAHYLQTLGVGAEVLVGISLERSLEMIIGLLGILKVGGAYLPLDPDYPT NO. 14 A 3 ERLQLMLEDSQVPFLITHSSLLAKLPPSQATLICLDHIQEQISQYSPDNLQCQLTPANLA NVIYTSGSTGKPKGVMVEHKGLVNLALAQIQSFAVNHNSRVLQFASFSFDACISEILMTF GSGATLYLAQKDALLPGQPLIERLVKNGITHVTLPPSALVVLPQEPLRNLETLIVAGEAC SLDLVKQWSIDRNFFNAYGPTEASVCATIGQCYQDDLKVTIGKAIANVQIYILDAFLQPV PVGVSGELYIGGVGVARGYLNRPELTQEKFIANPFSNDPDSRLYKTGDLARYLPDGNIEY LGRIDNQVKIRGFRIELGEIEAVLSQCPDVQNTAV SEQ ID EILAQIWGQVLKIERVSREDNFFELGGHSLLATQVMSRLRETFQVELPLRSLFTAPTIAE NO. 15 T 3 LALTI SEQ ID NDSANLPLSFAQQRLWFLDQLEPNSAFYHVGGAVRLEGTLNITALEQSLKEIINRHEALR NO. 16 C 4 TNFITIDGQATQIIHPTINWRLSVVDCQNLTDTQSLEIAEAEKPFNLAQDCLFRATLFVR SPLEYHLLVTMHHIVSDGWSIGVFFQELTHLYAVYNQGLPSSLTPIKIQYADFAVWQRNW LQGEILSNQLNYWREQLANAPAFLPLPTDRPRPAIQTFIGSHQEFKLSQPLSQKLNQLSQ KHGVTLFMTLLAAFATLLYRYTGQADILVGSPIANRNRKEIEGLIGFFVNTLVLRLSLD SEQ ID TYAELNHQANQLVHYLQTLGIGPEVLVAISVERSLEMIIGLLAILKACGAYLPLAPDYPT NO. 17 A 4 ERLQFMLEDSQASFLITHSSLLEKLPSSQATLICLDHIQEQISQYSPDNLQSELTPSNLA NVIYTSGSTGKPKGVMVEHRGLVNLASSQIQSFAVKNNSRVLQFASFSFDACISEILMTF GSGATLYLAQKNDLLPGQPLMERLEKNKITHVTLPPSALAVLPKKPLPNLQTLIVAGEAC PLDLVKQWSVGRNFFNAYGPTETSVCATIGQCYQDDLKVTIGKAIANVQIYILDAFLQPV PIGVPGELYIGGVGVARGYLNRPELTAERFIPNPFDPPLTPLKKGGDKSYETFKKGEEQP SKLYKTGDLARYLPDGNIEYLGRIDNQVKIRGFRIELGEIEAVLSQCPDVQNTAV SEQ ID LQLAQIWSEILGINNIGIQENFFELGGHSLLAVSLINRIEQKLDKRLPLTSLFQNGTIAS NO. 18 T 4 LAQLL SEQ ID TPFFAVHPIGGNVLCYADLARNLGTKQPFYGLQSLGLSELEKTVASIEEMAMIYIEAIQT NO. 19 VQASGPYYLGGWSMGGVIAFEIAQQLLTQGQEVALLALIDSYSPSLLNSVNREKNSANSL TE TEEFNEDINIAYSFIRDLASIFNQEISFSGSELAHFTSDELLDKFITWSQETNLLPSDFG KQQVKTWFKVFQINHQALSSYSPKTYLGRSVFLGAEDSSIKNPGWHQ SEQ ID FSLYYFGSYEAEFNPNKYNLLFEGAKFGDRAGFTALWIPERHFHAFGGFSPNPSVLAAAL NO. 20 ARETKQIQLRSGSVVLPLHNSIRVAEEWAVVDNLSQGRVGIAFASGWHPQDFVLAPQSFG MO QHRELMFQEIETVQKLWRGEAITVPDGKGQRVEVKTYPQPMQSQLPSWITIVNNPDTYIR AGAIGANILTNLMGQSVEDLARNIALYRQSLAEHGYDPASGTVTVLLHTFVGKDLEQVRE QARQPFGQYLTSSVGLLQNMVKSQGMKVDFEQLRDEDRDFLLASAYKRYTETSALIGTPE SCRQIIDHLQSIGVDEVACFIDFGVDEQTVLANLPYLQSLKDLYQ SEQ ID IDPPLTPLDKGIDPPLTPLDKGIDPPLTPLDKG NO. 21 SP 1 SEQ ID PYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGGLGGDQSPYQGE NO. 22 LGGDQSPYQGGLGGDQV SP 2 SEQ ID PASEMREWVENTVSRILAFQPERGLEIGCGTGLLLSRVAKHCLEYWATDYSQGAIQYVER NO. 23 VCNAVEGLEQVKLRCQMADNFEGIALHQFDTVVLNSIIQYFPSVDYLLQVLEGAINVIGE MT RGQIFVGDVRSLPLLEPYHAAVQLAQASDSKTVEQWQQQVRQSVAGEEELVIDPTLFLAL KQHFPQISWVEIQPKRGVAHNELTQFRYDVTLHLETINNQALLSGNPTVITWLNWQLDQL SLTQIKDKLLTDKPELWGIRGIPNQRVEEALKIWEWVENAPDVETVEQLKKLLKQQVDTG INPEQVWQLAESLGYTAHLSWWESSQDGSFDVIFQRNSEAEDSKKLTLSKLAFWDEKPFK IKPWSDYTNNPLRGKLVQKLIP SEQ ID MTNYGKSMSHYYDLVVGHKGYNKDYATEVEFIHNLVETYTTEAKSILYLGCGTGYHAALL NO. 24 AQKGYSVHGVDLSAEMLEQAKTRIEDETIASNLSFSQGNICEIRLNRQFNVVLALFHVVN MT 2 YQTTNQNLLATFATVKNHLKAGGIFICDVSYGSYVLGEFKSRPTASILRLEDNSNGNEVT YISELNFLTHENIVEVTHNLWVTNQENQLLENSRETHLQRYLFKPEVELLADACELTVLD AMPWLEQRPLTNIPCPSVCFVIGHKTTHSA SEQ ID ATGACTATTAACTATGGTGATCTGCAAGAACCCTTTAATAAATTCTCAACCCTAGTTGAA NO. 25 TTACTCCGTTATCGGGCAAGCAGTCAACCGGAACGCCTCGCCTATATTTTTCTGCGAGAC A* nucl GGAGAAATCGAAGAAGCTCGTTTAACCTATGGGGAACTGGATCAAAAGGCTAGGGCGATC acid GCCGCTTATCTACAATCCTTAGAAGCCGAGGGCGAAAGGGGTTTACTGCTCTATCCCCCA GGACTAGATTTTATTTCAGCTTTTTTTGGTTGTTTATATGCGGGAGTCGTTGCCATTCCC GCCTATCCACCCCGACGGAATCAAAACCTTTTGCGTTTACAGGCGATTATTGCCGATTCT CAAGCCCGATTTACCTTCACCAATGCCGCTCTATTTCCCAGTTTAAAAAACCAATGGGCT AAAGACCCTGAATTAGGAGCAATGGAATGGATTGTTACCGATGAAATTGACCATCACCTC AGGGAGGATTGGCTAGAACCAACCCTCGAAAAAAACAGTCTCGCTTTTCTACAATACACC TCTGGTTCAACGGGAACTCCAAAGGGAGTAATGGTCAGTCACCATAATTTGTTGATTAAT TCAGCCGATTTAGATCGTGGTTGGGGCCATGATCAAGATAGCGTAATGGTCACTTGGCTA CCGACCTTCCATGATATGGGTCTGATTTATGGGGTTATTCAGCCTTTGTACAAAGGATTT CTTTGTTACATGATGTCCCCTGCCAGCTTTATGGAACGACCGTTACGTTGGTTACAGGCC CTTTCTGATAAAAAAGCAACCCATAGTGCGGCCCCCAACTTTGCCTACGATCTTTGTGTG CGGAAAATTCCCCCTGAAAAACGGGCTACGTTAGACTTAAGCCATTGGTGCATGGCCTTA AATGGGGCCGAACCCGTCAGAGCGGAGGTACTTAAAAAGTTTGCGGAGGCCTTTTCAAGTT TCTGGTTTCAAAGCCACAGCCCTTTGTCCTGGCTACGGTTTAGCAGAAGCCACCCTGAAA GTTACGGCGGTTAGTTATGACAGTCCCCCTTACTTTTATCCCGTTCAGGCTAATGCTTTA GAAAAAAATAAGATTGTGGGAGCCACTGAAACCGATACCAATGTGCAGACCCTCGTGGGC TGCGGCTGGACAACGATTGATACTCAAATCGTCATTGTCAATCCTGAAACCCTGAAACCT TGCTCCCCTGAAATTGTCGGCGAAATTTGGGTATCAGGTTCAACAATCGCCCAAGGCTAT TGGGGAAAACCTCAAGAGACTCAGGAAACCTTTCAAGCTTATTTGGCAGATACAGGAGCC GGGCCTTTTCTGCGAACAGGAGACTTGGGCTTCATTAAAGATGGTGAATTGTTTATCACA GGTCGGCTCAAGGAAATTATTCTGATTCGAGGACGCAATAATTATCCCCAGGATATTGAA TTAACCGTCCAAAATAGTCATCCCGCTCTGCGTCCCAGTTGTGGGGCTGCTTTTACCGTT GAAAATAAGGGCGAAGAAAAGCTCGTGGTCGTTCAGGAAGTGGAGCGCACCTGGCTCCGT AAGGTAGATATAGATGAGGTAAAAAGAGCCATTCGTAAAGCTGTTGTCCAGGAATATGAT TTACAGGTTTATGCGATCGCGCTGATCAGGACTGGCAGTTTACCAAAAACCTCTAGCGGT AAAATTCAGCGTCGTAGCTGTCGGGCCAAATTTTTAGAGGGAAGCCTGGAAATTTTGGGC TAA SEQ ID ATGTCCACAGAAATCCCAAACGACAAAAAACAACCGACCCTAACGAAAATTCAAAACTGG NO. 26 TTAGTGGCTTACATGACAGAGATGATGGAAGTGGACGAAGATGAGATTGATCTGAGCGTT ACP nucl CCCTTTGATGAATATGGTCTCGATTCTTCTATGGCAGTTGCTTTGATCGCTGATCTAGAG acid GATTGGTTACGACGAGATTTACATCGCACCCTGATCTACGATTATCCAACTCTAGAAAAG TTGGCTAAACAGGTTAGTGAACCCTGA SEQ ID ATGGAACCCATCGCAATTATTGGTCTTGCTTGCCGCTTTCCAGGGGCTGACAATCCAGAA NO. 27 GCTTTCTGGCAACTCATGCGAAATGGGGTGGATGCGATCGCCGATATTCCTCCTGAACGT KS nucl TGGGATATTGAGCGTTTCTACGATCCCACACCTGCCACTGCCAAGAAGATGTATAGTCGC acid CAGGGCGGTTTTCTAAAAAATGTCGATCAATTTGACCCTCAATTTTTCCGAATTTCTCCC CTAGAAGCCACCTATCTAGATCCTCAACAAAGACTGCTACTGGAAGTCACCTGGGAAGCC TTAGAAAATGCTGCCATTGTGCCTGAAACCTTAGCTGGTAGCCAATCAGGGGTTTTTATT GGTATCAGTGATGTGGATTATCATCGTTTGGCTTATCAAAGTCCTACTAACTTGACCGCC TATGTGGGTACAGGCAACAGCACCAGTATTGCGGCTAACCGTTTATCATATCTGTTTGAT TTGCGTGGCCCCAGTTTGGCCGTAGATACCGCTTGCTCTTCTTCCCTCGTCGCCGTTCAC TTGGCCTGTCAGAGTTTGCAAAGTCAAGAATCGAACCTCTGCTTAGTGGGGGGAGTTAAT CTCATTTTGTCGCCAGAGACAACCGTTGTTTTTTCCCAAGCGAGAATGATCGCCCCCGAC AGTCGTTGTAAAACCTTTGACGCGAGGGCCGATGGTTATGTGCGCTCGGAAGGCTGTGGA GTAGTCGTACTTAAACGTCTTAGGGATGCCATTCAGGACGGCGATCGCATTTTAGCAGTG ATTGAAGGTTCCGCGGTGAATCAGGATGGTTTAAGTAATGGACTCACGGCCCCTAATGGC CCTGCTCAACAGGCGGTGATTCGTCAGGCCCTGGCAAATGCCCAGGTAAAACCGGCCCAG ATTAGCTATGTCGAAGCCCATGGCACGGGGACAGAATTGGGGGATCCGATCGAAGTTAAA TCTCTGAAAGCGGTTTTGGGTGAAAAGCGATCGCTCGATCAAACCTGTTGGCTCGGTTCT GTGAAAACCAACATTGGTCATTTAGAAGCGGCGGCGGGAATGGCGGGTCTGATTAAAGTC GTTCTCTGCCTACAACACCAAGAAATTCCCCCTAATCTCCACTTTCAAACCCTTAATCCC TATATTTCCCTAGCTGACACAGCTTTTGCGATTCCCACTCAGGCTCAACCCTGGCGGACC AAACCCCCTAAGTCTGGTGAAAACGGTGTCGAACGACGTTTAGCAGGACTCAGTTCCTTT GGGTTTGGGGGGACAAATTCCCATGTGATTCTC SEQ ID GTTTTTCTATTTGCCGGTCAAGGTTCTCAATATGTAGGTATGGGTCGTCAACTGTACGAA NO. 28 ACCCAACCCATCTTTCGCCAAACCTTGGATCGCTGTGCTGAAATCCTGCGACCCCATTTA AT nucl GATCAACCCCTCTTAGAAATTCTTTATCCTGCTGACCCAGAAGCCGAAACAGCGAGTTTT acid TACCTAGAGCAGACTGCCTATACCCAACCCACTTTATTCGCATTCGAGTATGCCCTAGCA CAGTTATGGCGTTCCTGGGGAATAGAACCGGCGGCAGTAATTGGTCACAGTGTCGGTGAA TATGTGGCGGCCACCGTTGCCGGAGCCTTAAGTCTAGAAGAAGGATTAACGCTAATTGCC AAACGGGCAAAACTGATGCAGTCTCTCCCCAAGAATGGGACAATGATCGCCGTTTTTGCC GCAGAAGAGCGGGTTAAAGCTGTTATTGAGCCTTATAGGACTGATGTAGCGATCGCTGCT GTTAATGGACCAGAAAATTTTGTTATTTCAGGAAAAGCGCCGATTATTGCTGAGATTATC ATTCATTTAACGGCAGCAGGAATAGAAGTTCGTCCTCTCAAAGTTTCCCATGCTTTTCAC TCGCACCTGTTGGAGCCAATTTTAGATTCCTTAGAACAGGAAGCTGCTGCTATTTCCTAC CAACCCCTGCAAATTCCCTTAGTTGCTAATTTAACGGGGGAAGTTCTACCAGAAGGAGCA ACGATTGAGGCTCGTTACTGGCGAAATCATGCACGCAACCCTGTACAATTTTATGGGAGT ATCCAAACGCTGATCGAGCAGAAATTCAGTCTTTTTTTAGAAGTTAGCCCTAAACCGACT TTATCTCGATTGGGTCAACAATGTTGTCCAGAAAGATCGACCACTTGGCTATTTTCCCTC GCCCCTCCTCAAGAAGAAGAACAAAGCCTACTAAATAGTTTGGCGATTCTCTATGATTCC CAAGGAGCCGAA SEQ ID ATCACATTGCAAACCCTAGTGGGAAATTTACTGCAATTGTCCCCTGCTGATGTCAATGTT NO. 29 CATACACCTTTCCTGGAGATGGGGGCAGATTCCATTGTCATGGTTGAGGCGGTCAGACGG ACP 2 ATTGAGAATACCTATAACGTTAAAATTGCTATGCGTCAGTTATTTGAGGAGTTATCTACT nucl acid TTAGATGCTTTAGCTACTTATTTA SEQ ID AAAGAGATGCTTTATCCCATTGTGGCCCAACGTTCTCAAGGATCAAGAATTTGGGATGTG NO. 30 GACGGTAATGAATATATTGATATGACGATGGGGCAAGGGGTAACGCTGTTTGGGCATCAA AMT CCAGACTTCATTATGTCGGCCCTACAAAGCCAACTCACTGAAGGCATTCATCTCAATCCG nucl acid CGATCGCCAATTGTGGGAGAAGTGGCCGCCTTAATTTGTGAACTAACAGGAGCCGAACGA GCTTGTTTTTGCAACTCTGGAACCGAAGCCGTAATGGCCGCTATTCGTATCGCCAGGGCA ACAACAGGTCGGAGTAAAATTGCCCTCTTTGAAGGCTCCTATCATGGACATGCGGACGGA ACCCTTTTTAGGAACCAAATTATTGATAACCAACTCCACTCTTTTCCCCTAGCTCTAGGC GTTCCCCCCAGCCTTAGTTCCGATGTGGTGGTATTGGACTATGGCAGTGCGGAAGCTCTG AACTATTTACAAACCCAGGGGCAGGATTTAGCGGCGGTCTTAGTAGAACCAATTCAAAGT GGCAATCCTCTACTCCAACCCCAACAATTTCTCCAAAGTCTGCGACAAATTACCAGTCAA ATGGGCATTGCCCTGATTTTTGATGAAATGATTACGGGTTTTCGATCGCACCCAGGGGGA GCGCAAGCTTTATTTGGAGTACAGGCGGATATTGCCACCTATGGCAAAGTAGTTGCGGGA GGAATGCCCATTGGAGTTATTGCAGGTAAGGCCCATTATCTGGACAGCATTGACGGGGGA ATGTGGCGTTATGGCGATAAATCCTATCCTGGGGTGGACAGAACCTTTTTTGGGGGAACC TTTAATCAGCATCCGTTAGCAATGGTAGCGGCTAGGGCTGTCCTGACCCATTTAAAGGAG CAGGGGCCAGGTCTGCAACAACAATTAACTGAACGCACTGCGGCCTTAGCCGATACACTG AATCATTATTTTCAAGCCGAAGAAGTTCCTATTAAAATCGAACAGTTTAGTTCTTTCTTC CGGTTTGCCCTCTCTGGCAATTTGGATTTACTTTTCTATCACATGGTAGAAAAAGGTATT TATGTCTGGGAATGGCGTAAACATTTTCTTTCAACCGCCCATACGGAAGCCGATCTTGCC CAATTTGTCCAAGCGGTTAAGGATAGCATCACAGAATTGCGT SEQ ID GGGGGGGATCAAGTCCCTCTCACCGAAGCCCAACGACAACTGTGGATTTTGGCTCAATTA NO. 31 C GGAGACAACGGCTCTGTGGCCTATAACCAATCAGTGACATTGCAATTAAGTGGCCCATTA nucl acid AATCCCGTCGCAATGAATCAAGCTATTCAACAAATCAGCGATCGCCATGAAGCGTTACGA ACCAAAATTAATGCCCAGGGAGATAGTCAAGAAATCCTGCCCCAGGTCGAAATTAACTGC CCTATCTTAGACTTCAGTCTTGACCAAGCTTCGGCCCAACAGCAAGCAGAACAATGGTTA AAGGAAGAAAGTGAAAAACCCTTTGATTTGAGCCAGGGTTCTCTCGTGCGTTGGCATCTA CTCAAATTAGAACCAGAATTACATTTGTTAGTATTAACGGCCCATCACATTATCAGTGAC GGTTGGTCAATGGGGGTAATCCTTCGGGAATTAGGAGAGTTATATTCAGCCAAATGTCAG GGTGTTACGGCTAATCTTAAAACCCCAAAACAGTTTCGAGAATTGATTGAATGGCAAGC CAGCCAAGCCAAGGGGAAGAACTGAAAAAACAGCAAGCCTATTGGTTAGCAACCCTTGCC GATCCCCCTGTTTTGAATTTACCCACTGACAAACCTCGTCCAGCTTTACCCAGTTACCAA GCTAATCGTCGAAGTCTAACTTTAGATAGCCAATTTACAGAAAAACTAAAGCAATTTAGT CGTAAACAGGGCTGTACCTTGCTGATGACCCTGTTATCGGTTTATAACATTCTCGTTCAT CGTTTGACGGGACAGGATGATATTCTGGTGGGTCTGCCAGCCTCTGGACGGGGGCTTTTA GATAGTGAAGGTATGGTGGGTTATTGCACCCATTTTTTACCAATTCGCAGTCAATTAGCA SEQ ID ACTTACAGTGAATTAAATTGTCGAGCCAATCAGTTAGCACATTATTTACAAAAATTAGGA NO. 32 A GTTGGGCCAGAGGTCTTAGTCGGTATTTTGGTCGAACGTTCTTTAGAAATGATTGTCGGA nucl acid TTGTTAGGGATTCTCAAGGCTGGGGGAGCCTATGTACCTCTTGATCCTGACTATCCCCCT GAACGTCTTCAATTTATGTTAGAAGATAGTCAATTTTTTCTCCTCTTAACCCAACAGCAT TTACTGGAATCTTTTGCTCAGTCTTCAGAAACGGCTACTCCCAAGATTATTTGTTTGGAT AGCGACTACCAAATTATTTCCCAGGCAAAGAATATTAATCCCGAAAATTCAGTCACAACG AGTAATCTTGCCTATGTAATTTATACCTCTGGTTCGACAGGTAAACCGAAGGGCGTGATG AATAATCATGTTGCTATTAGTAATAAATTGTTATGGGTACAAGACACTTATCCTCTAACC ACAGAAGACTGTATTTTACAAAAAACTCCCTTTAGTTTTGATGTTTCAGTGTGGGAATTA TTCTGGCCCCTACTAAACGGAGCGCGTTTGGTTTTTGCCAAGCCGAATGGCCATAAAGAT GCCAGTTACTTAGTCAATCTGATTCAAGAGCAACAAGTAACAACGCTACATTTTGTGTCT TCTATGCTACAGCTTTTTCTGACAGAAAAAGACGTAGAAAAATGTAATAGTCTTAAACGA GTCATTTGTAGTGGTGAAGCCCTTTCTTTAGAGCTTCAAGAACGTTTTTTTGCTCGTTTA GTCTGTGAATTACACAATCTTTATGGACCGACAGAAGCCGCTATTCATGTCACATTTTGG CAATGTCAATCAGATAGCAATTTGAAAACAGTACCCATTGGTCGGCCGATCGCTAATATC CAAATTTACATTTTAGACTCTCATCTTCAGCCAGTACCTATTGGAGTAATCGGAGAATTG CACATTGGTGGGGTTGGTTTGGCGCGGGGTTATTTAAACAGGCCTGAGTTAACGGCGGAG AAATTTATTGCAAATCCGTTTGCTTCCCTTGATCCCCCCCTAACCCCCCTTGATAAGGGG GGAGATGAGAGCTATAAAACTTTTAAAAAGGGGGGAGAGCAACCATCAAGATTGTATAAA ACGGGAGATTTAGCTCGTTATTTACCCGATGGCAAGATTGAGTATCTAGGGCGCATTGAT AATCAGGTAAAAATTCGCGGTTTCCGGATTGAATTGGGGGAAATTGAAGCGGTTTTGCTA TCCCATCCCCAGGTACGAGAAGCGGTCGTT SEQ ID GAGGCGATCGCCGCTATTTTTGGTCAAGTTTTAAAACTGGAAAAAGTGGGAATTTATGAT NO. 33 T AACTTTTTTGAGATCGGCGGTAATTCTTTGCAAGCCACTCAAGTTATTTCACGCTTACGA nucl acid GAAAGTTTTGCCCTAGAGTTGCCCTTGCGTCGCCTGTTTGAACAACCGACTGTGGCGGAT TTGGCTTTAGCCGTA SEQ ID CCTCGTGATGGCCAATTACCCCTCTCCTTTGCCCAGTCGCGACTCTGGTTCTTGTATCAA NO. 34 C TTAGAAGGAGCCACGGGAACCTATAACATGACAGGGGCCTTGAGTTTAAGCGGGCCTCTT 2 nucl CAGGTCGAAGCCCTCAAACAAGCCCTAAGAACTATCATTCAACGCCATGAGCCATTGCGT acid ACCAGTTTCCAATCGGTTGACGGGGTTCCAGTGCAGGTGATTAATCCCTATCCTGTTTGG GAATTAGCGATGGTTGATTTGACAGGAAAGGAGACAGAAGCAGAAAAATTGGCCTATCAG GAATCCCAAACCCCGTTTGATTTGACCAATAGTCCTTTGTTGAGGGTAACGCTCCTCAAA TTACAGCCAGAAAAGCATATTTTATTAATTAATATGCACCATATTATTTCCGATGGCTGG TCAATCGGTGTTTTTGTTCGTGAATTGTCCCATCTCTATAGGGCTTTTGTGGCGGGTAAA GAACCAACTTTACCGATTTTACCAATTCAGTATGCGGATTTTGCCGTTTGGCAGCGAGAG TGGTTACAGGGTAAGGTTTTAGCGGCTCAATTGGAATATTGGAAGCGACAATTGGCAGAT GCTCCTCCTCTGCTGGAACTGCCCACTGATCGCCCTCGTCCCGCAATCCAAACCTTTCAA GGCAAGACAGAAAGATTTGAGCTAGATAGGAAACTGACCCAAGAATTAAAGGCATTAAGT CAACAGTCGGGTTGTACTTTATTTATGACTTTGTTGGCCGCTTTTGGGGTGGTTTTATCC CGTTATAGTGGCCAGACTGATATCGTCATTGGTTCGGCGATCGCCAACCGTAATCGCCAA GACATTGAGGGGTTAATTGGCTTTTTTGTTAACACTTTGGCGTTGAGGTTAGATTTATCA SEQ ID ACCTATGGAGAATTAAACCATCGCGCCAATCAATTAGCTCACTATCTTCAGTCGTTAGGA NO. 35 A GTCACCAAAGAACAAATCGTCGGGGTTTATCTGGAACGTTCCCTTGAAATGGCGATCGGA 2 nucl TTTTTAGGTATTCTCAAAGCAGGAGCCGCCTATCTCCCCATTGATCCTGAATATCCCTCA acid GTACGCACCCAATTTATTCTCGAAGATACCCAACTTTCGCTTCTCTTAACTCAGGCAGAA CTGGCAGAAAAACTGCCCCAGACTCAAAACAAAATTATCTGTCTAGATCGGGACTGGCCA GAAATTACCTCCCAACCCCAGACAAACCTAGACCTAAAGATAGAACCTAATAACCTAGCC TATTGCATCTATACTTCTGGTTCCACAGGACAACCCAAAGGAGTACTGATTTCCCATCAA GCCCTACTCAACTTAATTTTCTGGCATCAACAAGCGTTTGAGATTGGCCCCTTACATAAA GCGACCCAAGTGGCAGGCATTGCTTTCGATGCAACGGTTTGGGAATTGTGGCCCTATCTG ACCACAGGAGCCTGTATTAATCTGGTTCCCCAAAATATTCTGCTCTCACCGACGGATTTA CGGGATTGGTTGCTTAACCGAGAAATTACCATGAGTTTTGTGCCAACTCCTTTAGCTGAA AAATTATTATCCTTGGATTGGCCTAACCATTCTTGTCTAAAAACCCTGTTACTGGGAGGT GACAAACTTCATTTTTATCCTGCTGCGTCCCTTCCCTTTCAGGTCATTAACAACTATGGC CCAACGGAAAATACAGTGGTTGCGACCTCTGGACTGGTCAAATCATCTTCATCTCATCAC TTTGGAACTCCGACTATTGGTCGTCCCATTGCCAACGTCCAAATCTATTTATTAGACCAA AACCTACAACCTGTCCCCATTGGTGTACCAGGAGAATTACATTTAGGTGGGGCGGGTTTA GCGCAGGGCTATCTCAATCGTCCTGAGTTAACGGCTGAAAAATTTATTGCCAATCCCTTT GATCCCCCCCTAACCCCCCTTGATAAGGGGGGAGAAGAACCCTCAAAACTCTATAAAACG GGAGACTTAGCCCGTTATTTACCCGATGGCAATGTAGAATTTTTGGGACGTATTGACAAT CAGGTAAAAATTCGGGGTTTTCGCATCGAAACTGGGGAAATCGAAGCCGTTTTAAGTCAA TATTTCCTATTAGCTGAAAGTGTAGTC SEQ ID GCTCAACTGACTCAAATTTGGAGTGAAGTTTTGGGACTGGAACGCATTGGCGTTAAGGAC NO. 36 T AACTTTTTTGAATTGGGAGGACATTCTCTTTTGGCTACCCAGGTTTTATCAAGAATTAAT 2 nucl TCAGCCTTTGGACTTGATCTTTCTGTGCAAATTATGTTTGAATCACCAACGATCGCGGGC acid ATTGCGGGTTATATT SEQ ID GCTAGAGACGGTCATTTACCCCTGTCTTTTGCTCAACAACGTTTATGGTTTTTACATTAT NO. 37 C CTTTCCCCTGATAGTCGTTCCTACAATACCCTGGAAATATTGCAAATTGATGGGAATCTC 3 nucl AATCTGACTGTGCTAGAGCAGAGTTTGGGGGAATTAATTAACCGCCATGAAATTTTTAGA acid ACAACATTCCCCACTGTTTCAGGGGAACCGATTCAGAAAATTGCACTTCCTAGTCGTTTT CAGTTAAAAGTTGATAATTATCAAGATTTAGACGAAAATGAACAATCAGCTAAAATTCAA CAAGTAGCAGAATTGGAAGCAGGACAAGCTTTTGATTTAACGGTGGGGCCACTGATTCAG TTTAAGCTATTGCAATTGAGTCCCCAGAAGTCGGTGCTGCTGTTGAAAATGCACCATATT ATCTATGATGGCTGGTCTTTTGGGATTCTGATTCGGGAATTATCGGCTCTATACGAAGCA TTTTTAAAGAACTTAGCCAATCCTCTCCCTGCGTTGTCTATTCAGTATGCAGATTTTGCG GTTTGGCAACGTCAATATCTCTCAGGTGAGGTCTTAGATAAACAACTCAATTATTGGCAA GAACAGTTAGCAACAGTCTCTCCTGTTCTTACTTTACCAACGGATAGACCCCGTCCGGCG ATACAAACTTTTCAGGGAGGAGTTGAGCGTTTTCAACTGGATCAAAATGTCACTCAAGGT CTTAAAAAGTTAGGTCAAGATCAGGTTGCAACCCTGTTTATGACGTTGTTGGCCGGTTTC GGCGTTTTGCTATCTCGTTATAGTGGTCAATCTGATCTGATGGTGGGTTCTCCGATCGCT AATCGTAATCAAGCAGCGATCGAACCTTTAATTGGCTTTTTTGCTAACACTTTGGCTTTA AGAATTAATTTATCA SEQ ID ACATACACTGAATTAAACCATCGCGCTAATCAGTTAGCCCATTATTTACAAACTTTAGGC NO. 38 A GTGGGAGCAGAAGTCTTAGTCGGTATTTCCCTAGAACGTTCTTTAGAGATGATTATCGGC 3 nucl TTATTAGGGATTCTCAAGGTAGGTGGTGCTTATCTTCCTCTTGATCCAGACTATCCCACT acid GAGCGTCTTCAGTTGATGTTAGAAGACAGTCAAGTTCCTTTTTTGATTACCCACAGTTCT TTATTAGCAAAATTGCCTCCCTCTCAAGCAACTCTGATTTGTTTAGATCATATCCAAGAG CAGATTTCTCAATATTCTCCAGATAATCTTCAATGTCAGTTAACTCCTGCCAATTTAGCT AACGTTATTTATACCTCTGGCTCTACGGGTAAGCCTAAAGGGGTGATGGTTGAACATAAA GGTTTAGTTAACTTAGCTCTTGCTCAAATTCAATCTTTTGCAGTCAACCATAACAGTCGT GTGCTGCAATTTGCTTCTTTTAGTTTTGATGCTTGTATTTCAGAAATTTTGATGACCTTT GGTTCTGGAGCGACGCTTTATCTTGCACAAAAAGATGCTTTATTGCCAGGTCAGCCATTA ATTGAACGGTTAGTAAAGAATGGAATTACTCATGTGACTTTGCCGCCTTCAGCTTTAGTG GTTTTACCCCAGGAACCGTTACGCAACTTAGAAACCTTAATTGTGGCGGGTGAGGCTTGT TCTCTTGATTTAGTGAAACAATGGTCAATCGATAGAAACTTTTTCAATGCCTATGGGCCA ACGGAAGCGAGTGTTTGTGCCACTATTGGACAATGTTATCAAGATGATTTAAAGGTGACG ATTGGTAAGGCGATCGCCAATGTCCAAATTTATATTTTAGATGCCTTTTTACAGCCGGTG CCGGTGGGAGTGTCAGGAGAGTTATACATTGGTGGAGTTGGGGTGGCAAGGGGCTATTTA AATCGTCCTGAATTAACCCAAGAAAAATTTATTGCTAATCCTTTTAGTAACGACCCAGAT TCTCGGCTCTATAAAACTGGCGACTTAGCGCGTTATTTACCCGATGGTAATATTGAATAT TTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTTCGCATTGAGTTAGGAGAAATT GAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACGGCGGTG SEQ ID GAAATTCTGGCTCAAATATGGGGGCAAGTTCTCAAGATAGAAAGAGTCAGCAGAGAAGAT NO. 39 T AATTTCTTTGAATTGGGGGGGCATTCCCTTTTAGCTACCCAGGTAATGTCCCGTCTGCGT 3 nucl GAAACTTTTCAAGTCGAATTACCTTTGCGTAGTCTCTTTACCGCTCCCACTATTGCTGAA acid TTGGCCCTAACAATT SEQ ID AACGACAGTGCTAACCTCCCGTTATCTTTTGCTCAACAACGTTTATGGTTTCTGGATCAA NO. 40 C TTAGAACCTAACAGCGCCTTTTATCATGTAGGGGGAGCCGTAAGACTAGAAGGAACATTA 4 nucl AATATTACTGCCTTAGAGCAAAGCTTAAAAGAAATTATTAATCGTCATGAAGCTTTACGC acid ACAAATTTTATAACGATTGATGGTCAAGCCACTCAAATTATTCACCCTACTATTAATTGG CGATTGTCTGTTGTTGATTGTCAAAATTTAACCGACACTCAATCTCTGGAAATTGCGGAA GCTGAAAAGCCCTTTAATCTTGCTCAAGATTGCTTATTTCGTGCTACTTTATTCGTGCGA TCACCGCTAGAATATCATCTACTCGTGACCATGCACCATATTGTTAGCGATGGCTGGTCA ATTGGAGTATTTTTTCAAGAACTAACTCATCTTTACGCTGTCTATAATCAGGGTTTACCC TCATCTTTAACGCCTATTAAAATACAATATGCTGATTTTGCGGTCTGGCAACGGAATTGG TTACAAGGTGAAATTTTAAGTAATCAATTGAATTATTGGCGCGAACAATTAGCAAATGCT CCTGCTTTTTTACCTTTACCGACAGATAGACCTAGGCCCGCAATCCAAACTTTTATTGGT TCTCATCAAGAATTTAAACTTTCTCAGCCATTAAGCCAAAAATTGAATCAACTAAGTCAG AAGCATGGAGTGACTTTATTTATGACTCTCCTGGCTGCTTTTGCTACCTTACTTTACCGT TATACAGGACAAGCAGATATTTTAGTTGGTTCTCCTATTGCTAACCGTAATCGTAAGGAA ATTGAGGGATTAATCGGCTTTTTTGTTAATACATTAGTTCTGAGATTGAGTTTAGAT SEQ ID ACCTATGCTGAATTAAATCATCAAGCTAATCAGTTAGTCCATTACTTACAAACTTTAGGA NO. 41 A ATTGGGCCAGAGGTCTTAGTCGCTATTTCAGTAGAACGTTCTTTAGAAATGATTATCGGC 4 nucl TTATTAGCCATTCTCAAGGCGTGTGGTGCTTATCTCCCTCTTGCTCCTGACTATCCCACT acid GAGCGTCTTCAGTTCATGTTAGAAGATAGTCAAGCTTCTTTTTTGATTACCCACAGTTCT TTATTAGAAAAATTGCCTTCTTCTCAAGCGACTCTAATTTGTTTAGATCACATCCAAGAG CAGATTTCTCAATATTCTCCCGATAATCTTCAAAGTGAGTTAACTCCTTCCAATTTGGCT AACGTTATTTACACCTCTGGCTCTACGGGTAAGCCTAAAGGGGTGATGGTTGAACATCGG GGCTTAGTTAACTTAGCGAGTTCTCAAATTCAATCTTTTGCAGTCAAAAATAACAGTCGT GTACTGCAATTTGCTTCCTTTAGTTTTGATGCTTGTATTTCAGAAATTTTGATGACCTTT GGTTCTGGAGCGACTCTTTATCTTGCTCAAAAAAATGATTTATTGCCAGGTCAGCCATTA ATGGAAAGGTTAGAAAAGAATAAAATTACCCATGTTACTTTACCCCCTTCAGCTTTAGCT GTTTTACCAAAAAAACCGTTACCCAACTTACAAACTTTAATTGTGGCGGGTGAGGCTTGT CCTCTGGATTTAGTCAAACAATGGTCAGTCGGTAGAAACTTTTTCAATGCCTATGGCCCG ACAGAAACGAGTGTTTGTGCCACGATTGGACAATGTTATCAAGATGATTTAAAGGTCACG ATTGGTAAGGCGATCGCTAATGTCCAAATTTATATTTTGGATGCCTTTTTACAACCAGTA CCCATCGGAGTACCAGGGGAATTATACATTGGTGGAGTCGGAGTTGCGAGGGGTTATCTA AATCGTCCTGAATTAACGGCGGAAAGATTTATTCCTAATCCTTTTGATCCCCCCCTAACC CCCCTTAAAAAGGGGGGAGATAAGAGCTATGAAACTTTTAAAAAGGGGGAAGAGCAACCA TCAAAACTCTATAAAACGGGAGATTTAGCTCGTTATTTACCCGATGGCAATATTGAATAT TTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTTCGCATTGAGTTAGGAGAAATT GAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACGGCGGTG SEQ ID TTACAATTAGCTCAAATCTGGTCAGAGATTTTAGGCATTAATAATATTGGTATTCAGGAA NO. 42 T AACTTCTTTGAATTAGGCGGTCATTCTTTATTAGCAGTCAGTCTGATCAATCGTATTGAA 4 nucl CAAAAGTTAGATAAACGTTTACCATTAACCAGTCTTTTTCAAAATGGAACCATAGCAAGT acid CTAGCTCAATTACTAG SEQ ID ACTCCATTTTTTGCTGTTCATCCCATTGGTGGTAATGTGCTATGTTATGCCGATTTAGCT NO. 43 CGTAATTTAGGAACGAAACAGCCGTTTTATGGATTACAATCATTAGGGCTAAGTGAATTA TE nucl GAAAAAACTGTAGCCTCTATTGAAGAAATGGCGATGATTTATATTGAAGCAATACAAACT acid GTTCAAGCCTCTGGTCCCTACTATTTAGGAGGTTGGTCAATGGGAGGAGTGATAGCTTTT GAAATCGCCCAACAATTATTGACCCAAGGTCAAGAAGTTGCTTTACTGGCTTTAATAGAT AGTTATTCTCCCAGTTTACTTAATTCAGTTAATAGGGAGAAAAATTCTGCTAATTCCCTG ACAGAAGAATTTAATGAAGATATCAATATTGCCTATTCTTTCATCAGAGACTTAGCAAGT ATATTTAATCAAGAAATCTCTTTCTCTGGGAGTGAACTTGCTCATTTTACATCAGACGAA TTACTAGACAAGTTTATTACTTGGAGTCAAGAGACGAATCTTTTGCCGTCAGATTTTGGG AAGCAGCAGGTTAAAACCTGGTTTAAAGTTTTCCAGATTAATCACCAAGCTTTGAGCAGC TATTCTCCCAAGACGTATCTGGGTAGAAGTGTTTTCTTAGGAGCGGAAGACAGTTCTATT AAAAATCCTGGTTGGCATCAA SEQ ID AGCGGGTCTCAAGACCAAAAAACGATACAGTTTAGCCTCTACTACTTTGGTAGCTATGAA NO. 44 GCGGAATTTAACCCGAATAAATATAACTTACTGTTTGAAGGAGCTAAATTTGGCGATCGC MO nucl GCTGGTTTTACGGCCCTTTGGATTCCTGAACGTCATTTCCACGCTTTTGGTGGTTTTTCT acid CCCAATCCTTCGGTTTTGGCGGCGGCTTTAGCACGGGAAACCAAACAGATTCAACTGCGA TCAGGCAGTGTGGTTTTACCGCTACATAATTCCATCCGAGTCGCCGAAGAATGGGCAGTG GTGGACAATCTTTCCCAGGGCCGCGTTGGTATTGCTTTTGCATCGGGTTGGCATCCCCAG GATTTTGTCTTGGCTCCCCAGTCCTTTGGCCAACATCGGGAATTGATGTTCCAAGAAATT GAAACCGTCCAGAAACTTTGGCGAGGGGAAGCGATCACCGTGCCAGACGGAAAGGGTCAA AGGGTAGAGGTTAAAACCTATCCCCAACCGATGCAGTCCCAGTTACCCAGCTGGATTACT ATTGTCAATAATCCCGATACCTATATCAGAGCAGGGGCGATCGGTGCTAATATCCTTACC AATCTGATGGGGCAAAGCGTGGAAGATTTAGCCCGTAATATTGCGCTATATCGTCAATCT TTGGCAGAGCATGGTTATGATCCCGCGTCGGGAACGGTGACAGTTCTCCTGCATACTTTT GTTGGCAAGGATTTAGAACAAGTTCGAGAACAGGCTCGCCAACCCTTTGGGCAATACCTC ACCTCCTCTGTCGGACTCTTGCAGAACATGGTCAAGAGCCAGGGCATGAAAGTGGATTTT GAACAATTAAGAGACGAAGATCGGGACTTTCTCCTCGCTTCTGCCTATAAACGCTATACA GAAACCAGTGCTTTAATTGGCACACCCGAATCCTGTCGTCAAATTATTGATCATTTGCAG TCCATCGGTGTGGATGAAGTGGCTTGTTTTATTGATTTTGGGGTAGATGAACAAACAGTT TTGGCCAATTTACCCTATCTCCAGTCCCTAAAAGACTTATATCAA SEQ ID ATTGATCCCCCCCTAACCCCCCTTGATAAGGGGATTGATCCCCCCCTAACCCCCCTTGAT NO. 45 AAGGGGATTGATCCCCCCCTAACCCCCCTTGATAAGGGG SP 1 nucl acid SEQ ID CCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGAT NO. 46 CAATCCCCTTATCAAGGGGGGTTAGGGGGTGATCAATCCCCTTATCAAGGGGGGTTAGGG SP 2 nucl GGTGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGAGAG acid TTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAAGTC SEQ ID CCTGCTTCAGAAATGCGAGAGTGGGTCGAAAACACTGTTAGTCGCATCTTGGCTTTCCAA NO. 47 CCAGAACGCGGTTTAGAAATTGGTTGTGGTACAGGTTTGTTACTCTCCAGGGTAGCAAAG MT nucl CATTGTCTTGAATATTGGGCAACGGATTATTCCCAAGGGGCGATCCAGTATGTTGAACGG acid GTTTGCAATGCCGTTGAAGGTTTAGAACAGGTTAAATTACGCTGTCAAATGGCAGATAAT TTTGAAGGTATTGCCCTACATCAATTTGATACCGTCGTCTTAAATTCGATTATTCAGTAT TTTCCCAGTGTGGATTATCTGTTACAGGTGCTTGAAGGGGCGATCAACGTCATTGGCGAG CGAGGTCAGATTTTTGTCGGGGATGTGCGGAGTTTACCCCTATTAGAGCCATATCATGCG GCTGTGCAATTAGCCCAAGCTTCTGACTCGAAAACTGTTGAACAATGGCAACAACAGGTG CGTCAAAGTGTAGCAGGTGAAGAAGAACTGGTCATTGATCCCACATTGTTCCTGGCTTTA AAACAACATTTTCCGCAAATTAGCTGGGTAGAAATTCAACCGAAACGGGGTGTGGCTCAC AATGAGTTAACTCAATTTCGCTATGATGTCACTCTCCATTTAGAGACTATCAATAATCAA GCATTATTGAGCGGCAATCCAACGGTAATTACCTGGTTAAATTGGCAACTTGACCAACTG TCTTTAACACAAATTAAAGATAAATTATTAACAGACAAACCTGAATTGTGGGGAATTCGT GGTATTCCTAATCAGCGAGTTGAAGAGGCTCTAAAAATTTGGGAATGGGTGGAAAATGCC CCTGATGTTGAAACGGTTGAACAACTCAAAAAACTTCTCAAACAACAAGTAGATACTGGT ATTAATCCTGAACAGGTTTGGCAATTAGCTGAGTCTCTCGGTTACACCGCTCACCTTAGT TGGTGGGAAAGTAGTCAAGACGGTTCCTTTGATGTCATTTTTCAGCGGAATTCAGAAGCG GAGGACTCAAAAAAATTAACCCTTTCAAAACTTGCTTTCTGGGATGAAAAACCCTTTAAA ATAAAGCCCTGGAGTGACTATACTAACAACCCTCTGCGCGGTAAGTTAGTCCAAAAATTA ATTCCT SEQ ID ATGACAAATTATGGCAAATCTATGTCTCATTACTATGATCTAGTGGTAGGACATAAAGGT NO. 48 TATAACAAAGATTACGCCACTGAAGTAGAATTCATTCACAATTTAGTTGAGACTTACACA MT 2 ACTGAAGCCAAATCTATCCTATACTTGGGCTGTGGTACGGGTTATCATGCCGCTCTTTTA nucl acid GCACAGAAAGGGTATTCTGTACATGGTGTTGATCTCAGTGCTGAAATGTTAGAGCAGGCT AAAACTCGCATTGAAGATGAAACAATAGCTTCTAATCTGAGTTTTTCTCAAGGAAATATT TGTGAAATCCGTTTAAATCGTCAGTTTAATGTTGTTCTTGCTCTATTTCATGTGGTTAAC TATCAAACGACCAATCAAAATTTACTGGCAACGTTTGCAACGGTTAAAAACCATTTAAAA GCTGGGGGGATTTTTATTTGTGATGTGTCCTATGGGTCTTACGTACTGGGGGAATTTAAG AGTCGGCCTACGGCATCAATATTGCGTTTAGAGGATAATTCCAATGGTAACGAAGTAACC TATATTAGTGAACTAAATTTTTTAACCCATGAAAATATAGTGGAAGTTACTCACAATTTA TGGGTAACAAATCAAGAAAATCAACTTCTAGAGAATTCACGGGAAACACATCTTCAGCGC TATCTTTTCAAGCCTGAAGTTGAATTGTTGGCTGATGCTTGTGAACTAACTGTTCTTGAT GCGATGCCCTGGCTTGAACAACGTCCTTTGACAAACATTCCTTGTCCTTCAGTTTGTTTT GTTATTGGGCATAAAACAACCCATTCAGCTTAA SEQ ID CCGACCTGTGATAAACAATTC NO. 49 Primer A SEQ ID CKNCCDGTDATRAANARYTC NO. 50 Primer B SEQ ID TTCAATATCCTGGGGATA NO. 51 Primer C SEQ ID YTCDATRTCYTGNGGRTA NO. 52 Primer D SEQ ID CGTTGGTTACAGGCCCTTTCT NO. 53 Primer E SEQ ID MGNTGGYTNCARGCNYTNWS NO. 54 Primer F SEQ ID TTAGACTTAAGCCATTGG NO. 55 Primer G SEQ ID YTNGAYYTNWSNCAYTGG NO. 56 Primer H SEQ ID CATAGAAGAATCGAGACCATATTC NO. 57 Primer I SEQ ID CATNSWNSWRTCNARNCCRTAYTC NO. 58 Primer J SEQ ID MTTQTASSANALASFNQFLRDVKAIAQPYWYPTVSNKRSFSEVIRSWGMLSLLIFLIVGL NO. 59 VAVTAFNSFVNRRLIDVIIQEKDASQFASTLTVYAIGLICVTLLAGFTKDIRKKIALDWY ABC QWLNTQIVEKYFSNRAYYKINFQSDIDNPDQRLAQEIEPIATNAISFSATFLEKSLEMLT Transporter FLVVVWSISRQIAIPLMFYTIIGNFIAAYLNQELSKINQAQLQSKADYNYALTHVRTHAE SIAFFRGEKEEQNIIQRRFQEVINDTKNKINWEKGNEIFSRGYRSVIQFFPFLVLGPLYI KGEIDYGQVEQASLASFMFASALGELITEFGTSGRFSSYVERLNEFSNALETVTKQAENV STITTIEENHFAFEHVTLETPDYEKVIVEDLSLTVQKGEGLLIVGPSGRGKSSLLRAIAG LWNAGTGRLVRPPLEEILFLPQRPYIILGTLREQLLYPLTNSEMSNTELQAVLQQVNLQN VLNRVDDFDSEKPWENILSLGEQQRLAFARLLVNSPSFTILDEATSALDLTNEGILYEQL QTRKTTFISVGHRESLFNYHQWVLELSADSSWELLSVQDYRLKKAGEMFTNASSNNSITP DITIDNGSEPEIVYSLEGFSHQEMKLLTDLSLSSIRSKASRGKVITAKDGFTYLYDKNPQ ILKWLR SEQ ID ATGACAACCCAAACAGCTTCTAGTGCCAATGCCCTTGCTTCCTTTAACCAATTTTTAAGG NO. 60 GATGTAAAGGCGATCGCCCAACCCTATTGGTATCCCACTGTATCAAATAAAAGAAGCTTT ABC TCTGAGGTTATTCGTTCCTGGGGAATGCTATCACTGCTTATCTTTTTGATTGTGGGATTA Transporter GTCGCCGTCACGGCTTTTAATAGTTTTGTTAATCGTCGTTTAATTGATGTCATTATTCAA Nucl acid GAAAAAGATGCGTCTCAATTTGCCAGTACATTAACTGTCTATGCGATCGGATTAATCTGT GTAACGCTGCTGGCAGGGTTCACTAAAGATATTCGCAAAAAAATTGCCCTAGATTGGTAT CAATGGTTAAACACCCAGATTGTAGAGAAATATTTTAGTAATCGTGCCTATTATAAAATT AACTTTCAATCTGACATTGATAACCCCGATCAACGTCTAGCCCAGGAAATTGAACCGATC GCCACAAACGCCATTAGTTTCTCGGCCACTTTTTTGGAAAAAAGTTTGGAAATGCTAACT TTTTTAGTGGTAGTTTGGTCAATTTCTCGACAGATTGCTATTCCGCTAATGTTTTACACG ATTATCGGTAATTTTATTGCCGCCTATCTAAATCAAGAATTAAGCAAGATCAATCAGGCA CAACTGCAATCAAAAGCAGATTATAACTATGCCTTAACCCATGTTCGGACTCATGCGGAA TCTATTGCTTTTTTTCGGGGAGAAAAAGAGGAACAAAATATTATTCAGCGACGTTTTCAG GAAGTTATCAATGATACGAAAAATAAAATTAACTGGGAAAAAGGGAATGAAATTTTTAGT CGGGGCTATCGTTCCGTCATTCAGTTTTTTCCTTTTTTAGTCCTTGGCCCTTTGTATATT AAAGGAGAAATTGATTATGGACAAGTTGAGCAAGCTTCATTAGCTAGTTTTATGTTTGCA TCGGCCCTGGGAGAATTAATTACAGAATTTGGTACTTCAGGACGTTTTTCTAGTTATGTA GAACGTTTAAATGAATTTTCTAATGCCTTAGAAACTGTGACTAAACAAGCCGAGAATGTC AGCACAATTACAACCATAGAAGAAAATCATTTTGCCTTTGAACACGTCACCCTAGAAACC CCTGACTATGAAAAGGTGATTGTTGAGGATTTATCTCTTACTGTTCAAAAAGGTGAAGGA TTATTGATTGTCGGGCCCAGTGGTCGAGGTAAAAGTTCTTTATTAAGGGCGATCGCCGGT TTATGGAATGCTGGCACTGGGCGTTTAGTGCGTCCTCCCCTAGAAGAAATTCTCTTTTTG CCCCAACGTCCCTACATTATTTTGGGAACCTTACGCGAACAATTGCTGTATCCTCTAACC AATAGTGAGATGAGCAATACCGAACTTCAAGCAGTATTACAACAAGTCAATTTGCAAAAT GTGCTAAATCGGGTGGATGACTTTGACTCCGAAAAACCCTGGGAAAACATTCTCTCCCTC GGTGAACAACAACGCCTAGCCTTTGCTCGATTGTTAGTGAATTCTCCGAGTTTTACCATT TTAGATGAGGCGACCAGTGCCTTAGATTTAACAAATGAGGGGATTTTATACGAGCAATTA CAAACTCGCAAGACAACCTTTATTAGTGTGGGTCATCGAGAAAGTTTGTTTAATTACCAT CAATGGGTTTTAGAACTTTCTGCTGACTCTAGTTGGGAACTCTTAAGCGTTCAAGATTAT CGCCTTAAAAAAGCGGGAGAAATGTTTACTAATGCTTCGAGTAACAATTCCATAACACCC GATATTACTATCGATAATGGATCAGAACCAGAAATAGTCTATTCTCTTGAAGGATTTTCC CATCAGGAAATGAAACTATTAACAGACCTATCACTCTCTAGCATTCGGAGTAAAGCCAGT CGAGGGAAGGTGATTACAGCCAAGGATGGTTTTACCTACCTTTATGACAAAAATCCTCAG ATATTAAAGTGGCTCAGAACTTAA

In one embodiment the entire gene cluster is transformed and expressed in a heterologous system. SEQ ID NO. 61 encompasses the genes of said cluster.

1-27260 ATGACTATTAACTATGGTGATCTGCAAGAACCCTTTAATAAATTCTCAACCCTAGTTGAA Microginin- TTACTCCGTTATCGGGCAAGCAGTCAACCGGAACGCCTCGCCTATATTTTTCTGCGAGAC Cluster GGAGAAATCGAAGAAGCTCGTTTAACCTATGGGGAACTGGATCAAAAGGCTAGGGCGATC 1-1743 GCCGCTTATCTACAATCCTTAGAAGCCGAGGGCGAAAGGGGTTTACTGCTCTATCCCCCA Adenylation- GGACTAGATTTTATTTCAGCTTTTTTTGGTTGTTTATATGCGGGAGTCGTTGCCATTCCC Protein (A*) GCCTATCCACCCCGACGGAATCAAAACCTTTTGCGTTTACAGGCGATTATTGCCGATTCT 1892-2158 CAAGCCCGATTTACCTTCACCAATGCCGCTCTATTTCCCAGTTTAAAAAACCAATGGGCT Acyl-Carrier- AAAGACCCTGAATTAGGAGCAATGGAATGGATTGTTACCGATGAAATTGACCATCACCTC Protein (ACP) AGGGAGGATTGGCTAGAACCAACCCTCGAAAAAAACAGTCTCGCTTTTCTACAATACACC 2204-3016 TCTGGTTCAACGGGAACTCCAAAGGGAGTAATGGTCAGTCACCATAATTTGTTGATTAAT Methyltransferase TCAGCCGATTTAGATCGTGGTTGGGGCCATGATCAAGATAGCGTAATGGTCACTTGGCTA (MT) CCGACCTTCCATGATATGGGTCTGATTTATGGGGTTATTCAGCCTTTGTACAAAGGATTT 3464-13123 CTTTGTTACATGATGTCCCCTGCCAGCTTTATGGAACGACCGTTACGTTGGTTACAGGCC PKS/NRPS (KS-AT- CTTTCTGATAAAAAAGCAACCCATAGTGCGGCCCCCAACTTTGCCTACGATCTTTGTGTG ACP-AMT-MO-C-A-T) CGGAAAATTCCCCCTGAAAAACGGGCTACGTTAGACTTAAGCCATTGGTGCATGGCCTTA 13120-17832 AATGGGGCCGAACCCGTCAGAGCGGAGGTACTTAAAAAGTTTGCGGAGGCTTTTCAAGTT NRPS 2 (C-A-Mt-T) TCTGGTTTCAAAGCCACAGCCCTTTGTCCTGGCTACGGTTTAGCAGAAGCCACCCTGAAA 17836-25194 GTTACGGCGGTTAGTTATGACAGTCCCCCTTACTTTTATCCCGTTCAGGCTAATGCTTTA NRPS 3 (C-A-T-C- GAAAAAAATAAGATTGTGGGAGCCACTGAAACCGATACCAATGTGCAGACCCTCGTGGGC A-T) TGCGGCTGGACAACGATTGATACTCAAATCGTCATTGTCAATCCTGAAACCCTGAAACCT 25257-27260 TGCTCCCCTGAAATTGTCGGCGAAATTTGGGTATCAGGTTCAACAATCGCCCAAGGCTAT ABC-Transporter TGGGGAAAACCTCAAGAGACTCAGGAAACCTTTCAAGCTTATTTGGCAGATACAGGAGCC (ABC) GGGCCTTTTCTGCGAACAGGAGACTTGGGCTTCATTAAAGATGGTGAATTGTTTATCACA GGTCGGCTCAAGGAAATTATTCTGATTCGAGGACGCAATAATTATCCCCAGGATATTGAA TTAACCGTCCAAAATAGTCATCCCGCTCTGCGTCCCAGTTGTGGGGCTGCTTTTACCGTT GAAAATAAGGGCGAAGAAAAGCTCGTGGTCGTTCAGGAAGTGGAGCGCACCTGGCTCCGT AAGGTAGATATAGATGAGGTAAAAAGAGCCATTCGTAAAGCTGTTGTCCAGGAATATGAT TTACAGGTTTATGCGATCGCGCTGATCAGGACTGGCAGTTTACCAAAAACCTCTAGCGGT AAAATTCAGCGTCGTAGCTGTCGGGCCAAATTTTTAGAGGGAAGCCTGGAAATTTTGGGC TAAGAAAATTTCTCGATCGGCACTTAATGTGTTAAATTCGTATGTCGATTGAAACTTCGA CCAATTCTTTCTCTCCCCTTAAGTCCATGTCTCTGGATTTGAAAATTCCTTAAACTTTAA CTACATTTCTCAAGAAAGCAAATTGAATCTAATGTCCACAGAAATCCCAAACGACAAAAA ACAACCGACCCTAACGAAAATTCAAAACTGGTTAGTGGCTTACATGACAGAGATGATGGA AGTGGACGAAGATGAGATTGATCTGAGCGTTCCCTTTGATGAATATGGTCTCGATTCTTC TATGGCAGTTGCTTTGATCGCTGATCTAGAGGATTGGTTACGACGAGATTTACATCGCAC CCTGATCTACGATTATCCAACTCTAGAAAAGTTGGCTAAACAGGTTAGTGAACCCTGACA TTTTTATAAAGTTTGTGCTTAAAAATTTTGAGGAAGTTCTAAAATGACAAATTATGGCAA ATCTATGTCTCATTACTATGATCTAGTGGTAGGACATAAAGGTTATAACAAAGATTACGC CACTGAAGTAGAATTCATTCACAATTTAGTTGAGACTTACACAACTGAAGCCAAATCTAT CCTATACTTGGGCTGTGGTACGGGTTATCATGCCGCTCTTTTAGCACAGAAAGGGTATTC TGTACATGGTGTTGATCTCAGTGCTGAAATGTTAGAGCAGGCTAAAACTCGCATTGAAGA TGAAACAATAGCTTCTAATCTGAGTTTTTCTCAAGGAAATATTTGTGAAATCCGTTTAAA TCGTCAGTTTAATGTTGTTCTTGCTCTATTTCATGTGGTTAACTATCAAACGACCAATCA AAATTTACTGGCAACGTTTGCAACGGTTAAAAACCATTTAAAAGCTGGGGGGATTTTTAT TTGTGATGTGTCCTATGGGTCTTACGTACTGGGGGAATTTAAGAGTCGGCCTACGGCATC AATATTGCGTTTAGAGGATAATTCCAATGGTAACGAAGTAACCTATATTAGTGAACTAAA TTTTTTAACCCATGAAAATATAGTGGAAGTTACTCACAATTTATGGGTAACAAATCAAGA AAATCAACTTCTAGAGAATTCACGGGAAACACATCTTCAGCGCTATCTTTTCAAGCCTGA AGTTGAATTGTTGGCTGATGCTTGTGAACTAACTGTTCTTGATGCGATGCCCTGGCTTGA ACAACGTCCTTTGACAAACATTCCTTGTCCTTCAGTTTGTTTTGTTATTGGGCATAAAAC AACCCATTCAGCTTAAATTCTGCTAAAAAAAATCCAACTTACCTTATTCTCTGAAACCAC ACAAGCCATGAATACAATTCAAGATGCCAAGACCGAAAATTACTCAATCTTAAATCAGTC AATTCCAAGACCTCTCAAACTGAGTAATATCCTATTACGATAAGATTTTGCGTTCTCCTT TGTTTGGAATGTCAGCAGAGGAGTCTCTATATTGGCTAGAGAAATGTTTATGTCAAGAGC ATCAGGGCTTCGATGTACAAGTTAAGTATCATCAAAAAATGCTGAAGAATATGTTACGTT TGACCGATAGTTTGGATTATCTATGGCCAGTTAACCGTGAAATGCGGCTCATGAAAGCTG GGGGGTCAATTGAACGGGCGATCACCAATAACATTAAAGCTTTTCTTCAATTTAAAGAAA CTGTAACCGTATTAAATTAGAAAAACCGCAGTGAGGAATTTGAATGGAACCCATCGCAAT TATTGGTCTTGCTTGCCGCTTTCCAGGGGCTGACAATCCAGAAGCTTTCTGGCAACTCAT GCGAAATGGGGTGGATGCGATCGCCGATATTCCTCCTGAACGTTGGGATATTGAGCGTTT CTACGATCCCACACCTGCCACTGCCAAGAAGATGTATAGTCGCCAGGGCGGTTTTCTAAA AAATGTCGATCAATTTGACCCTCAATTTTTCCGAATTTCTCCCCTAGAAGCCACCTATCT AGATCCTCAACAAAGACTGCTACTGGAAGTCACCTGGGAAGCCTTAGAAAATGCTGCCAT TGTGCCTGAAACCTTAGCTGGTAGCCAATCAGGGGTTTTTATTGGTATCAGTGATGTGGA TTATCATCGTTTGGCTTATCAAAGTCCTACTAACTTGACCGCCTATGTGGGTACAGGCAA CAGCACCAGTATTGCGGCTAACCGTTTATCATATCTGTTTGATTTGCGTGGCCCCAGTTT GGCCGTAGATACCGCTTGCTCTTCTTCCCTCGTCGCCGTTCACTTGGCCTGTCAGAGTTT GCAAAGTCAAGAATCGAACCTCTGCTTAGTGGGGGGAGTTAATCTCATTTTGTCGCCAGA GACAACCGTTGTTTTTTCCCAAGCGAGAATGATCGCCCCCGACAGTCGTTGTAAAACCTT TGACGCGAGGGCCGATGGTTATGTGCGCTCGGAAGGCTGTGGAGTAGTCGTACTTAAACG TCTTAGGGATGCCATTCAGGACGGCGATCGCATTTTAGCAGTGATTGAAGGTTCCGCGGT GAATCAGGATGGTTTAAGTAATGGACTCACGGCCCCTAATGGCCCTGCTCAACAGGCGGT GATTCGTCAGGCCCTGGCAAATGCCCAGGTAAAACCGGCCCAGATTAGCTATGTCGAAGC CCATGGCACGGGGACAGAATTGGGGGATCCGATCGAAGTTAAATCTCTGAAAGCGGTTTT GGGTGAAAAGCGATCGCTCGATCAAACCTGTTGGCTCGGTTCTGTGAAAACCAACATTGG TCATTTAGAAGCGGCGGCGGGAATGGCGGGTCTGATTAAAGTCGTTCTCTGCCTACAACA CCAAGAAATTCCCCCTAATCTCCACTTTCAAACCCTTAATCCCTATATTTCCCTAGCTGA CACAGCTTTTGCGATTCCCACTCAGGCTCAACCCTGGCGGACCAAACCCCCTAAGTCTGG TGAAAACGGTGTCGAACGACGTTTAGCAGGACTCAGTTCCTTTGGGTTTGGGGGGACAAA TTCCCATGTGATTCTCAGCGAAGCCCCTGTCACCGTTAAAAACAATCAACAAAATGGGCA GAAGTTGATAGAACGTCCCTGGCATTTGCTGACTTTATCTGCCAAGAATGAAGAAGCCTT AAAAGCCTTAGTCCATTGTTATCAAAAGTATTTAGCTGATCATCATGAAATTCCTCTCGC TGATGTTTGTTTTACGGCCAATAGTCGGCGATCGCACTTTAATCATCGTTTAGGAGTAGT GGCTAGAGATCGCTTAGAAATGTTGCAGAAGTTAGAGAACTTTAGTAACCAAGAAAGGAT GAGAGAACCGAAGAGTATTAACAAAAAGAAAAAACCTAAAATTGTTTTTCTATTTGCCGG TCAAGGTTCTCAATATGTAGGTATGGGTCGTCAACTGTACGAAACCCAACCCATCTTTCG CCAAACCTTGGATCGCTGTGCTGAAATCCTGCGACCCCATTTAGATCAACCCCTCTTAGA AATTCTTTATCCTGCTGACCCAGAAGCCGAAACAGCGAGTTTTTACCTAGAGCAGACTGC CTATACCCAACCCACTTTATTCGCATTCGAGTATGCCCTAGCACAGTTATGGCGTTCCTG GGGAATAGAACCGGCGGCAGTAATTGGTCACAGTGTCGGTGAATATGTGGCGGCCACCGT TGCCGGAGCCTTAAGTCTAGAAGAAGGATTAACGCTAATTGCCAAACGGGCAAAACTGAT GCAGTCTCTCCCCAAGAATGGGACAATGATCGCCGTTTTTGCCGCAGAAGAGCGGGTTAA AGCTGTTATTGAGCCTTATAGGACTGATGTAGCGATCGCTGCTGTTAATGGACCAGAAAA TTTTGTTATTTCAGGAAAAGCGCCGATTATTGCTGAGATTATCATTCATTTAACGGCAGC AGGAATAGAAGTTCGTCCTCTCAAAGTTTCCCATGCTTTTCACTCGCACCTGTTGGAGCC AATTTTAGATTCCTTAGAACAGGAAGCTGCTGCTATTTCCTACCAACCCCTGCAAATTCC CTTAGTTGCTAATTTAACGGGGGAAGTTCTACCAGAAGGAGCAACGATTGAGGCTCGTTA CTGGCGAAATCATGCACGCAACCCTGTACAATTTTATGGGAGTATCCAAACGCTGATCGA GCAGAAATTCAGTCTTTTTTTAGAAGTTAGCCCTAAACCGACTTTATCTCGATTGGGTCA ACAATGTTGTCCAGAAAGATCGACCACTTGGCTATTTTCCCTCGCCCCTCCTCAAGAAGA AGAACAAAGCCTACTAAATAGTTTGGCGATTCTCTATGATTCCCAAGGAGCCGAAATAAA CTGGGAAGGGTTTAATCAAAATTATCCCCACCATTTACTGGCTCTACCGACCTATCCTTT TCAACGTCAACGCTATTGGCTTGAAACCGGTAAACCGACTTCTGAAGAAACAACCATGAC GACCAATGCCACTAATGTCCAAGCTATCTCCAGCCATCAAAAACAACAGGAGATTCTAAT CACATTGCAAACCCTAGTGGGAAATTTACTGCAATTGTCCCCTGCTGATGTCAATGTTCA TACACCTTTCCTGGAGATGGGGGCAGATTCCATTGTCATGGTTGAGGCGGTCAGACGGAT TGAGAATACCTATAACGTTAAAATTGCTATGCGTCAGTTATTTGAGGAGTTATCTACTTT AGATGCTTTAGCTACTTATTTAGCTCAAAATCCGGCTACTGATTGCCAAACTGCTCAAAT TAATACCGAGGTGTTTTCTGCGCCCATTGCCTGCTCAAATAACCGATCGCCCAATGTCGT GCTGAGTTCTAATACCAACGGCTTTCAACGTCAAACAGCTTCTCCAGGTTTTTCGGCGAT CGCCCCCCTTGCAGGAATGGGAGGAGCAGGGGAAATGGGAGGAGTTGAAGTGCCTCAAGT TTCTGTGCCACAAACCAGTGCGGTAACAGCCTCAGGTTCAACCGTTTCTAGTTCTGCCCT GGAAAACATTATGGGTCAACAGTTACAACTGATGGCCAAACAGTTAGAAGTCTTGCAAAC GGCCAATTTTGCCCCGACGACTCCCCGAACCACAGAAAATTCCCCATCTTCCGTCAGTCA AAATAGGTCAAACGGACTTACACAACAGTTAATTCCCCCCCAGCAATTAGCGGCGAACCT AGAGCCAATAGCCAGTCGCACCCGTCAAACCAGCAATCAAGCTTCTGCTCCTAAACCGAC AGTAACAGCCACTCCCTGGGGGCCGAAAAAACCACCCACAGGTGGATTCACTCCCCAACA ACAGCAACATCTAGAGGCATTAATTGCTCGCTTTACGGAACGTACCAAAACCTCTAAGCA AATTGTGCAAAGCGATCGCCTGCGTTTAGCAGATAGTCGAGCCTCGGTCGGATTCCGTAT GTCTATTAAAGAGATGCTTTATCCCATTGTGGCCCAACGTTCTCAAGGATCAAGAATTTG GGATGTGGACGGTAATGAATATATTGATATGACGATGGGGCAAGGGGTAACGCTGTTTGG GCATCAACCAGACTTCATTATGTCGGCCCTACAAAGCCAACTCACTGAAGGCATTCATCT CAATCCGCGATCGCCAATTGTGGGAGAAGTGGCCGCCTTAATTTGTGAACTAACAGGAGC CGAACGAGCTTGTTTTTGCAACTCTGGAACCGAAGCCGTAATGGCCGCTATTCGTATCGC CAGGGCAACAACAGGTCGGAGTAAAATTGCCCTCTTTGAAGGCTCCTATCATGGACATGC GGACGGAACCCTTTTTAGGAACCAAATTATTGATAACCAACTCCACTCTTTTCCCCTAGC TCTAGGCGTTCCCCCCAGCCTTAGTTCCGATGTGGTGGTATTGGACTATGGCAGTGCGGA AGCTCTGAACTATTTACAAACCCAGGGGCAGGATTTAGCGGCGGTCTTAGTAGAACCAAT TCAAAGTGGCAATCCTCTACTCCAACCCCAACAATTTCTCCAAAGTCTGCGACAAATTAC CAGTCAAATGGGCATTGCCCTGATTTTTGATGAAATGATTACGGGTTTTCGATCGCACCC AGGGGGAGCGCAAGCTTTATTTGGAGTACAGGCGGATATTGCCACCTATGGCAAAGTAGT TGCGGGAGGAATGCCCATTGGAGTTATTGCAGGTAAGGCCCATTATCTGGACAGCATTGA CGGGGGAATGTGGCGTTATGGCGATAAATCCTATCCTGGGGTGGACAGAACCTTTTTTGG GGGAACCTTTAATCAGCATCCGTTAGCAATGGTAGCGGCTAGGGCTGTCCTGACCCATTT AAAGGAGCAGGGGCCAGGTCTGCAACAACAATTAACTGAACGCACTGCGGCCTTAGCCGA TACACTGAATCATTATTTTCAAGCCGAAGAAGTTCCTATTAAAATCGAACAGTTTAGTTC TTTCTTCCGGTTTGCCCTCTCTGGCAATTTGGATTTACTTTTCTATCACATGGTAGAAAA AGGTATTTATGTCTGGGAATGGCGTAAACATTTTCTTTCAACCGCCCATACGGAAGCCGA TCTTGCCCAATTTGTCCAAGCGGTTAAGGATAGCATCACAGAATTGCGTCAGGGAGGTTT TATCCCCGCAAAAAAGCCTTCCTGGCCAGTGCCAACGCCTCAAATTGATCCCCCCCTAAC CCCCCTTGATAAGGGGATTGATCCCCCCCTAACCCCCCTTGATAAGGGGATTGATCCCCC CCTAACCCCCCTTGATAAGGGGGGAGATGTTGATGTCGCGCTTGATAAGGGAGGAAATTC TCATTCTGTTAGGGACAGTAAGTTAGGGAAAGGGAGCGGGTCTCAAGACCAAAAAACGAT ACAGTTTAGCCTCTACTACTTTGGTAGCTATGAAGCGGAATTTAACCCGAATAAATATAA CTTACTGTTTGAAGGAGCTAAATTTGGCGATCGCGCTGGTTTTACGGCCCTTTGGATTCC TGAACGTCATTTCCACGCTTTTGGTGGTTTTTCTCCCAATCCTTCGGTTTTGGCGGCGGC TTTAGCACGGGAAACCAAACAGATTCAACTGCGATCAGGCAGTGTGGTTTTACCGCTACA TAATTCCATCCGAGTCGCCGAAGAATGGGCAGTGGTGGACAATCTTTCCCAGGGCCGCGT TGGTATTGCTTTTGCATCGGGTTGGCATCCCCAGGATTTTGTCTTGGCTCCCCAGTCCTT TGGCCAACATCGGGAATTGATGTTCCAAGAAATTGAAACCGTCCAGAAACTTTGGCGAGG GGAAGCGATCACCGTGCCAGACGGAAAGGGTCAAAGGGTAGAGGTTAAAACCTATCCCCA ACCGATGCAGTCCCAGTTACCCAGCTGGATTACTATTGTCAATAATCCCGATACCTATAT CAGAGCAGGGGCGATCGGTGCTAATATCCTTACCAATCTGATGGGGCAAAGCGTGGAAGA TTTAGCCCGTAATATTGCGCTATATCGTCAATCTTTGGCAGAGCATGGTTATGATCCCGC GTCGGGAACGGTGACAGTTCTCCTGCATACTTTTGTTGGCAAGGATTTAGAACAAGTTCG AGAACAGGCTCGCCAACCCTTTGGGCAATACCTCACCTCCTCTGTCGGACTCTTGCAGAA CATGGTCAAGAGCCAGGGCATGAAAGTGGATTTTGAACAATTAAGAGACGAAGATCGGGA CTTTCTCCTCGCTTCTGCCTATAAACGCTATACAGAAACCAGTGCTTTAATTGGCACACC CGAATCCTGTCGTCAAATTATTGATCATTTGCAGTCCATCGGTGTGGATGAAGTGGCTTG TTTTATTGATTTTGGGGTAGATGAACAAACAGTTTTGGCCAATTTACCCTATCTCCAGTC CCTAAAAGACTTATATCAACCTCATCTCCCCCCTTATCAAGGGGGGTTAGGGGGGGATCA ATCCCCTTATCAAGGGGGGTTAGGGGGGGATCAATCCCCTTATCAAGGGGGGTTAGGGGG TGATCAATCCCCTTATCAAGGGGGGTTAGGGGGTGATCAATCCCCTTATCAAGGGGGGTT AGGGGGGGATCAATCCCCTTATCAAGGAGAGTTAGGGGGGGATCAATCCCCTTATCAAGG GGGGTTAGGGGGGGATCAAGTCCCTCTCACCGAAGCCCAACGACAACTGTGGATTTTGGC TCAATTAGGAGACAACGGCTCTGTGGCCTATAACCAATCAGTGACATTGCAATTAAGTGG CCCATTAAATCCCGTCGCAATGAATCAAGCTATTCAACAAATCAGCGATCGCCATGAAGC GTTACGAACCAAAATTAATGCCCAGGGAGATAGTCAAGAAATCCTGCCCCAGGTCGAAAT TAACTGCCCTATCTTAGACTTCAGTCTTGACCAAGCTTCGGCCCAACAGCAAGCAGAACA ATGGTTAAAGGAAGAAAGTGAAAAACCCTTTGATTTGAGCCAGGGTTCTCTCGTGCGTTG GCATCTACTCAAATTAGAACCAGAATTACATTTGTTAGTATTAACGGCCCATCACATTAT CAGTGACGGTTGGTCAATGGGGGTAATCCTTCGGGAATTAGGAGAGTTATATTCAGCCAA ATGTCAGGGTGTTACGGCTAATCTTAAAACCCCAAAACAGTTTCGAGAATTGATTGAATG GCAAAGCCAGCCAAGCCAAGGGGAAGAACTGAAAAAACAGCAAGCCTATTGGTTAGCAAC CCTTGCCGATCCCCCTGTTTTGAATTTACCCACTGACAAACCTCGTCCAGCTTTACCCAG TTACCAAGCTAATCGTCGAAGTCTAACTTTAGATAGCCAATTTACAGAAAAACTAAAGCA ATTTAGTCGTAAACAGGGCTGTACCTTGCTGATGACCCTGTTATCGGTTTATAACATTCT CGTTCATCGTTTGACGGGACAGGATGATATTCTGGTGGGTCTGCCAGCCTCTGGACGGGG GCTTTTAGATAGTGAAGGTATGGTGGGTTATTGCACCCATTTTTTACCAATTCGCAGTCA ATTAGCAGGTAATCCCACTTTTGCTGAATATCTCAAACAAATGCGGGGGGTTTTGTTGTC GGCTTATGAACATCAGGACTATCCCTTTGCTCTTTTGCTCAATCAGTTAGATTTACCGCG TAATACCAGTCGCTCTCCTTTAATTGATGTCAGTTTCAATTTAGAACCAGTTATTAACCT ACCCAAAATGAAAGGATTAGAGATTAGTTTGTTGCCTCAAAGTGTAAGTTTTAAGGATCG AGATTTGCATTGGAATGTGACAGAAATGGGTGGAGAAGCTCTGATTGATTGTGACTACAA TACAGACTTATTTAAAGATGAAACGATTCAGCGTTGGTTAGGCCATTTTCAAACCTTACT TGAGGCAGTTATTAATGATTCGCAACAAAATCTGCGGGAATTACCCTTATTAAGTTCTGC TGAACGACAACAGTTATTAGTGGATTGGAATCAAACCAAGACCGACTATCCCCAAGATCA GTGTATTCATCAATTATTTGAAGCGCAAGTTGAACGGACTCCCGATGCGATTGCGGTGGT ATTTGAAACTCAACAATTAACTTACAGTGAATTAAATTGTCGAGCCAATCAGTTAGCACA TTATTTACAAAAATTAGGAGTTGGGCCAGAGGTCTTAGTCGGTATTTTGGTCGAACGTTC TTTAGAAATGATTGTCGGATTGTTAGGGATTCTCAAGGCTGGGGGAGCCTATGTACCTCT TGATCCTGACTATCCCCCTGAACGTCTTCAATTTATGTTAGAAGATAGTCAATTTTTTCT CCTCTTAACCCAACAGCATTTACTGGAATCTTTTGCTCAGTCTTCAGAAACGGCTACTCC CAAGATTATTTGTTTGGATAGCGACTACCAAATTATTTCCCAGGCAAAGAATATTAATCC CGAAAATTCAGTCACAACGAGTAATCTTGCCTATGTAATTTATACCTCTGGTTCGACAGG TAAACCGAAGGGCGTGATGAATAATCATGTTGCTATTAGTAATAAATTGTTATGGGTACA AGACACTTATCCTCTAACCACAGAAGACTGTATTTTACAAAAAACTCCCTTTAGTTTTGA TGTTTCAGTGTGGGAATTATTCTGGCCCCTACTAAACGGAGCGCGTTTGGTTTTTGCCAA GCCGAATGGCCATAAAGATGCCAGTTACTTAGTCAATCTGATTCAAGAGCAACAAGTAAC AACGCTACATTTTGTGTCTTCTATGCTACAGCTTTTTCTGACAGAAAAAGACGTAGAAAA ATGTAATAGTCTTAAACGAGTCATTTGTAGTGGTGAAGCCCTTTCTTTAGAGCTTCAAGA ACGTTTTTTTGCTCGTTTAGTCTGTGAATTACACAATCTTTATGGACCGACAGAAGCCGC TATTCATGTCACATTTTGGCAATGTCAATCAGATAGCAATTTGAAAACAGTACCCATTGG TCGGCCGATCGCTAATATCCAAATTTACATTTTAGACTCTCATCTTCAGCCAGTACCTAT TGGAGTAATCGGAGAATTGCACATTGGTGGGGTTGGTTTGGCGCGGGGTTATTTAAACAG GCCTGAGTTAACGGCGGAGAAATTTATTGCAAATCCGTTTGCTTCCCTTGATCCCCCCCT AACCCCCCTTGATAAGGGGGGAGATGAGAGCTATAAAACTTTTAAAAAGGGGGGAGAGCA ACCATCAAGATTGTATAAAACGGGAGATTTAGCTCGTTATTTACCCGATGGCAAGATTGA GTATCTAGGGCGCATTGATAATCAGGTAAAAATTCGCGGTTTCCGGATTGAATTGGGGGA AATTGAAGCGGTTTTGCTATCCCATCCCCAGGTACGAGAAGCGGTCGTTTTGGTGAGCGA AAGCGATCGCTCTGAAAATCGGGCTTTGGTCGCTTATATTGTCCCTAATGATCCTGCTTG TACGACTCAATCATTACGAGAGTTTGTTAAACGGCAGCTTCCTGACTATATGATCCCAGC TTATTGGCTGATCCTTGACAATTTACCGTTAACCAGCAATGGCAAAATTGATCGTCGGGC TTTACCGTTACCTAATCCAGAGTTAAATCGTTCGATAGACTATGTGGCTCCCAAAAATCC TACCCAGGAGGCGATCGCCGCTATTTTTGGTCAAGTTTTAAAACTGGAAAAAGTGGGAAT TTATGATAACTTTTTTGAGATCGGCGGTAATTCTTTGCAAGCCACTCAAGTTATTTCACG CTTACGAGAAAGTTTTGCCCTAGAGTTGCCCTTGCGTCGCCTGTTTGAACAACCGACTGT GGCGGATTTGGCTTTAGCCGTAACGGACATTCATGCCACTTTACAAAAATTACAAACCCC TATTGATGATTTATCAGGCGATCGCGAGGAGATTGAACTATGAAATCTATTGAAACCTTT TTGTCAGATTTAGCCAATCAAGATATTAAACTCTGGATGGACGGCGATCGCCTGCGTTGT AATGCACCCCAGGGCCTATTAACCCCAGAGATTCAAACAGAACTGAAAAACCGTAAAGCA GAAATCATTCACTTTCTCAATCAACTGGGTTCAGAGGAGCAAATTAATCCTAGAACGATT CTTCCCATTCCTCGTGATGGCCAATTACCCCTCTCCTTTGCCCAGTCGCGACTCTGGTTC TTGTATCAATTAGAAGGAGCCACGGGAACCTATAACATGACAGGGGCCTTGAGTTTAAGC GGGCCTCTTCAGGTCGAAGCCCTCAAACAAGCCCTAAGAACTATCATTCAACGCCATGAG CCATTGCGTACCAGTTTCCAATCGGTTGACGGGGTTCCAGTGCAGGTGATTAATCCCTAT CCTGTTTGGGAATTAGCGATGGTTGATTTGACAGGAAAGGAGACAGAAGCAGAAAAATTG GCCTATCAGGAATCCCAAACCCCGTTTGATTTGACCAATAGTCCTTTGTTGAGGGTAACG CTCCTCAAATTACAGCCAGAAAAGCATATTTTATTAATTAATATGCACCATATTATTTCC GATGGCTGGTCAATCGGTGTTTTTGTTCGTGAATTGTCCCATCTCTATAGGGCTTTTGTG GCGGGTAAAGAACCAACTTTACCGATTTTACCAATTCAGTATGCGGATTTTGCCGTTTGG CAGCGAGAGTGGTTACAGGGTAAGGTTTTAGCGGCTCAATTGGAATATTGGAAGCGACAA TTGGCAGATGCTCCTCCTCTGCTGGAACTGCCCACTGATCGCCCTCGTCCCGCAATCCAA ACCTTTCAAGGCAAGACAGAAAGATTTGAGCTAGATAGGAAACTGACCCAAGAATTAAAG GCATTAAGTCAACAGTCGGGTTGTACTTTATTTATGACTTTGTTGGCCGCTTTTGGGGTG GTTTTATCCCGTTATAGTGGCCAGACTGATATCGTCATTGGTTCGGCGATCGCCAACCGT AATCGCCAAGACATTGAGGGGTTAATTGGCTTTTTTGTTAACACTTTGGCGTTGAGGTTA GATTTATCAGAAAAACCCAGCTTTGCCGCTTTTTTAAAACAAGTACAGGAAGTCACTCAG GATGCCTATGAGCATCAAGACTTGCCCTTTGAAATGTTAGTGGAAGAATTACAACTAGAG CGCAAATTAGACCGAAATCCTTTGGTACAGGTGATGTTTGCCCTACAAAATGCGGCCAAT GAAACCTGGAATTTACCTGGGTTGACCATTGAAGAAATGTCTTGGGAACTTGAACCTGCC CGTTTTGACCTAGAGGTTCATTTATCAGAAGTTAACGCCGGCATAGCTGGATTCTGTTGC TACACCATTGATCTATTTGATGATGCAACGATCGCCCGTCTATTGGAACATTTTCAGAAT CTTCTCAGGGCAATTATTGTTAATCCTCAAGAATCGGTAAGTTTATTACCCTTGTTGTCA GAACAGGAAGAAAAGCAACTTTTAGTTGATTGGAATCAAACCCAAGCCGATTATCCCCAA GATAAGCTTGTCCATCAGTTATTTGAAGTTCAAGCAGCCAGTCAGCCAGAAGCGATCGCT CTAATCTTTGAAAATCAGGTTTTGACCTATGGAGAATTAAACCATCGCGCCAATCAATTA GCTCACTATCTTCAGTCGTTAGGAGTCACCAAAGAACAAATCGTCGGGGTTTATCTGGAA CGTTCCCTTGAAATGGCGATCGGATTTTTAGGTATTCTCAAAGCAGGAGCCGCCTATCTC CCCATTGATCCTGAATATCCCTCAGTACGCACCCAATTTATTCTCGAAGATACCCAACTT TCGCTTCTCTTAACTCAGGCAGAACTGGCAGAAAAACTGCCCCAGACTCAAAACAAAATT ATCTGTCTAGATCGGGACTGGCCAGAAATTACCTCCCAACCCCAGACAAACCTAGACCTA AAGATAGAACCTAATAACCTAGCCTATTGCATCTATACTTCTGGTTCCACAGGACAACCC AAAGGAGTACTGATTTCCCATCAAGCCCTACTCAACTTAATTTTCTGGCATCAACAAGCG TTTGAGATTGGCCCCTTACATAAAGCGACCCAAGTGGCAGGCATTGCTTTCGATGCAACG GTTTGGGAATTGTGGCCCTATCTGACCACAGGAGCCTGTATTAATCTGGTTCCCCAAAAT ATTCTGCTCTCACCGACGGATTTACGGGATTGGTTGCTTAACCGAGAAATTACCATGAGT TTTGTGCCAACTCCTTTAGCTGAAAAATTATTATCCTTGGATTGGCCTAACCATTCTTGT CTAAAAACCCTGTTACTGGGAGGTGACAAACTTCATTTTTATCCTGCTGCGTCCCTTCCC TTTCAGGTCATTAACAACTATGGCCCAACGGAAAATACAGTGGTTGCGACCTCTGGACTG GTCAAATCATCTTCATCTCATCACTTTGGAACTCCGACTATTGGTCGTCCCATTGCCAAC GTCCAAATCTATTTATTAGACCAAAACCTACAACCTGTCCCCATTGGTGTACCAGGAGAA TTACATTTAGGTGGGGCGGGTTTAGCGCAGGGCTATCTCAATCGTCCTGAGTTAACGGCT GAAAAATTTATTGCCAATCCCTTTGATCCCCCCCTAACCCCCCTTGATAAGGGGGGAGAA GAACCCTCAAAACTCTATAAAACGGGAGACTTAGCCCGTTATTTACCCGATGGCAATGTA GAATTTTTGGGACGTATTGACAATCAGGTAAAAATTCGGGGTTTTCGCATCGAAACTGGG GAAATCGAAGCCGTTTTAAGTCAATATTTCCTATTAGCTGAAAGTGTAGTCGTTGCCAAG GAAGATAATACTGGGGATAAACGCCTCGTGGCTTATTTGGTTCCCGCCTTGCAAAATGAG GCCCTACCAGAGCAATTAGCCCAATGGCAAAGTGAATACATCAGTGATTGGCAAAGTCTC TATGAAAGAACCTATAGTCAAGGGCAAGACAGCCTAGCTGATCTCACTTTTAATATCACG GGTTGGAATAGCAGTTATACTCGTCAACCCCTTCCTGCTTCAGAAATGCGAGAGTGGGTC GAAAACACTGTTAGTCGCATCTTGGCTTTCCAACCAGAACGCGGTTTAGAAATTGGTTGT GGTACAGGTTTGTTACTCTCCAGGGTAGCAAAGCATTGTCTTGAATATTGGGCAACGGAT TATTCCCAAGGGGCGATCCAGTATGTTGAACGGGTTTGCAATGCCGTTGAAGGTTTAGAA CAGGTTAAATTACGCTGTCAAATGGCAGATAATTTTGAAGGTATTGCCCTACATCAATTT GATACCGTCGTCTTAAATTCGATTATTCAGTATTTTCCCAGTGTGGATTATCTGTTACAG GTGCTTGAAGGGGCGATCAACGTCATTGGCGAGCGAGGTCAGATTTTTGTCGGGGATGTG CGGAGTTTACCCCTATTAGAGCCATATCATGCGGCTGTGCAATTAGCCCAAGCTTCTGAC TCGAAAACTGTTGAACAATGGCAACAACAGGTGCGTCAAAGTGTAGCAGGTGAAGAAGAA CTGGTCATTGATCCCACATTGTTCCTGGCTTTAAAACAACATTTTCCGCAAATTAGCTGG GTAGAAATTCAACCGAAACGGGGTGTGGCTCACAATGAGTTAACTCAATTTCGCTATGAT GTCACTCTCCATTTAGAGACTATCAATAATCAAGCATTATTGAGCGGCAATCCAACGGTA ATTACCTGGTTAAATTGGCAACTTGACCAACTGTCTTTAACACAAATTAAAGATAAATTA TTAACAGACAAACCTGAATTGTGGGGAATTCGTGGTATTCCTAATCAGCGAGTTGAAGAG GCTCTAAAAATTTGGGAATGGGTGGAAAATGCCCCTGATGTTGAAACGGTTGAACAACTC AAAAAACTTCTCAAACAACAAGTAGATACTGGTATTAATCCTGAACAGGTTTGGCAATTA GCTGAGTCTCTCGGTTACACCGCTCACCTTAGTTGGTGGGAAAGTAGTCAAGACGGTTCC TTTGATGTCATTTTTCAGCGGAATTCAGAAGCGGAGGACTCAAAAAAATTAACCCTTTCA AAACTTGCTTTCTGGGATGAAAAACCCTTTAAAATAAAGCCCTGGAGTGACTATACTAAC AACCCTCTGCGCGGTAAGTTAGTCCAAAAATTAATTCCTAAAGTACGAGAATTTCTGCAA GAAAAACTACCCAGTTATATGGTTCCCCAGGCGTTTGTGCTGCTTGATTCCCTTCCTTTG ACCCCCAATGGTAAGGTGGATCGTAAGGCGTTACCTTCTCCTGATGCGGCGACTCGTGAT TTAGCGAACAGTTTTGTCTTACCCCGCAATCCGATTGAAGCTCAACTGACTCAAATTTGG AGTGAAGTTTTGGGACTGGAACGCATTGGCGTTAAGGACAACTTTTTTGAATTGGGAGGA CATTCTCTTTTGGCTACCCAGGTTTTATCAAGAATTAATTCAGCCTTTGGACTTGATCTT TCTGTGCAAATTATGTTTGAATCACCAACGATCGCGGGCATTGCGGGTTATATTCAAGCG GTAGATTGGGTCGCCCAGGATCAAGCCGATAGCTCGTTAAATCATGAAAATACTGAGGTA GTGGAGTTCTAAGTTATGACGAAAAAGATTGTTGAATTTGTCTGTTATCTACGGGATTTA GGCATTACTTTAGAAGCTGATGAAAACCGCTTACGCTGTCAGGCTCCCGAAGGAATTTTG ACCCCAGCACTCCGTCAAGAAATTGGCGATCACAAACTGGAATTATTACAATTTTTACAA TGGGTCAAACAGTCTAAAAGTACCGCTCATTTGCCTATTAAACCTGTCGCTAGAGACGGT CATTTACCCCTGTCTTTTGCTCAACAACGTTTATGGTTTTTACATTATCTTTCCCCTGAT AGTCGTTCCTACAATACCCTGGAAATATTGCAAATTGATGGGAATCTCAATCTGACTGTG CTAGAGCAGAGTTTGGGGGAATTAATTAACCGCCATGAAATTTTTAGAACAACATTCCCC ACTGTTTCAGGGGAACCGATTCAGAAAATTGCACTTCCTAGTCGTTTTCAGTTAAAAGTT GATAATTATCAAGATTTAGACGAAAATGAACAATCAGCTAAAATTCAACAAGTAGCAGAA TTGGAAGCAGGACAAGCTTTTGATTTAACGGTGGGGCCACTGATTCAGTTTAAGCTATTG CAATTGAGTCCCCAGAAGTCGGTGCTGCTGTTGAAAATGCACCATATTATCTATGATGGC TGGTCTTTTGGGATTCTGATTCGGGAATTATCGGCTCTATACGAAGCATTTTTAAAGAAC TTAGCCAATCCTCTCCCTGCGTTGTCTATTCAGTATGCAGATTTTGCGGTTTGGCAACGT CAATATCTCTCAGGTGAGGTCTTAGATAAACAACTCAATTATTGGCAAGAACAGTTAGCA ACAGTCTCTCCTGTTCTTACTTTACCAACGGATAGACCCCGTCCGGCGATACAAACTTTT CAGGGAGGAGTTGAGCGTTTTCAACTGGATCAAAATGTCACTCAAGGTCTTAAAAAGTTA GGTCAAGATCAGGTTGCAACCCTGTTTATGACGTTGTTGGCCGGTTTCGGCGTTTTGCTA TCTCGTTATAGTGGTCAATCTGATCTGATGGTGGGTTCTCCGATCGCTAATCGTAATCAA GCAGCGATCGAACCTTTAATTGGCTTTTTTGCTAACACTTTGGCTTTAAGAATTAATTTA TCAGAAAATCCCAGTTTTTTAGAATTATTAGAACAAGTTAAACAGACAACTTTAGAGGGT TATGCTCACCAAGACCTACCCTTTGAGATGTTAGTAGAAAAGCTACAACTTGACCGTGAT TTGAGCAGAAATCCTTTAGTACAAGTCATGTTTGCGCTACAAAATACCTCTCAAGATACT TGGAATCTTTCGGGTTTAAGTATTGAAAGTTTATCTTTATCAGTGGAAGAAACTGTCAGA TTTGATCTAGAAGTAAACTGCTGGCAAAATTCAGAAGGTTTAGCAATAGATTGGATTTAC AGCAGAGATTTATTTGACACTGCAACAATTGCAAGAATGGGAGAACATTTTCAAAATTTA GTTCAGGCAATCATACTCAATCCAAAAGCTACAGTTAAAGAACTTCCTTTATTAACACCC AAGGAACGTGAGCAATTATTAATATCTTGGAATAATAGCAAGACTGATTATCCTCAAGAG CAGTGTATTTATCAATTATTTGAAGCACAAGTTGAACGGACTCCAAAGGCGATCGCAGTG GTATTTGAGGAGCAATCATTAACATACACTGAATTAAACCATCGCGCTAATCAGTTAGCC CATTATTTACAAACTTTAGGCGTGGGAGCAGAAGTCTTAGTCGGTATTTCCCTAGAACGT TCTTTAGAGATGATTATCGGCTTATTAGGGATTCTCAAGGTAGGTGGTGCTTATCTTCCT CTTGATCCAGACTATCCCACTGAGCGTCTTCAGTTGATGTTAGAAGACAGTCAAGTTCCT TTTTTGATTACCCACAGTTCTTTATTAGCAAAATTGCCTCCCTCTCAAGCAACTCTGATT TGTTTAGATCATATCCAAGAGCAGATTTCTCAATATTCTCCAGATAATCTTCAATGTCAG TTAACTCCTGCCAATTTAGCTAACGTTATTTATACCTCTGGCTCTACGGGTAAGCCTAAA GGGGTGATGGTTGAACATAAAGGTTTAGTTAACTTAGCTCTTGCTCAAATTCAATCTTTT GCAGTCAACCATAACAGTCGTGTGCTGCAATTTGCTTCTTTTAGTTTTGATGCTTGTATT TCAGAAATTTTGATGACCTTTGGTTCTGGAGCGACGCTTTATCTTGCACAAAAAGATGCT TTATTGCCAGGTCAGCCATTAATTGAACGGTTAGTAAAGAATGGAATTACTCATGTGACT TTGCCGCCTTCAGCTTTAGTGGTTTTACCCCAGGAACCGTTACGCAACTTAGAAACCTTA ATTGTGGCGGGTGAGGCTTGTTCTCTTGATTTAGTGAAACAATGGTCAATCGATAGAAAC TTTTTCAATGCCTATGGGCCAACGGAAGCGAGTGTTTGTGCCACTATTGGACAATGTTAT CAAGATGATTTAAAGGTGACGATTGGTAAGGCGATCGCCAATGTCCAAATTTATATTTTA GATGCCTTTTTACAGCCGGTGCCGGTGGGAGTGTCAGGAGAGTTATACATTGGTGGAGTT GGGGTGGCAAGGGGCTATTTAAATCGTCCTGAATTAACCCAAGAAAAATTTATTGCTAAT CCTTTTAGTAACGACCCAGATTCTCGGCTCTATAAAACTGGCGACTTAGCGCGTTATTTA CCCGATGGTAATATTGAATATTTAGGACGCATTGACAATCAGGTAAAAATTCGCGGTTTT CGCATTGAGTTAGGAGAAATTGAAGCGGTTCTGAGTCAATGTCCCGATGTGCAAAATACG GCGGTGATTGTCCGCGAAGATACTCCTGGCGATAAGCGCTTAGTTGCCTATGTGGTTCTT ACTTCTGACTCCCAGATAACTACTAGCGAACTGCGTCAATTTTTGGCGAATCAATTACCC GCCTATCTTGTTCCTAATACCTTTGTTATTTTAGATGATTTGCCCCTAACCCCCAGTGGC AAATGCGATCGCCGTTCCTTACCTATACCCGAAACACAAGCGTTATCAAATGACTATATT GCCCCTAAATCTCCCACTGAAGAAATTCTGGCTCAAATATGGGGGCAAGTTCTCAAGATA GAAAGAGTCAGCAGAGAAGATAATTTCTTTGAATTGGGGGGGCATTCCCTTTTAGCTACC CAGGTAATGTCCCGTCTGCGTGAAACTTTTCAAGTCGAATTACCTTTGCGTAGTCTCTTT ACCGCTCCCACTATTGCTGAATTGGCCCTAACAATTGAGCAATCTCAGCAAACCATTGCT GCTCCCCCCATCCTAACCAGAAACGACAGTGCTAACCTCCCGTTATCTTTTGCTCAACAA CGTTTATGGTTTCTGGATCAATTAGAACCTAACAGCGCCTTTTATCATGTAGGGGGAGCC GTAAGACTAGAAGGAACATTAAATATTACTGCCTTAGAGCAAAGCTTAAAAGAAATTATT AATCGTCATGAAGCTTTACGCACAAATTTTATAACGATTGATGGTCAAGCCACTCAAATT ATTCACCCTACTATTAATTGGCGATTGTCTGTTGTTGATTGTCAAAATTTAACCGACACT CAATCTCTGGAAATTGCGGAAGCTGAAAAGCCCTTTAATCTTGCTCAAGATTGCTTATTT CGTGCTACTTTATTCGTGCGATCACCGCTAGAATATCATCTACTCGTGACCATGCACCAT ATTGTTAGCGATGGCTGGTCAATTGGAGTATTTTTTCAAGAACTAACTCATCTTTACGCT GTCTATAATCAGGGTTTACCCTCATCTTTAACGCCTATTAAAATACAATATGCTGATTTT GCGGTCTGGCAACGGAATTGGTTACAAGGTGAAATTTTAAGTAATCAATTGAATTATTGG CGCGAACAATTAGCAAATGCTCCTGCTTTTTTACCTTTACCGACAGATAGACCTAGGCCC GCAATCCAAACTTTTATTGGTTCTCATCAAGAATTTAAACTTTCTCAGCCATTAAGCCAA AAATTGAATCAACTAAGTCAGAAGCATGGAGTGACTTTATTTATGACTCTCCTGGCTGCT TTTGCTACCTTACTTTACCGTTATACAGGACAAGCAGATATTTTAGTTGGTTCTCCTATT GCTAACCGTAATCGTAAGGAAATTGAGGGATTAATCGGCTTTTTTGTTAATACATTAGTT CTGAGATTGAGTTTAGATAATGATTTAAGTTTTCAAAATTTGCTAAACCATGTTAGAGAG GTTTCTTTAGCAGCCTACGCCCATCAAGATTTACCTTTTGAAATGTTAGTAGAAGCACTA CACCCTCAACGAGATCTCAGTCATACCCCTTTATTTCAGGTAATGTTTGTTTTGCAAAAT ACACCAGTGGCTGATCTAGAACTTAAAAATGTAAAGGTTTGTCCTCTACCGATGGAAAAT AAGACTGCTAAATTTGATTTAACCTTATCAATGGAGAATCTAGAGGAAGGATTGATTGGG GTTTGGGAATATAACACCGATCTATTTAATGGCTCAACCATTGAGCGAATGAGTGGACAT TTTGTCACTTTGTTAGAAGATATTGTTGCCGCTCCAACGAAGTCAGTTTTACGGTTGTCT TTGCTGACGCAAGAGGAAAAACTGCAATTATTGATTAAAAATCAGGGTGTTCAAGTTGAT TATTCTCAAGAGCAGTGCATCCATCAATTATTTGAAGCGCAAGTTGAACGGACTCCCGAT GCGATTGCGGTGGTATTTGAGGAGCAATCATTAACCTATGCTGAATTAAATCATCAAGCT AATCAGTTAGTCCATTACTTACAAACTTTAGGAATTGGGCCAGAGGTCTTAGTCGCTATT TCAGTAGAACGTTCTTTAGAAATGATTATCGGCTTATTAGCCATTCTCAAGGCGTGTGGT GCTTATCTCCCTCTTGCTCCTGACTATCCCACTGAGCGTCTTCAGTTCATGTTAGAAGAT AGTCAAGCTTCTTTTTTGATTACCCACAGTTCTTTATTAGAAAAATTGCCTTCTTCTCAA GCGACTCTAATTTGTTTAGATCACATCCAAGAGCAGATTTCTCAATATTCTCCCGATAAT CTTCAAAGTGAGTTAACTCCTTCCAATTTGGCTAACGTTATTTACACCTCTGGCTCTACG GGTAAGCCTAAAGGGGTGATGGTTGAACATCGGGGCTTAGTTAACTTAGCGAGTTCTCAA ATTCAATCTTTTGCAGTCAAAAATAACAGTCGTGTACTGCAATTTGCTTCCTTTAGTTTT GATGCTTGTATTTCAGAAATTTTGATGACCTTTGGTTCTGGAGCGACTCTTTATCTTGCT CAAAAAAATGATTTATTGCCAGGTCAGCCATTAATGGAAAGGTTAGAAAAGAATAAAATT ACCCATGTTACTTTACCCCCTTCAGCTTTAGCTGTTTTACCAAAAAAACCGTTACCCAAC TTACAAACTTTAATTGTGGCGGGTGAGGCTTGTCCTCTGGATTTAGTCAAACAATGGTCA GTCGGTAGAAACTTTTTCAATGCCTATGGCCCGACAGAAACGAGTGTTTGTGCCACGATT GGACAATGTTATCAAGATGATTTAAAGGTCACGATTGGTAAGGCGATCGCTAATGTCCAA ATTTATATTTTGGATGCCTTTTTACAACCAGTACCCATCGGAGTACCAGGGGAATTATAC ATTGGTGGAGTCGGAGTTGCGAGGGGTTATCTAAATCGTCCTGAATTAACGGCGGAAAGA TTTATTCCTAATCCTTTTGATCCCCCCCTAACCCCCCTTAAAAAGGGGGGAGATAAGAGC TATGAAACTTTTAAAAAGGGGGAAGAGCAACCATCAAAACTCTATAAAACGGGAGATTTA GCTCGTTATTTACCCGATGGCAATATTGAATATTTAGGACGCATTGACAATCAGGTAAAA ATTCGCGGTTTTCGCATTGAGTTAGGAGAAATTGAAGCGGTTCTGAGTCAATGTCCCGAT GTGCAAAATACGGCGGTGATTGTCCGTGAAGATACTCCTGGCGATAAACGTTTAGTTGCC TATGTGGTTCTTACTTCTGACTCCCAGATAACTACTAGCGAACTGCGTCAATTCTTGGCT AATCAATTACCTGCCTATCTCGTTCCCAATACCTTTGTTATTTTAGATGATTTGCCCCTA ACCCCCAATGGTAAATGCGATCGCCGTTCCTTACCGCTTCCTGATGATCAGACCAGAAAA AATATTCCTAAAATTGGCCCGCGTAATTTAGTGGAATTACAATTAGCTCAAATCTGGTCA GAGATTTTAGGCATTAATAATATTGGTATTCAGGAAAACTTCTTTGAATTAGGCGGTCAT TCTTTATTAGCAGTCAGTCTGATCAATCGTATTGAACAAAAGTTAGATAAACGTTTACCA TTAACCAGTCTTTTTCAAAATGGAACCATAGCAAGTCTAGCTCAATTACTAGCGCAAGAA ACAACTCAGCCAGCCTCTTCACCGTTGATTGCTATCCAGTCTCAAGGTGATAAAACTCCA TTTTTTGCTGTTCATCCCATTGGTGGTAATGTGCTATGTTATGCCGATTTAGCTCGTAAT TTAGGAACGAAACAGCCGTTTTATGGATTACAATCATTAGGGCTAAGTGAATTAGAAAAA ACTGTAGCCTCTATTGAAGAAATGGCGATGATTTATATTGAAGCAATACAAACTGTTCAA GCCTCTGGTCCCTACTATTTAGGAGGTTGGTCAATGGGAGGAGTGATAGCTTTTGAAATC GCCCAACAATTATTGACCCAAGGTCAAGAAGTTGCTTTACTGGCTTTAATAGATAGTTAT TCTCCCAGTTTACTTAATTCAGTTAATAGGGAGAAAAATTCTGCTAATTCCCTGACAGAA GAATTTAATGAAGATATCAATATTGCCTATTCTTTCATCAGAGACTTAGCAAGTATATTT AATCAAGAAATCTCTTTCTCTGGGAGTGAACTTGCTCATTTTACATCAGACGAATTACTA GACAAGTTTATTACTTGGAGTCAAGAGACGAATCTTTTGCCGTCAGATTTTGGGAAGCAG CAGGTTAAAACCTGGTTTAAAGTTTTCCAGATTAATCACCAAGCTTTGAGCAGCTATTCT CCCAAGACGTATCTGGGTAGAAGTGTTTTCTTAGGAGCGGAAGACAGTTCTATTAAAAAT CCTGGTTGGCATCAAGTAATCAATGACTTGCAATCTCAATGGATTAGCGGCGATCACTAC GGTTTAATTAAAAATCCAGTCCTCGCTGAAAAACTCAATAGCTACCTAGCCTAAAACTTT CAAAAAGCCTGATTATTGTTTAAAATGAATGATCGTTCACCGGTCAGAGGACAAGTATGA CAACCCAAACAGCTTCTAGTGCCAATGCCCTTGCTTCCTTTAACCAATTTTTAAGGGATG TAAAGGCGATCGCCCAACCCTATTGGTATCCCACTGTATCAAATAAAAGAAGCTTTTCTG AGGTTATTCGTTCCTGGGGAATGCTATCACTGCTTATCTTTTTGATTGTGGGATTAGTCG CCGTCACGGCTTTTAATAGTTTTGTTAATCGTCGTTTAATTGATGTCATTATTCAAGAAA AAGATGCGTCTCAATTTGCCAGTACATTAACTGTCTATGCGATCGGATTAATCTGTGTAA CGCTGCTGGCAGGGTTCACTAAAGATATTCGCAAAAAAATTGCCCTAGATTGGTATCAAT GGTTAAACACCCAGATTGTAGAGAAATATTTTAGTAATCGTGCCTATTATAAAATTAACT TTCAATCTGACATTGATAACCCCGATCAACGTCTAGCCCAGGAAATTGAACCGATCGCCA CAAACGCCATTAGTTTCTCGGCCACTTTTTTGGAAAAAAGTTTGGAAATGCTAACTTTTT TAGTGGTAGTTTGGTCAATTTCTCGACAGATTGCTATTCCGCTAATGTTTTACACGATTA TCGGTAATTTTATTGCCGCCTATCTAAATCAAGAATTAAGCAAGATCAATCAGGCACAAC TGCAATCAAAAGCAGATTATAACTATGCCTTAACCCATGTTCGGACTCATGCGGAATCTA TTGCTTTTTTTCGGGGAGAAAAAGAGGAACAAAATATTATTCAGCGACGTTTTCAGGAAG TTATCAATGATACGAAAAATAAAATTAACTGGGAAAAAGGGAATGAAATTTTTAGTCGGG GCTATCGTTCCGTCATTCAGTTTTTTCCTTTTTTAGTCCTTGGCCCTTTGTATATTAAAG GAGAAATTGATTATGGACAAGTTGAGCAAGCTTCATTAGCTAGTTTTATGTTTGCATCGG CCCTGGGAGAATTAATTACAGAATTTGGTACTTCAGGACGTTTTTCTAGTTATGTAGAAC GTTTAAATGAATTTTCTAATGCCTTAGAAACTGTGACTAAACAAGCCGAGAATGTCAGCA CAATTACAACCATAGAAGAAAATCATTTTGCCTTTGAACACGTCACCCTAGAAACCCCTG ACTATGAAAAGGTGATTGTTGAGGATTTATCTCTTACTGTTCAAAAAGGTGAAGGATTAT TGATTGTCGGGCCCAGTGGTCGAGGTAAAAGTTCTTTATTAAGGGCGATCGCCGGTTTAT GGAATGCTGGCACTGGGCGTTTAGTGCGTCCTCCCCTAGAAGAAATTCTCTTTTTGCCCC AACGTCCCTACATTATTTTGGGAACCTTACGCGAACAATTGCTGTATCCTCTAACCAATA GTGAGATGAGCAATACCGAACTTCAAGCAGTATTACAACAAGTCAATTTGCAAAATGTGC TAAATCGGGTGGATGACTTTGACTCCGAAAAACCCTGGGAAAACATTCTCTCCCTCGGTG AACAACAACGCCTAGCCTTTGCTCGATTGTTAGTGAATTCTCCGAGTTTTACCATTTTAG ATGAGGCGACCAGTGCCTTAGATTTAACAAATGAGGGGATTTTATACGAGCAATTACAAA CTCGCAAGACAACCTTTATTAGTGTGGGTCATCGAGAAAGTTTGTTTAATTACCATCAAT GGGTTTTAGAACTTTCTGCTGACTCTAGTTGGGAACTCTTAAGCGTTCAAGATTATCGCC TTAAAAAAGCGGGAGAAATGTTTACTAATGCTTCGAGTAACAATTCCATAACACCCGATA TTACTATCGATAATGGATCAGAACCAGAAATAGTCTATTCTCTTGAAGGATTTTCCCATC AGGAAATGAAACTATTAACAGACCTATCACTCTCTAGCATTCGGAGTAAAGCCAGTCGAG GGAAGGTGATTACAGCCAAGGATGGTTTTACCTACCTTTATGACAAAAATCCTCAGATAT TAAAGTGGCTCAGAACTTAA

Claims

1-19. (canceled)

20. A nucleic acid encoding a peptide spacer sequence (SP), wherein

a. the peptide sequence comprises at least 4 glycine amino acids per single repeat unit (SRU), or
b. at least five proline and/or leucine amino acids per single repeat unit (SRU),
c. a SRU within the SP is between 7 and 15 amino acids in length, and
d. the SP comprises between 2 and 10 SRUs.

21. The nucleic acid according to claim 20, encoding a peptide SRU with a sequence as shown in SEQ ID NO. 20 or SEQ ID NO. 21.

22. The nucleic acid according to claim 21, with a sequence as shown in SEQ ID NO. 43 or SEQ ID NO. 44.

Patent History
Publication number: 20110034680
Type: Application
Filed: Oct 22, 2010
Publication Date: Feb 10, 2011
Applicants: CYANO BIOTECH GMBH (Berlin), HUMBOLDT-UNIVERSITAET ZU BERLIN (Berlin)
Inventor: Dan KRAMER (Berlin)
Application Number: 12/855,764
Classifications
Current U.S. Class: Dna Or Rna Fragments Or Modified Forms Thereof (e.g., Genes, Etc.) (536/23.1)
International Classification: C07H 21/00 (20060101);