NONVOLATILE MEMORY DEVICE, SYSTEM COMPRISING NONVOLATILE MEMORY DEVICE, AND READ OPERATION OF NONVOLATILE MEMORY DEVICE

- Samsung Electronics

A nonvolatile memory device comprises a memory cell array, a page buffer, and a control circuit. The memory cell array comprises multi-level cells configured to store hard decision data bits. The page buffer is configured to sense whether each of the multi-level cells assumes an on-cell state or an off-cell state in response to a first read voltage applied to a selected wordline during a first read operation, to set first soft decision data bits according to the first read operation, and to sense one or more hard decision data bits from each of the multi-level cells in response to a second read voltage applied to the selected wordline in a second read operation. The control circuit is configured to control the first read operation and the second read operation to be performed in succession.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2010-0044124 filed on May 11, 2010, the disclosure of which is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

Embodiments of the inventive concept relate generally to nonvolatile memory devices. More particularly, embodiments of the inventive concept relate to nonvolatile memory devices designed to reduce common source line (CSL) noise and improve read performance.

Nonvolatile memory devices retain stored data even when disconnected from power. Examples of nonvolatile memory devices include flash memory, read only memory, and various forms of resistive memory.

In an effort to improve the storage capacity of flash memory devices, researchers have designed some flash memory devices to store multiple bits of data per memory cell. These devices are referred to as multi-level cell flash memory devices.

To ensure reliable performance, multi-level cell flash memory devices must be capable of accurately distinguishing between different states of memory cells. One challenge in doing so is eliminating noise that can cause different states to be confused with each other.

SUMMARY OF THE INVENTION

Embodiments of the inventive concept provide nonvolatile memory devices that perform read operations by successively sensing a soft decision data bit and a hard decision data bit. Embodiments of the inventive concept also provide methods of performing the read operations. Some embodiments are capable of reducing CSL noise and improving read performance.

According to one embodiment of the inventive concept, a nonvolatile memory device comprises a memory cell array, a page buffer, and a controller. The memory cell array comprises a plurality of multi-level cells each configured to store a plurality of hard decision data bits. The page buffer is configured to sense whether each of the plurality of multi-level cells assumes an on-cell state or an off-cell state in response to a first read voltage applied to a selected wordline during a first read operation, to set a plurality of first soft decision data bits according to the first read operation, and to sense one or more hard decision data bits from each of the plurality of multi-level cells in response to a second read voltage applied to the selected wordline in a second read operation. The control circuit is configured to control the first read operation and the second read operation to be performed in succession.

In certain embodiments, the page buffer comprises a plurality of sensing latches configured to sense whether each of the plurality of multi-level cells is in the on-cell state or the off-cell state in the first read operation, a plurality of first soft decision data latches configured to store the first soft decision data bits, and a plurality of pre-charge circuits configured to selectively supply a pre-charge voltage to a plurality of bitlines connected to the multi-level cells according to the first soft decision data bits, in a third read operation. Each of the plurality of sensing latches senses whether at least one of the plurality of multi-level cells that was sensed as an off-cell in the first read operation assumes the on-cell state or the off-cell state during the third read operation in response to a third read voltage applied to the selected wordline.

In certain embodiments, the first read voltage and the third read voltage have the same magnitude.

In certain embodiments, each of the plurality of sensing latches senses one of the hard decision data bits while the pre-charge voltage is applied to corresponding bitlines and the second read voltage is applied to the selected wordline.

In certain embodiments, the page buffer transfers a plurality of sensed hard decision data bits to a plurality of cache latches and outputs one of a plurality of sensed hard decision data bits from each of the plurality of cache latches during an output operation, senses whether each of the plurality of multi-level cells assumes an on-cell state or an off-cell state in response to a fourth read voltage applied to the selected wordline during a fourth read operation, and sets second soft decision data bits based on the fourth read operation. The output operation and the fourth read operation are performed concurrently.

In certain embodiments, the multi-level cells are flash memory cells each configured to store two or more bits.

According to another embodiment of the inventive concept, a method is provided for performing a read operation in a nonvolatile memory device comprising a plurality of multi-level cells each storing a plurality of hard decision data bits. The method comprises performing a first read operation to sense whether each of the multi-level cells assumes an on-cell state or an off-cell state in response to a first read voltage applied to a selected wordline. The method further comprises setting first soft decision data bits according to the first read operation, and performing a second read operation to sense the hard decision data bits stored in the multi-level cells by applying a second read voltage to the selected wordline. The first read operation and the second read operation are performed in succession.

In certain embodiments, the first read operation comprises sensing bits stored in the multi-level cells according to whether the multi-level cells assume the on-cell state or the off-cell state in response to the first read voltage applied to the selected wordline, and storing the sensed bits as the first soft decision data bits.

In certain embodiments, the method further comprises performing a third read operation by applying a third read voltage to the selected wordline while selectively supplying a pre-charge voltage to a plurality of bitlines connected to the multi-level cells according to the first soft decision data bits, and determining whether at least one of the multi-level cells that assumes the off-cell state in the first read operation assumes the on-cell state in the third read operation.

In certain embodiments, the first read voltage and the third read voltage have the same magnitude.

In certain embodiments, the second read operation comprises selectively supplying the pre-charge voltage to the plurality of bitlines according to bits sensed in the third read operation, and sensing one of the hard decision data bits using the pre-charge voltage and the second read voltage.

In certain embodiments, the method further comprises storing the sensed hard decision data bits to the cache latches and outputting one of the plurality of stored hard decision data bits from each of the plurality of cache latches, performing a fourth read operation to sense whether each of the plurality of multi-level cells assumes the on-cell state or the off-cell state in response to a fourth read voltage applied to the selected wordline, and setting second soft decision data bits according to the fourth read operation. The output operation and the fourth read operation are performed concurrently.

In certain embodiments, the multi-level cells comprise flash memory cells arranged in a NAND flash configuration.

According to another embodiment of the inventive concept, an electronic data storage apparatus, comprises a nonvolatile memory device comprising a plurality of multi-level cells, and a controller configured to control the apparatus to perform a read operation on the nonvolatile memory device by applying a first read voltage to a selected wordline connected to a selected multi-level cell in a first read operation, detecting whether the selected multi-level cell has an on-cell state or an off-cell state in the first read operation, and selectively applying a pre-charge voltage to a selected bitline connected to the selected multi-level cell while applying a second read voltage to the selected wordline in a second read operation. The pre-charge voltage is applied to the selected bitline in the second read operation based on whether the selected multi-level cell is in the on-cell state or the off-cell state in the first read operation.

In certain embodiments, the pre-charge voltage is applied to the selected bitline in the second read operation upon determining that the selected multi-level cell is in the on-cell state in the first read operation.

In certain embodiments, the apparatus further comprises a page buffer that senses whether the selected multi-level cell is in the on-cell state or the off-cell state in the first read operation, sets a first soft decision data bit based on the detection, and senses a hard decision data bit stored in the selected multi-level cell in response to a third read voltage applied to the selected wordline during a third read operation. The first read operation, the second read operation, and the third read operation are performed in succession.

In certain embodiments, the apparatus further comprises an error correction circuit configured to perform error detection and error correction on a plurality of hard decision data bits read output from the nonvolatile memory device.

In certain embodiments, the page buffer comprises a plurality of sensing latches that sense whether the plurality of multi-level cells are in the on-cell state or the off-cell state in the first read operation, a plurality of first soft decision data latches that set and store a plurality of first soft decision data bits corresponding to the plurality of multi-level cells, and a plurality of pre-charge circuits each selectively supplying a pre-charge voltage to a corresponding bitline according to the plurality of first soft decision data bits.

In certain embodiments, the first read voltage and the second read voltage have the same magnitude.

In certain embodiments, the apparatus further comprises a host interface configured to interface between the nonvolatile memory device and a host system.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate selected embodiments of the inventive concept. In the drawings, like reference numbers indicate like features.

FIG. 1 is a block diagram of a nonvolatile memory device according to an embodiment of the inventive concept.

FIG. 2 is a block diagram illustrating an example of a page buffer shown in FIG. 1.

FIG. 3 is a threshold voltage diagram illustrating threshold voltage distributions corresponding to different states of multi-level cells in FIG. 1.

FIGS. 4A through 4D are data flow diagrams for explaining operations of the page buffer of FIG. 2.

FIG. 5 is a timing diagram for explaining operations of a cache latch illustrated in FIG. 2.

FIGS. 6A through 6D are data flow diagrams for explaining operations of the cache latch of FIG. 2.

FIG. 7 is a flowchart illustrating a method of operating the nonvolatile memory device of FIG. 1.

FIG. 8 is a block diagram of a memory system incorporating the nonvolatile memory device of FIG. 1.

DETAILED DESCRIPTION

Embodiments of the inventive concept are described below with reference to the corresponding drawings. These embodiments are presented as teaching examples and should not be construed to limit the scope of the inventive concept.

FIG. 1 is a block diagram of a nonvolatile memory device according to an embodiment of the inventive concept.

Referring to FIG. 1, a nonvolatile memory device 100 comprises a memory cell array 110, a high voltage generator 120, a row decoder 130, a page buffer 140, a Y-gate 150, and a control circuit 160.

Memory cell array 110 comprises a plurality of multi-level cells each configured to store multiple bits of data. The multi-level cells are connected to corresponding wordlines and bitlines.

High voltage generator 120 generates wordline voltages Vvrf, Vrd, and Vpgm to be supplied to memory cell array 110. High voltage generator 120 generates different wordline voltages according to different operational modes, such as a read operation mode or a program operation mode, and supplies the generated wordline voltages to selected wordlines.

During a program operation, high voltage generator 120 generates a program voltage Vpgm and supplies it to a selected wordline. During a read operation, high voltage generator 120 generates a read voltage Vrd for reading selected data and supplies it to a selected wordline. During a verify operation, high voltage generator 120 generates a verify voltage Vvrf for verifying selected data and supplies it to a selected wordline.

Row decoder 130 selects a wordline according to a row address Row-Add. Row decoder 130 supplies a wordline voltage generated from the high voltage generator 120 to a selected wordline.

Page buffer 140 operates as a sense amplifier or a write driver according to an operational mode. For example, during a program operation, page buffer 140 operates as a write driver for driving bitlines according to bits to be stored in memory cell array 110. During a read operation, page buffer 140 operates as a sense amplifier for reading programmed bits from memory cell array 110. Page buffer 140 senses multiple bits stored in a plurality of multi-level cells.

During the read operation, page buffer 140 can potentially sense erroneous bits. Accordingly, nonvolatile memory device 100 maintains soft decision data indicating a read reliability of data stored in the multi-level cells. The soft decision data typically comprises one or more bits for each memory cell. The data stored in the plurality of multi-level cells is referred to as hard decision data. Where the soft decision data comprises two soft decision data bits, for example, the soft decision data can indicate four levels of read reliability according to bits ‘11’, ‘01’, ‘00’, ‘10’.

FIG. 2 is a block diagram illustrating an example of page buffer 140 of FIG. 1. FIG. 3 is a threshold voltage diagram illustrating threshold voltage distributions corresponding to different states of multi-level cells in FIG. 1.

Referring to FIGS. 1 through 3, page buffer 140 performs a first read operation and a second read operation. The first read operation senses whether each of the multi-level cells is in an on-cell state or an off-cell state using a first read voltage Vrd1, and sets a first soft decision data bit SDDB1 for each memory cell according to a result of the sensing. The second read operation senses a hard decision data bit HDDB1 from each of the multi-level cells using a fourth read voltage Vrd4.

Page buffer 140 comprises a plurality of sensing latches 141-1 through 141-N, a plurality of pre-charge circuits 143-1 through 143-N, a plurality of first soft decision data latches 145-1 through 145-N, a plurality of second soft decision data latches 147-1 through 147-N, a plurality of hard decision data latches 149-1 through 149-N, and a plurality of cache latches 151-1 through 151-N.

The number of soft data latches for storing the soft decision data bits can be changed according to the number of soft decision data bits. For example, where the soft decision data comprises three soft decision data bits, page buffer 140 can comprise three soft decision data latches for each bitline.

Sensing latches 141-1 through 141-N are connected to corresponding bitlines BL1 through BLN. Sensing latches 141-1 through 141-N sense whether a corresponding one of the multi-level cells is an on-cell or an off-cell by using one of first through seventh read voltages Vrd1 through Vrd7. First through seventh read voltages Vrd1 through Vrd7 are sequentially generated by high voltage generator 120 and supplied to a selected wordline. After fourth read voltage Vrd4 is supplied to the selected wordline, a hard decision data bit is obtained. After seventh read voltage Vrd7 is supplied to the selected wordline, soft decision data is obtained fully.

An on-cell is a multi-level cell that is turned on in response to a read voltage supplied to a selected wordline. A multi-level cell generally becomes an on-cell where a read voltage is higher than a threshold voltage of the multi-level cell. An off-cell is a multi-level cell that is turned off in response to a read voltage supplied to a selected wordline. The multi-level cell becomes an off-cell where the read voltage is lower than a threshold voltage of the multi-level cell. In some embodiments, sensing latches 141-1 through 141-N sense memory cells having a threshold voltage lower than first read voltage Vrd1 and latch a ‘1’ to indicate an on-cell, and they sense memory cells having a threshold voltage higher than first read voltage Vrd1 and latch a ‘0’ to indicate an off-cell.

First soft decision data latches 145-1 through 145-N store first soft decision data bits SDDB1 according to the sensing performed by sensing latches 141-1 through 141-N. For example, where one of the multi-level cells is an on-cell, ‘1’ is stored in a corresponding one of first soft decision data latches 145-1 through 145-N. Where one of the multi-level cells is an off-cell, ‘0’ is stored in a corresponding one of first soft decision data latches 145-1 through 145-N.

Pre-charge circuits 143-1 through 143-N each supply a pre-charge voltage to a corresponding bitline to allow sensing latches 141-1 through 141-N to perform sensing using first read voltage Vrd1. Noise can occur on a common source line while pre-charge circuits 143-1 through 143-N supply the pre-charge voltage to bitlines BL1 through BLN. Due to the common source line noise, sensing latches 141-1 through 141-N may inaccurately sense the states of corresponding multi-level cells.

As an example of inaccurate sensing, sensing latches 141-1 through 141-N can erroneously sense a multi-level cell as an on-cell rather than an off-cell due to common source line noise. Accordingly, sensing latches 141-1 through 141-N may require an additional sensing operation to detect a state of an erroneously sensed cell.

Pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN according to each sensing result in order to decrease common source line noise. In other words, pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN corresponding to multi-level cells that have been sensed as off-cells.

Using the pre-charge voltage and a read voltage Vrd1-1, sensing latches 141-1 through 141-N sense whether the multi-level cells that have been sensed as off-cells are in an on-cell state or an off-cell state. Accordingly, sensing latches 141-1 through 141-N sense multi-level cells that had wrongly been sensed as off-cells. The result of this subsequent sensing can be stored as first soft decision data bits SDDB1. In some embodiments, first read voltage Vrd1 and read voltage Vrd1-1 have the same magnitude.

To perform sensing using read voltage Vrd1-1, pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN corresponding to multi-level cells that have been sensed as off-cells using first read voltage Vrd1.

Common source line noise is reduced when pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage. Accordingly, sensing latches 141-1 through 141-N sense whether multi-level cells are on-cells or off-cells with decreased common source line noise, and set first soft decision data bits SDDB1 according to a result of the sensing.

Pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN according to a sensing result obtained with read voltage Vrd1-1, and then they perform sensing using a second read voltage Vrd2.

Sensing latches 141-1 through 141-N sense whether multi-level cells are in an on-cell state or in an off-cell state using second read voltage Vrd2 and then they set second soft decision data bits SDDB2 according to a result of the sensing.

Second soft decision data latches 147-1 through 147-N store second soft decision data bits SDDB2.

Pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN according to a sensing result obtained with second read voltage Vrd2, and sense multi-level cells using a third read voltage Vrd3 in conjunction with the pre-charge voltage.

Sensing latches 141-1 through 141-N sense whether multi-level cells are in an on-cell state or in an off-cell state using third read voltage Vrd3 and set first soft decision data bits SDDB1 according to a result of the sensing.

First soft decision data latches 145-1 through 145-N store first soft decision data bits SDDB1.

Pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN according to a sensing result using third read voltage Vrd3 so as to sense by using a fourth read voltage Vrd4.

Sensing latches 141-1 through 141-N sense hard decision data bits HDDB1 using a fourth read voltage Vrd4.

Hard decision data latches 149-1 through 149-N store sensed hard decision data bits HDDB1.

Cache latches 151-1 through 151-N store first soft decision data bits SDDB1, second soft decision data bits SDDB2 or hard decision data bits HDDB1 through HDDB4.

Y gate 150 transmits data latched in page buffer 140 to an input/output buffer according to a column address Y-Add during a read operation.

Y-gate 150 transmits input data to page buffer 140 during a program operation.

Control circuit 160 controls voltage generation of high voltage generator 120 for a program operation, a verify operation, a read operation, or an erase operation in response to a control signal supplied from an external source, such as a chip enable signal /CE, a read enable signal /RE, a write enable signal /WE, or a command signal /CMD.

Control circuit 160 controls the first read operation and the second read operation of page buffer 140 to be successively performed. For example, control circuit 160 may control an order in which first read voltage Vrd1 and second read voltage Vrd2 are supplied to a selected wordline.

FIGS. 4A through 4D are data flow diagrams for explaining operations of page buffer 140 of FIG. 2.

FIG. 4A illustrates an operation in which sensing latches 141-1 through 141-N sense whether multi-level cells are on-cells or off-cells using first read voltage Vrd1.

Referring to FIG. 4A, according to each sensing result, sensing latches 141-1 through 141-N sense multi-level cells having a lower threshold voltage than first read voltage Vrd1 as on-cells and latch a ‘1’. For example, sensing latches 141-1 through 141-N sense cells that have a lower threshold voltage than first read voltage Vrd1, among cells in an erase state E, a first state P1 corresponding to ‘0111’ through a seventh state P7 corresponding to ‘1101’ as on-cells. Accordingly, as a result of the sensing, sensing latches 141-1 through 141-N latch ‘1’.

According to the sensing results, sensing latches 141-1 through 141-N sense multi-level cells having a higher threshold voltage than first read voltage Vrd1 as off-cells and senses ‘0’.

For example, sensing latches 141-1 through 141-N sense cells that have a higher threshold voltage than first read voltage Vrd1 among cells in seventh state P7 corresponding to ‘1101’, and cells in an eighth state P8 corresponding to ‘1100’ or a fifteenth state P15 corresponding to ‘1110’ as off-cells. Accordingly, as a result of the sensing, sensing latches 141-1 through 141-N latch ‘0’.

Sensing latches 141-1 through 141-N set sensed bits according to the sensing results as first soft decision data bits SDDB1.

Sensing latches 141-1 through 141-N invert sensed bits so that pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage. Accordingly, pre-charge circuits 143-1 through 143-N supply the pre-charge voltage to bitlines BL1 through BLN where corresponding bits of sensing latches 141-1 through 141-N are ‘1’. In other words, sensing latches 141-1 through 141-N invert ‘0’ to ‘1’ and invert ‘1’ to ‘0’.

FIG. 4B illustrates an operation in which each bit is stored based on a sensing result in a plurality of first soft decision data latches.

Referring to FIG. 4B, sensing latches 141-1 through 141-N invert only a sensing bit set to ‘1’ as a result of inversion and store inverted bits in first soft decision data latches 145-1 through 145-N.

FIG. 4C illustrates an operation in which sensing latches sense whether multi-level cells are on-cells or off-cells using third read voltage Vrd3.

Referring to FIG. 4C, pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN.

For example, pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN corresponding to sensing bits set as ‘1’ in sensing latches 141-1 through 141-N.

Sensing latches 141-1 through 141-N sense whether at least a state (e.g., seventh state P7) of multi-level cells judged as off-cells are in an on-cell state or an off-cell state by using the pre-charge voltage and read voltage Vrd1-1.

Sensing latches 141-1 through 141-N store each bit according to the sensing result in a plurality of first soft decision data latches 145-1 through 145-N.

FIG. 4D illustrates a reset operation to be performed on sensing latches prior to a next sensing operation.

Referring to FIG. 4D, first soft decision data latches 145-1 through 145-N invert bits stored as ‘0’ in first soft decision data latches 145-1 through 145-N for a next sensing operation and move inverted bits to sensing latches 141-1 through 141-N.

FIG. 5 is a timing diagram for explaining operations of cache latches 151-1 through 151-N of FIG. 2. FIGS. 6A to 6D are data flow diagrams for explaining operations of cache latches 151-1 through 151-N of FIG. 2.

FIG. 6A illustrates operations of page buffer 140 during a time T1. During time T1, sensing latches 141-1 through 141-N sense whether multi-level cells are on-cells or off-cells using first read voltages Vrd1 through Vrd3. Based on the sensing, sensing latches 141-1 through 141-N store bits in first soft decision data latches 145-1 through 145-N or second soft decision data latches 147-1 through 147-N until sensing a hard decision data bit.

Sensing latches 141-1 through 141-N sense hard decision data bits HDDB1 using fourth read voltage Vrd4.

FIGS. 6B and 6C illustrate operations of page buffer 140 during a time T2. During time T2, sensing latches 141-1 through 141-N sense whether multi-level cells are on-cells or off-cells using read voltages Vrd5 through Vrd8. According to results of this sensing, sensing latches 141-1 through 141-N store bits in first soft decision data latches 145-1 through 145-N or second soft decision data latches 147-1 through 147-N.

In addition, hard decision data latches 149-1 through 149-N transmit one of a plurality of stored hard decision data bits to cache latches 151-1 through 151-N.

FIG. 6D illustrates operations of page buffer 140 during a time T3. During time T3, sensing latches 141-1 through 141-N sense hard decision data bits HDDB2.

Moreover, first soft decision data latches 145-1 through 145-N transmit stored first soft decision data bits SDDB1 to cache latches 151-1 through 151-N, and a plurality of second soft decision data latches 147-1 through 147-N transmit stored second soft decision data bits SDDB2 to cache latches 151-1 through 151-N.

Page buffer 140 senses and outputs hard decision data bits, senses whether multi-level cells are on-cells or off-cells, and sets bits according to a sensing result as first soft decision data bits SDDB1 or second soft decision data bits SDDB2.

Control circuit 160 can control the output operation and the setting operation to be performed at the same time, which can improve the performance of a read operation.

FIG. 7 is a flowchart illustrating a method of operating nonvolatile memory device 100 according to an embodiment of the inventive concept. In the description that follows, example method steps are indicated by parentheses.

Referring to FIGS. 1 through 7, page buffer 140 senses whether multi-level cells are on-cells or off-cells using first read voltage Vrd1 during a first read operation and sets first soft decision data bits SDDB1 according to results of the sensing (S10).

Pre-charge circuits 143-1 through 143-N selectively supply the pre-charge voltage to bitlines BL1 through BLN according to the results of the sensing.

Sensing latches 141-1 through 141-N then uses the pre-charge voltage and read voltage Vrd1-1 to determine whether at least multi-level cell that was determined to be an off-cell in the first read operation is an on-cell (S20). Sensing latches 141-1 through 141-N then set first soft decision data bits SDDB1 according to the sensing.

Thereafter, sensing latches 141-1 through 141-N sense hard decision data bits HDDB1 (S30).

FIG. 8 is a block diagram illustrating a memory system 300 comprising nonvolatile memory device 100 of FIG. 1 according to an embodiment of the inventive concept.

Referring to FIG. 8, memory system 300 provides mass data storage capability. Memory system 300 comprises nonvolatile memory device 100 and a memory controller 320. Memory controller 320 controls data exchange between a host and nonvolatile memory device 100.

Memory controller 320 comprises a static random access memory (SRAM) 321, a processor 322, a host interface 323, an error correction circuit 324, and a memory interface 325. SRAM 321 is used as an operational memory of processor 322. Processor 322 performs control operations for data exchange of memory controller 320. Host interface 323 implements a data exchange protocol of a host connected to the memory system 300.

Error correction circuit 324 performs error detection and error correction on hard decision data bits by using soft decision data output from nonvolatile memory device 100. Memory interface 325 interfaces with nonvolatile memory device 100.

In some embodiments, memory system 300 takes the form of a solid state disk. In a solid state disk, error correction circuit 324 can have a considerably decreased burden due to the increased accuracy of read operations performed by nonvolatile memory device 100. Additionally, memory system 300 can be combined with an application chipset, a camera image processor, and a mobile DRAM and supplied to a storage device of an information processing device that can exchange large amounts of data.

As indicated by the foregoing, a nonvolatile memory device according to certain embodiments of the inventive concept can achieve reduced common source line noise and improved read performance by sensing a soft decision data bit and a hard decision data bit in succession. In certain embodiments, read methods can be implemented by computer-readable code stored in a computer-readable recording medium.

The foregoing is illustrative of embodiments and is not to be construed as limiting thereof. Although a few embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the embodiments without materially departing from the novel teachings and advantages of the inventive concept. Accordingly, all such modifications are intended to be included within the scope of the inventive concept as defined in the claims.

Claims

1. A nonvolatile memory device, comprising:

a memory cell array comprising a plurality of multi-level cells each configured to store a plurality of hard decision data bits;
a page buffer configured to sense whether each of the plurality of multi-level cells assumes an on-cell state or an off-cell state in response to a first read voltage applied to a selected wordline during a first read operation, to set a plurality of first soft decision data bits according to the first read operation, and to sense one or more hard decision data bits from each of the plurality of multi-level cells in response to a second read voltage applied to the selected wordline in a second read operation; and
a control circuit configured to control the first read operation and the second read operation to be performed in succession.

2. The nonvolatile memory device of claim 1, wherein the page buffer comprises:

a plurality of sensing latches configured to sense whether each of the plurality of multi-level cells is in the on-cell state or the off-cell state in the first read operation;
a plurality of first soft decision data latches configured to store the first soft decision data bits; and
a plurality of pre-charge circuits configured to selectively supply a pre-charge voltage to a plurality of bitlines connected to the multi-level cells according to the first soft decision data bits, in a third read operation;
wherein each of the plurality of sensing latches senses whether at least one of the plurality of multi-level cells that was sensed as an off-cell in the first read operation assumes the on-cell state or the off-cell state during the third read operation in response to a third read voltage applied to the selected wordline.

3. The nonvolatile memory device of claim 2, wherein the first read voltage and the third read voltage have the same magnitude.

4. The nonvolatile memory device of claim 2, wherein each of the plurality of sensing latches senses one of the hard decision data bits while the pre-charge voltage is applied to corresponding bitlines and the second read voltage is applied to the selected wordline.

5. The nonvolatile memory device of claim 2, wherein the page buffer transfers a plurality of sensed hard decision data bits to a plurality of cache latches and outputs one of a plurality of sensed hard decision data bits from each of the plurality of cache latches during an output operation, senses whether each of the plurality of multi-level cells assumes an on-cell state or an off-cell state in response to a fourth read voltage applied to the selected wordline during a fourth read operation, and sets second soft decision data bits based on the fourth read operation; and

wherein the output operation and the fourth read operation are performed concurrently.

6. The nonvolatile memory device of claim 2, wherein the multi-level cells are flash memory cells each configured to store two or more bits.

7. A method of performing a read operation in a nonvolatile memory device comprising a plurality of multi-level cells each storing a plurality of hard decision data bits, the method comprising:

performing a first read operation to sense whether each of the multi-level cells assumes an on-cell state or an off-cell state in response to a first read voltage applied to a selected wordline;
setting first soft decision data bits according to the first read operation; and
performing a second read operation to sense the hard decision data bits stored in the multi-level cells by applying a second read voltage to the selected wordline, wherein the first read operation and the second read operation are performed in succession.

8. The method of claim 7, wherein the first read operation comprises:

sensing bits stored in the multi-level cells according to whether the multi-level cells assume the on-cell state or the off-cell state in response to the first read voltage applied to the selected wordline; and
storing the sensed bits as the first soft decision data bits.

9. The method of claim 8, further comprising:

performing a third read operation by applying a third read voltage to the selected wordline while selectively supplying a pre-charge voltage to a plurality of bitlines connected to the multi-level cells according to the first soft decision data bits; and
determining whether at least one of the multi-level cells that assumes the off-cell state in the first read operation assumes the on-cell state in the third read operation.

10. The method of claim 9, wherein the first read voltage and the third read voltage have the same magnitude.

11. The method of claim 9, wherein the second read operation comprises:

selectively supplying the pre-charge voltage to the plurality of bitlines according to bits sensed in the third read operation; and
sensing one of the hard decision data bits using the pre-charge voltage and the second read voltage.

12. The method of claim 9, further comprising:

storing the sensed hard decision data bits to the cache latches and outputting one of the plurality of stored hard decision data bits from each of the plurality of cache latches;
performing a fourth read operation to sense whether each of the plurality of multi-level cells assumes the on-cell state or the off-cell state in response to a fourth read voltage applied to the selected wordline; and
setting second soft decision data bits according to the fourth read operation;
wherein the output operation and the fourth read operation are performed concurrently.

13. The method of claim 12, wherein the multi-level cells comprise flash memory cells arranged in a NAND flash configuration.

14. An electronic data storage apparatus, comprising:

a nonvolatile memory device comprising a plurality of multi-level cells; and
a controller configured to control the apparatus to perform a read operation on the nonvolatile memory device by applying a first read voltage to a selected wordline connected to a selected multi-level cell in a first read operation, detecting whether the selected multi-level cell has an on-cell state or an off-cell state in the first read operation, and selectively applying a pre-charge voltage to a selected bitline connected to the selected multi-level cell while applying a second read voltage to the selected wordline in a second read operation;
wherein the pre-charge voltage is applied to the selected bitline in the second read operation based on whether the selected multi-level cell is in the on-cell state or the off-cell state in the first read operation.

15. The apparatus of claim 14, wherein the pre-charge voltage is applied to the selected bitline in the second read operation upon determining that the selected multi-level cell is in the on-cell state in the first read operation.

16. The apparatus of claim 14, further comprising:

a page buffer that senses whether the selected multi-level cell is in the on-cell state or the off-cell state in the first read operation, sets a first soft decision data bit based on the detection, and senses a hard decision data bit stored in the selected multi-level cell in response to a third read voltage applied to the selected wordline during a third read operation;
wherein the first read operation, the second read operation, and the third read operation are performed in succession.

17. The apparatus of claim 16, further comprising:

an error correction circuit configured to perform error detection and error correction on a plurality of hard decision data bits read output from the nonvolatile memory device.

18. The apparatus of claim 16, wherein the page buffer comprises:

a plurality of sensing latches that sense whether the plurality of multi-level cells are in the on-cell state or the off-cell state in the first read operation;
a plurality of first soft decision data latches that set and store a plurality of first soft decision data bits corresponding to the plurality of multi-level cells; and
a plurality of pre-charge circuits each selectively supplying a pre-charge voltage to a corresponding bitline according to the plurality of first soft decision data bits.

19. The apparatus of claim 17, wherein the first read voltage and the second read voltage have the same magnitude.

20. The apparatus of claim 14, further comprising a host interface configured to interface between the nonvolatile memory device and a host system.

Patent History
Publication number: 20110280070
Type: Application
Filed: Mar 28, 2011
Publication Date: Nov 17, 2011
Applicant: SAMSUNG ELECTRONICS CO., LTD. (Suwon-si)
Inventors: Jong-Young KIM (Seoul), Ki Tae PARK (Seongnam-si), Bo Geun KIM (Suwon-si)
Application Number: 13/073,029
Classifications
Current U.S. Class: Multiple Values (e.g., Analog) (365/185.03)
International Classification: G11C 16/26 (20060101);