SPORTS BRA

- UNIVERSITY OF WOLLONGONG

An encapsulation and compression sports bra (1) with cups (7) formed of elastic material to elevate and compress breasts (8) of a wearer (2) to restrict anatomical breast support structures reaching their end of range during downward breast trajectory to thereby reduce exercise induced breast discomfort.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to a sports bra.

BACKGROUND OF THE INVENTION

Breast discomfort associated with exercise (exercise induced breast discomfort, EIBD) and the embarrassment associated with physical appearance have been identified as barriers to females participating in physical activity, particularly for females with large breasts. Biomechanical studies have related EIBD to excessive breast movement, where as little as 2 cm of vertical breast displacement (VBD) has been found to be sufficient to cause exercise-induced breast discomfort in some females. Unsupported breasts have been found to displace vertically up to 12 cm during treadmill running indicating that the breasts' anatomical supports, the overlying skin and fine hairlike ligaments (Cooper's Ligaments) are insufficient to support the breasts during physical activity. Sports bras act as external supports for the breasts and aim to limit VBD and EIBD accordingly.

Traditional sports bras are usually an encapsulation design, where each breast is supported individually in a separate cup, which is made of non-elastic material to limit VBD. Crop tops are another form of breast support made of elastic material that compress the breasts as a single unit (not individually), against the chest wall. Studies comparing the two bra designs have found the encapsulation design to be superior in limiting VBD and EIBD compared to crop tops. Inconsistent results have been found regarding whether breast compression worn in addition to an encapsulation sports bra, external to it, is more effective in decreasing EIBD compared to an encapsulation sports bra alone. Encapsulation sports bras that are the most effective in limiting VBD and EIBD have also been ranked the most uncomfortable to wear.

SUMMARY OF THE INVENTION

In accordance with one aspect of the invention, there is provided a sports bra with cups for separately encapsulating and compressing the breasts of the wearer, the cups being constructed to elevate and compress the breasts.

In another broad aspect, there is provided a sports bra with flexible resilient cups constructed to support the breasts in an elevated, compressed condition whereby to raise an effective low point of vertical breast displacement (VBD) during exercise to thereby reduce loading on anatomical restraints.

Preferably, the cups include flexible sections of elastic material designed to be on stretch when fitted to the wearer, in order to compress the breasts.

Preferably, the cups include flexible sections of elastic material, whereby the resistance of the elastic material varies with breast volume.

Preferably, the cups are arranged to stretch in superior/inferior and medial/lateral directions.

Preferably, the cups include inferior/lateral portions for supporting and elevating the breasts.

Preferably, the inferior/lateral portions of the sports bra cups are stiffer than the flexible sections.

Preferably, the inferior/lateral portions of the sports bra cups are in the form of pads fitted into the inferior/lateral aspect of the cups.

Preferably, the inferior/lateral portions are integral with the bra cups.

Preferably, the inferior/lateral portions and flexible sections of the sports bra cups are formed of a resilient material, with the inferior/lateral portions having a greater thickness and/or stiffness to elevate the breasts.

Preferably, the cups are substantially formed of a material with elastic sections providing the flexible sections and less elastic sections providing the inferior/lateral portions.

Preferably, the material is formed as a unitary structure providing a gradual change in elasticity between the elastic sections and the less elastic sections.

In another aspect, there is provided a method of constructing an encapsulation sports bra, including measuring the breast volume of a wearer and designing flexible, resilient cups to encapsulate the breasts.

Preferably, the cups are moulded on the breasts when the arms of the wearer are elevated.

Preferably, the cups are moulded on the breasts when the arms of the wearer are elevated above the wearer's head to assist with breast elevation and breast shape.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described, by way of non-limiting example only, with reference to the accompanying drawings in which:

FIG. 1 is a diagrammatic side view of a first embodiment of a sports bra fitted to a wearer;

FIG. 2 is an illustration of a second embodiment of a sports bra from a front view;

FIG. 3 is an illustration of a third embodiment of a sports bra from a front view. The pads have been removed from the inside of the cups and placed on the outside of the cups for display purposes only;

FIG. 4 is an illustration of the third embodiment viewed from a front view. The pads are positioned on the inside of the cups, as per the configuration during use;

FIG. 5 is an illustration of the fourth embodiment. The pads have been removed from the inside of the cups and placed on the outside of the cups for display purposes only;

FIG. 6 illustrates measured vertical breast displacement (VBD), in centimetres, of the left breast relative to the trunk for the second embodiment (SE), the third embodiment (TE), and a prior art sports bra (PA);

FIG. 7 illustrates measured breast elevation, signified by the raised low point of vertical nipple displacement (in centimetres) relative to the suprasternal notch during the downward breast trajectory, for the SE, TE and PA;

FIG. 8 illustrates measured breast compression, signified by the mean distance of the left nipple relative to the suprasternal notch in the anterior/posterior plane when standing, for the SE, TE and PA;

FIG. 9 illustrates bra ranking (“most preferred bra to wear during physical activity”) for the SE, TE and PA. Rank 1=most preferred; rank 3=least preferred.

DETAILED DESCRIPTION OF EMBODIMENTS

Referring firstly to FIG. 1, an encapsulation and compression sports bra 1 is shown fitted to a wearer 2. The bra 1 includes a frame 3 formed of a shoulder strap 4, posterior band 5 and an underwire 6. Cups 7 extend from the underwire 6 up to the shoulder strap 4 so as to fully encapsulate breasts 8 of the wearer 2.

Each cup 7 is formed of a flexible section 9, which attaches onto the shoulder strap 4. Each cup 7 also has a lower lateral (referred to in the art as “inferior/lateral”) portion 11, which elevates the lower inferior/lateral aspect 12 of the breast 8.

The portion 11 may either be formed of a separately inserted pad, or alternatively, may be formed integral with the flexible section 9 by the use of a thicker and/or stiffer material in the lower lateral portion 11 so as to elevate the breast, as appropriate.

Phantom lines 13 and 14 illustrate the breast and nipple, respectively, in a rest condition, without encapsulation or compression. When the bra 1 is fitted, the breast is captured within the cups 7 and lifted into an elevated, compressed condition. The lifting action causes the nipple 14 to be elevated and changes the shape of the inferior aspect of the breast within the cup. Breast elevation “d” is measured by the distance between the nipple 14 and the suprasternal notch 18 in the vertical plane. This is particularly relevant during exercise such as to identify a low point of vertical breast displacement during the downward breast trajectory.

Breast compression “D” is measured by the distance between the nipple 14 and the suprasternal notch 18 in the anterior/posterior plane in the static position. Reference 17 indicates the nipple position in a compressed and elevated state relative to an uncompressed and non-elevated state Reference 14.

Referring now to FIG. 2, a second embodiment of a sports bra 20 is illustrated without the pads, in which the cups 7 are of elastic material arranged to stretch in a superior/inferior plane 21 as well as a medial/lateral 22 plane. The cups 7 are again designed so that the elastic material is on stretch when fitted to the wearer. “On stretch” refers to the state of a bra cup when fitted to a breast. The bra cup is said to be “on stretch” when, upon fitting, the elastic material of the bra cup is in tension such that the breast is compressed against the torso. As such, the breasts are compressed by the cup material. This assists to limit any loss of breast elevation during vertical breast displacement when exercising. The resistance to stretch of the elastic material increases as the bra size increases. The cup 7 was moulded to the wearer's breasts with their arms elevated above their head to assist with breast elevation and breast shape. The frame 3 of the second embodiment of the sports bra 20 is otherwise the same as a conventional sports bra.

Referring to FIG. 3, a third embodiment of a sports bra 25 is illustrated which is similarly configured to the first embodiment. Accordingly, like numerals denote like parts. The third embodiment is illustrated with one centimetre thick soft dense pads 26 placed in the inferior/lateral aspect 27 of each cup 7, sitting on the outside of each cup to illustrate the shape of the pads. Note that pads 26 are worn on the inside of cups 7. These pads 26 function to provide greater breast elevation by making the inferior/lateral aspect 27 of the cup 7 stiffer and stronger and allows more breast volume to be encased in the superior aspect 28 of the cup 7.

FIG. 4 shows the third embodiment of the sports bra 25 of FIG. 3 with the pads 26 sitting within the cups 7 from a front view. The third embodiment of the sports bra 25, with the additional pads 26 fitted (as worn), is ideal for elevation of medium-to-large and/or ptotic breasts. If the resistance to stretch offered by the elastic material in the inferior/lateral aspect of the cup was sufficient (though still elastic) to elevate the breast, the pads 26 would not be necessary.

Referring now to FIG. 5, a fourth embodiment of a sports bra 29 is shown with pads 30 sitting on the outside of cups 7 to illustrate pad shape. Note that pads 30 are worn on the inside of cup 7. The resistance offered by the elastic material of the cup 7 and the size of the pads 30 has both been altered with respect to the bra size, as compared to the third embodiment of the sports bra 25, to fit differently shaped breasts. The size of the pads 30 and the resistance to stretch of the elastic material increases as the bra size increases.

Experimental Results

The above described embodiments are designed to elevate and compress medium-to-large and/or ptotic breasts. To elevate breasts of this size and shape (commonly ptotic), simultaneous breast compression is necessary to prevent the breasts from protruding further anteriorly from the body in the anterior/posterior plane. This is desirable to limit the moment arm of the breast relative to the trunk, to limit possible slackening of the breast tissue's anatomical restraints and therefore the support they offer and to limit any possible negative effect on the harmonics of the breast and trunk movement during running. Furthermore, breast compression can assist to better synchronise breast and trunk movement during running. Therefore, the modified cup is designed to elevate and compress the breasts as well as limit VBD. It was hoped the design would be superior in decreasing EIBD and bra discomfort during treadmill running relative to a leading encapsulation design sports bra.

It was hypothesised that during the same running cadence, compared to a leading prior art sports bra (PA), the third embodiment (TE) would result in comparable VBD but greater breast elevation during the downward breast trajectory, greater breast compression and reduced EIBD and bra discomfort. The second embodiment (SE) was also tested to investigate the effect of inserting pads into the TE.

Subjects

Twenty females, (mean age=31 years; range 19-44 years) who were professionally sized to wear a C+ bra cup were recruited as representative of females with large breasts. The average reported bra band size of the subjects was size 14 (range size 10-18; Australian sizing) and their median cup size was DD (range C-G). As hormone levels can influence connective tissue within the breasts, only subjects who were pre-menopausal and not currently breast feeding or pregnant were recruited for the study. Furthermore, participants with a history of breast surgery or any musculoskeletal disorder or pain that would inhibit them from running were excluded. All recruiting and testing procedures were approved by the University of Wollongong Human Research Ethics Committee (HREC) and all subjects gave written informed consent to participate in the study.

Experimental Procedures

Subjects were required to run on a treadmill under three bra conditions, a commercially available prior art sports bra (PA, Berlei New Legend Sports Bra; control condition), the second embodiment (SE) and the third embodiment (TE). Both the TE and the SE used the same band and strap structure as the PA, with the bra cups modified to be made of elastic rubber material, in contrast to the non-elastic material of the PA. The cups of both the TE and the SE completely covered the breasts and, when fitted to the wearer, the elastic material was on stretch such that the cups acted to compress the breasts. However, only the TE provided simultaneous breast compression and elevation. The breast elevation was achieved by the addition of a high-density foam pad, approximately 1 cm thick, in the inferior-lateral aspect of the cup of the TE. The pad was approximately 1 cm thick and was placed in the lower lateral aspect of the cup, where the bulk of the breast mass was located. The size and shape of the pad changed in accordance with breast mass and functioned to increase the stiffness of the inferior/lateral aspect of the cup in order to elevate the breast. The resistance offered by the elastic material of the cup of the TE and the SE had two grades; a grade of elastic material offering greater resistance to stretch was used for the larger sized breasts (16D+), hence, cup design (resistance of elastic material and pad size) accounted for variations in breast mass.

All testing was conducted in the Biomechanics Research Laboratory at the University of Wollongong and subjects wore their own running shorts and shoes during all testing for each experimental condition. During a familiarisation period of treadmill running, each subject self-selected a treadmill running velocity, which they could maintain for at least 3 minutes. They ran on a treadmill (PowerJog GX-100; Expert Fitness UK, Mid Glamorgan, UK) at this velocity in each experimental condition, for three trials of approximately 3 minutes duration. Immediately prior to and immediately after the running trials, the subjects were asked to rate their bra fit comfort, breast discomfort and perceived breast movement using a Visual Analogue Scale (VAS; rated 0-10), as well as their Rating of Perceived Exertion (RPE) using the Borg scale (rated 6-20). They were also asked to rank the bras in order of preference to wear during running, considering breast and bra discomfort and perceived breast movement. The bras were ranked 1-3, with 1 most preferred and 3 the least. If the preferential ranking for two bras was the same, the marks split between the two bras.

Breast Kinematics

During the running trials, each subject's three dimensional breast and trunk kinematics were recorded using the OptoTRAK 3020 motion analysis system (100 Hz; Northern Digital, Ontario, Canada), as well as videoed using two tripod-mounted, levelled digital video cameras (25 Hz). Small light emitting diodes were used as markers on the breasts, suprasternal notch and trunk to calculate breast motion relative to trunk motion. Previous studies have found that nipple displacement represents breast displacement in the vertical plane. The data were then imported into a software program Visual 3D which was used to calculate mean VBD, the low point of VBD during the downward breast trajectory (relative to the suprasternal notch) and the breast compression (the distance from the nipple to the suprasternal notch in the anterior-posterior plane while the subjects were standing still). The distance of the nipple below the suprasternal notch was represented as a negative value.

Breast Volume

The subjects had a wide range of breast sizes (C-G cup), equating to a broad range of breast volumes. The effect of breast volume (and therefore breast mass) on bra design has received little previous investigation. The range of breast volumes is this current study aimed to provide important information regarding the relative magnitude of support required during physical activity by the bra cup material for breasts of different sizes.

Breast volume was measured using Archimedes principal of water displacement, as this has previously been found to be a valid and reliable method to measure breast volume. A custom-designed device was made to measure breast volume. It consisted of a frame supporting a 4 L graduated beaker connected via tubing to a 2 L graduated cylinder, which was on a height-adjustable stand. Subjects leaned forward over the frame so that their trunks were horizontal and placed each breast individually into the beaker of water. The volume of displaced water (to the nearest 25 ml) was measured three times by the same assessor, ensuring that the position of the subject's feet, sternum and arms were standardised, as pilot testing found that variations in subject positioning affected the volume measurement. Reliability of the volume device had interclass correlation (ICC) values of R=0.968 for within-day reliability assessments.

Statistical Analysis

Means and standard deviations were calculated for the average VBD, breast elevation, breast compression and breast volume. The mean VAS scores of subjective variables characterising breast and bra discomfort pre- and post-running trials and RPE (Borg scale) were also compared amongst the three conditions. Repeated measures ANOVA (p<0.05) was used to compare all the above data across the three conditions with Bonferrroni post hoc analysis used to identify where the significant between-condition differences were. Friedman's test was used to compare the bra rankings.

Results Vertical Breast Displacement Results

No significant difference was found in the vertical breast displacement recorded amongst the three bra conditions (TE, SE and PA; see FIG. 6). However, vertical breast displacement increased as breast volume increased from a 10D to an 18E (see Table 1).

TABLE 1 The mean vertical breast displacement (VBD) in centimetres of the left breast relative to the trunk for the TE, SE and the PA relative to bra size. As bra size increased, mean vertical breast displacement also increased. VBD (cm) VBD (cm) VBD (cm) Bra Size TE SE PA 10 D 1.5 2.7 2.3 10D 2.6 2.9 3.0 12D 3.4 4.2 3.9 12D 2.3 2.5 2.7 12DD 3.1 3.2 3.6 14D 2.5 2.9 1.5 14D 2.8 3.0 3.8 14D 2.2 2.5 2.3 16C 2.7 3.0 3.2 16D 3.3 3.5 4.2 16D 3.9 4.8 4.2 16D 2.9 2.9 3.7 16D 2.9 3.5 3.5 14DD 5.8 4.8 5.6 14E 6.2 6.1 5.4 14E 3.2 3.6 5.3 14F 4.8 4.2 3.5 12G 5.4 6.3 4.7 16E 6.2 7.0 5.8 18E 5.3 6.9 4.8

Breast Elevation Results

Breast elevation was significantly greater in the TE compared to the SE and the PA (see FIG. 7). The elevation in the TE was 2 cm greater than the PA and 1 cm greater than the SE.

Breast Compression Results

When the subjects were standing still, their breasts were significantly more compressed (p<0.01) by an average of 1 cm for the SE relative to the PA and the TE (see FIG. 8). No significant difference in breast compression was found between the TE and the PA. However, it should be noted that the TE incorporated a 1 cm thick pad in the cup that covered the lower half to third of the breast. This pad would have increased this measurement of breast compression, thereby implying that a similar level of actual breast compression was achieved in the TE and the SE.

Breast and Bra Discomfort Results

No significant difference was found between the three bra conditions for breast (exercise-induced breast discomfort) or bra discomfort pre-running trials or ratings of perceived exertion (RPE) during the running trials (see Table 2). However, during the running trials, the subjects reported significantly less exercise-induced breast discomfort, less bra discomfort and less perceived movement when wearing the TE compared to the SE and the PA (see Table 2). The Visual Analogue Scores for exercise-induced breast discomfort were low for all three bra conditions, considering the bra size of the subjects tested, reflecting their high level of breast support. The TE was ranked the “most preferential bra to wear during running” (see FIG. 9). The bras were Ranked 1-3, where 1 was ranked the most preferred bra to wear and 3 was the least preferred bra to wear.

TABLE 2 The mean (standard deviation) Visual Analogue Scale ratings (VAS: 0-10) for exercise-induced breast discomfort (EIBD), bra discomfort and perceived breast motion before and during the running trials for the three bra conditions. Subjects reported significantly lower VAS scores when wearing the TE compared to the SE and the PA for exercise-induced breast discomfort, bra discomfort and perceived movement (p < 0.01). Main Effect Variable TE SE PA p-Value Before Running Breast Discomfort 0.6 0.9 0.8 0.59 (VAS Score 1-10) (1.2) (1.7) (1.5) Before Running Bra Fit Discomfort 1.6 1.8 1.5 0.72 (VAS Score 1-10) (1.6) (1.8) (2.0) After Running Breast Discomfort 1.0 2.9 2.5 <0.01 (VAS Score 1-10) (1.4) (2.5) (2.7) After Running Bra Fit Discomfort 1.4 3.1 2.9 <0.01 (VAS Score 1-10) (1.5) (2.6) (2.2) Perceived Movement 2.0 3.7 3.9 <0.01 (VAS Score 1-10) (1.8) (2.3) (2.6) RPE 12.4  12.2  12.2  0.38 (Borg Scale 6-20) (1.5) (1.8) (2.1)

Breast Volume Results

The mean breast volume of the subjects was 804 ml and 827 ml for the left and right breasts, respectively, with a range of 283 ml (a 16C subject) to 1492 ml (a 14F subject). All of the breasts were asymmetrical in breast volume with a mean between-breast difference of 85 ml (range 17-278 ml).

Discussion Vertical Breast Displacement

Vertical breast displacement was consistent with previous studies that have documented vertical breast motion of females running on a treadmill while wearing a sports bra. Vertical breast displacement was also comparable between all three bra conditions in the present study. As previous research has found a strong relationship between vertical breast displacement and exercise-induced breast discomfort, any variations in this discomfort noted between the three bra conditions in the present study was not attributed to variations in vertical breast displacement. The vertical breast displacement increased substantially with greater breast volume, confirming the need for greater elastic resistance in the material of the cup as breast mass increased from a 10D to an 18E. The same limitation in vertical breast displacement achieved in the smaller sized breasts (e.g. 10D) was not achieved with the same material and design in larger breast sizes (e.g. 18E) (see Table 1).

Breast Volume Results

The large range of breast volume data recorded in the present study (283 ml to 1492 ml) confirmed the wide range in the level of support required for breasts and the need for variations in cup material and design to provide sufficient support for such a large range of breast volumes.

Breast Elevation Results

The significant difference in breast elevation during the downward breast trajectory when the subjects wore the TE compared to the other bra conditions illustrates that the TE design was successful in elevating the subjects' breasts during the running trials. We speculated that increased breast elevation would reduce tension and loading on the anatomical breast support structures as these structures were further from their end of range relative to when the subjects wore the SE and the PA. Breast movement is restrained by a combination of the bra and the breast anatomical supports (overlying skin and Cooper's Ligaments), the bra/breast spring. These anatomical structures are passive tissues and would contribute maximally to this bra/breast spring when they are at their lengthened tensile range. Therefore, if these tissues were not as lengthened, perhaps the percentage of their contribution to the bra/breast spring would be less when wearing the TE relative to when wearing either the SE or the PA. This may explain why exercise-induced breast discomfort and bra discomfort during the running trials were less in the TE condition compared to the SE and PA conditions.

Breast Compression Results

While they stood motionless, the subjects' breasts were compressed by a mean of 1 cm more when they wore the SE relative to when wearing the PA or the TE (see FIG. 8). Although there was no significant difference in the measure of breast compression between the TE and the PA, the TE bra cup also contained a 1 cm thick pad in the lower half to one third of the cup. This additional pad would have affected the measurement of breast compression, such that the subjects' breasts were actually compressed more when they wore the TE compared to the PA. Previous studies have discussed the benefit of breast compression offered by crop tops or compression applied external and in addition to an encapsulation sports bra and it has been found that 27% of adolescents wear a two-bra combination during sport. Combining the characteristics of an encapsulation sports bra and compression bra (crop top) in the one bra to support the breasts during physical activity instead of wearing two bras, has benefits in terms of increased comfort as well as financial cost. This is particularly relevant as crop tops, which have no clasps to undo the bra, tend to wear out quickly as they are stretched every time they are put on or taken off.

Breast and Bra Discomfort Results

The statistically significant difference of 1 VAS score for exercise-induced breast discomfort and 2 VAS scores for bra discomfort and perceived movement when subjects wore the TE condition compared to the PA and SE confirm that the modified cup design of the TE improves the comfort of sports bra design for females with medium-to-large and/or ptotic breasts.

The ranking of the TE bra in preference to the PA, despite its very rudimentary construction, took into consideration breast movement, breast discomfort and bra fit discomfort. As overall comfort is paramount to encourage females to wear supportive bras and to promote physical activity, even though this measure is subjective, it is very important.

Conclusion

The sports bra cup design in the third embodiment, which provided breast elevation and compression, resulted in significantly lower subjective ratings of exercise-induced breast discomfort, bra discomfort and perceived movement relative to a standard prior art sports bra. This suggests that these changes in bra cup design may offer improvements to the current prior art sports bra design, possibly offering females with medium-to-large and/or ptotic breasts greater comfort during physical activity. These design changes involve the use of elastic material in the cup that completely covers the breast when “on stretch” to simultaneously elevate and compress the breast, as well as either a pad or stiff material in the inferior/lateral aspect of the cup to elevate the breast. The broad range of breast volumes (all classified as large breasted) and the trend for VBD to increase as breast volume increases, suggests that the cup material should have graduated resistance as breast mass increases.

Note:

It should be noted the elastic material used in this experiment was rubber. It is not recommend that rubber be used due to problems with sweating, but rather materials that breathe and have similar levels of elasticity. The high density foam pad was also not suitable with regard to sweating. The concept of either a pad in the lower aspect to provide greater support to elevate these ptotic breasts or elastic material with greater resistance to stretch in the inferior aspect of the bra cup relative to the superior aspect is important to the design of larger cup.

The invention has been described by way of example only and many modifications and variations may be made thereto without departing from the spirit and scope of the invention described.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Claims

1. A sports bra with cups for separately encapsulating and compressing the breasts of the wearer, the cups being constructed to elevate and compress the breasts.

2. A sports bra with flexible, resilient cups constructed to support the breasts in an elevated, compressed condition thereby to raise an effective low point of vertical breast displacement (VBD) during exercise and thereby reduce loading on anatomical restraints.

3. The sports bra of claim, wherein the cups include flexible sections of elastic material designed to be on stretch when fitted to the wearer, in order to compress the breasts.

4. The sports bra of claim 3, wherein the cups are arranged to stretch in superior/inferior and medial/lateral directions.

5. The sports bra of claim 3, wherein the cups include inferior/lateral portions for supporting and elevating the breasts.

6. A sports bra as claimed in claim 5, wherein the inferior/lateral portions are more stiff than the flexible sections.

7. A sports bra as claimed in claim 5, wherein the inferior/lateral portions are in the form of pads fitted into an inferior/lateral aspect of the cups.

8. The sports bra of claim 5, wherein the inferior/lateral portions are integral with the bra cups.

9. The sports bra of claim 5, wherein the inferior/lateral portions and flexible sections are formed of a resilient material, with the inferior/lateral portions having a greater thickness and/or stiffness to provide for relative increased stiffness.

10. The sports bra of claim 5, wherein the cups are substantially formed of a material with elastic sections providing the flexible sections and less elastic sections providing the inferior/lateral portions.

11. The sports bra of claim 10, wherein the material is formed as a unitary structure providing a gradual change in elasticity between the elastic sections and the less elastic sections.

12. The sport bra of claim 1 wherein the cups include flexible sections of elastic material, whereby the resistance of the elastic material varies with breast volume.

13. (canceled)

Patent History
Publication number: 20120040588
Type: Application
Filed: Mar 12, 2010
Publication Date: Feb 16, 2012
Applicant: UNIVERSITY OF WOLLONGONG (Gwynneville ,NSW)
Inventors: Julie Robyn Steele (New South Wales), Deirdre Elizabeth Mcghee (New South Wales)
Application Number: 13/202,217
Classifications
Current U.S. Class: Including Plural Elastic Panels Or Inserts With Diversely Oriented Directions Of Elasticity (450/74)
International Classification: A41C 3/00 (20060101);