SOLAR POWER GROUND ENGAGEMENT DEVICE WITH AN ECOLOGICAL ENVIRONMENTAL PROTECTION FUNCTION

A solar power ground engagement device with an ecological environmental protection function primarily consists of a tube which has a drainage function and is combined with a water accumulating box at its bottom; a power gatherer is provided at the interior of the tube which is engaged into the ground paving and goes through to the macadam beneath the paving, such that the paving would serve as a water permeable ecological paving to allow the rain accumulated on the ground to instantly permeate into the underground, and concomitantly allow the macadam to keep a high content of water to enhance generation of microbe and activation of the soil; in addition, the power gatherer in the tube can absorb the solar power to develop a condensing or heat gathering function to accomplish regulation of the integral temperature and humidity of the environment.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

a) Field of the Invention

The present invention relates to a solar power ground engagement device with an ecological environmental protection function, particularly relates to constructable water permeable ecological paving design which may allow the rain efficiently and instantly be led to the macadam under the ground as desired, and concomitantly accomplish a function of ecological water accumulation, power gather and de-icing, thereby activating the soil and keeping it moisturized, as well as regulating the temperature and humidity of the environment.

b) Description of the Prior Art

Generally, the ground paving according to the prior art is constructed by asphalt, concrete or concrete with brick. Given that concrete is not water permeable, that the pores of water-permeable concrete would be easily blocked up, and that the concrete with brick would occur irremovable calcium oxide to block the pores, the permeation would soon decrease and cannot catch the speed of rain falling. As such, the rain accumulated on the ground cannot be instantly drained into the underground soil, rendering flood in the relevant area. In addition, as the water on the ground cannot permeate into the underground to supplement the underground water content, it undoubtedly occurs a reverse affect to the environmental protection. As general paving would block the contact of the underground soil and the atmosphere, when the environment is under a dry or heat circumstance, the humidity absorbed in the underground soil cannot be vaporized to regulate the temperature and humidity of the environment. Accordingly, such an impermeable paving cannot serve as an ideal structure to environmental protection.

Furthermore, when in the Frigid Zone where there is always snowing, the general paving would easily occur snow accumulation and icing ground, rendering danger to vehicle or persons. As such, a design of expediting melt of the snow accumulated on the ground can efficiently offer improvement.

In view of the above, the inventor has positively researched to design a ground engagement device having the function of ecological water accumulation and utilizing the solar power to prevent water accumulation, snow accumulation and icing on the ground, as well as to accomplish a heat exchange function for the humidity and temperature of the atmosphere to improve the global warning.

SUMMARY OF THE INVENTION

The primary object of the invention is to provide a solar power ground engagement device with an ecological environmental protection function for constructing a super water permeable artificial paving having a function of water accumulation. Said artificial paving can instantly lead the water accumulated on the ground into the underground to allow the underground space and the atmosphere to communicate with each other, thereby improving the global warming.

Yet, another object of the invention is to provide a device that can utilize the natural solar power to condense or gather heat for timely regulating the integral temperature and humidity of the environment, thereby expediting melt of the snow on the ground or reducing heat island effect.

To achieve the above objections, the invention is provided with a tube having a drainage function, a water accumulating box and a power gatherer. The tube goes through the ground paving and the macadam beneath. A coupling through pipe is provided between the bottom of the tube and the water accumulating box, such that the rain accumulated on the ground may instantly permeate into the underground. The water accumulating box is provided with a central tube for combining with the tube. The top of the central tube is in a relatively higher position such that a water inlet space may form after the central tube is combined with the tube. In addition, the top edge of the water accumulating box has protrusions for forming a water inlet space after the water accumulating box is combined with the tube, such that the rain may retain in the partition between the water accumulating box and the central pipe to keep the underground moisturized and allow the humidity to vaporize at the time when the atmosphere is under a high temperature. Furthermore, the power gatherer is provided inside the tube and will absorb the solar power when necessary in order to exert a function of condensing or heat gathering, thereby regulating the integral temperature and humidity of the environment for heat gathering or de-icing.

The advantage of the invention is subject to the design of a solar power ground engagement device which can allow the ground paving to have a water permeable effect, and concomitantly allow the underground to keep a certain content of water and gas. The moisturized soil may reduce heat island effect and enhance generation of microbe and activation of soil, thereby maintaining the soil to efficiently improve the global warming.

To completely appreciate these and other objects of the present invention as well as the invention itself, all of which will become apparent to those skilled in the art, the following detailed description of the invention and the claims should be read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded view of the present invention.

FIG. 2 is a cut-away view of the invention.

FIG. 3 shows an embodiment of the invention.

FIG. 4 is a partial view showing another embodiment of the invention.

FIG. 5 is a partial view showing a further embodiment of the invention.

FIG. 6 is an exploded view of the tube and the water accumulating box in another embodiment of the invention.

FIG. 7 is a cut-away view of the embodiment in FIG. 6 after being assembled.

FIG. 8 is an exploded view of the tube and water accumulating box in another embodiment of the invention.

FIG. 9 is a cut-away view of the embodiment in FIG. 8 after being assembled.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIGS. 1 & 2, the solar power ground engagement device 1 with an ecological environmental protection function according to the present invention is primarily composed of a tube 10, a water accumulating box 20 and a power gatherer 30.

Said tube 10 is provided with a water permeable structure on its top. In the embodiment as shown, the water permeable structure refers to a step 11 having a wave-form wall and being provided on the inner top of the tube 10. A through hole can be prepared at the top of the tube 10, such that water permeable holes may form after a cover is applied. A power gatherer 30 is disposed in the tube 10, whereas a connecting pipe section 12 having a relatively smaller diameter and going through the interior of the tube 10 is provided on the bottom of the tube 10.

The water accumulating box 20 is interiorly provided with a central pipe 21 for combining with the connecting pipe section 12 of the tube 10. The interior wall of the central pipe 21 has ribs 22 to facilitate engagement of the water accumulating box 20 and the connecting pipe section 12. In addition, a partition 23 is formed between the wall of the central pipe 21 and the inner wall of the water accumulating box 20. The top edge of the central pipe 21 is in a relatively higher position such that the top edge of central pipe 21 may lean against the bottom of the tube 10 and that a water inlet space A may form after the central pipe 21 is combined with the tube 10.

The power gatherer 30 is provided inside the tube 10, and includes a circle of condensing board 31 which is electrically connected with a circuit board 32. The top of the circuit board 32 is combined with a solar power board 33, and is, by way of a transparent protective cover 34, engaged with the step 11 on the top of the tube 10 to accomplish a novel solar power ground engagement device 1 with an ecological environmental protection function. In the embodiment shown, the circuit board 32 has an LED light 321 on its top and an accumulator (battery) 322 on its bottom. Accordingly, the solar power board 33 may constantly supply power to the LED light 321 for lighting purpose.

Referring to FIG. 2, when the invention is in use, the completed paving 40 may be drilled by a driller to form a number of receiving holes 41. The paving 40 can be inn form of asphalt paving or concrete paving depending on the need, and the engagement device 1 can be provided in the receiving holes 41 prepared in the paving 40. It is preferably that the tube 10 has a diameter slightly greater than that of the water accumulating box 20, and that a flange 13 is provided at the outer periphery of the tube 10 bottom for blocking sand. Accordingly, the paving 40 would become water permeable, and a gas storage 25 would be formed in view of the provision of the flange 13. When it rains, the rain can be drained down to the macadam 42 via the holes prepared at the seams or pipe opening at the wave-form top edge of the tube 10, and subsequently permeates into the underground, thereby the rain can, as desire, be led deep into the underground to supplement the underground water, and, after the water in the macadam 42 is in a saturation status, be stored in the partition 23 through the water inlet space A formed by the water accumulating box 20. The stored water can provide the water required by microbe during drought, and regulate the temperature and humidity of the underground, as well as allow the plants to absorb water to survive and prevent the soil from desertification. In view of the provision of the flange 13 in the water accumulating box 20, when the water fills up the water accumulating box 20, air would stock in the gas storage 25 to allow microbe and protozoa to survive, as well as to do help to the organic matter in the soil. Moreover, the condensing board 31 of the power gatherer 30 can have the humidity in the atmosphere condensed into condensed water for supplementing the water content in the soil, and proceeding with heat exchange at the process of condense to prevent or reduce the heat island effect.

FIG. 3 shows another embodiment of the invention. In the power gatherer 30, the circuit board 32 and solar power board 33 are integrally formed to be covered by the transparent protective cover 34′, and then engaged with the step 11 on the top of the tube 10. The surface of the protective cover 34′ can be in form of an arc to serve as a cat's-eye stone for performing a light reflection effect on road indication.

Said water accumulating box 20 is provided with a central pipe 21 of a relatively higher position in the interior, or protrusions 24 at the top edge of the wall for forming a water inlet space A after combination. The water accumulating box 20 has partitions 23 such that once a flood occurs after a downpour, in view of the provision of the flange 13 at the outer rim of the tube 10 and the gas storage 25 at the top of the partition 23, the water would fill the water accumulating box 20 after the macadam 42 is immersed in water, and the gas storage 25 would form a close space for storing gas. Accordingly, the microbe and protozoa in the soil may have a safe space for breathe when the soil is completely immersed in the rain. The survived microbe and protozoa in the soil can naturally generate within a short time, which is helpful to the organic matter in the soil.

In another embodiment, in addition to the provision of the condensing board 31 in the tube 10, the power gatherer 30 may alternatively be provided with a circle of heating element (not shown) in the tube 10 to replace the condensing board 31. Said heating element electrically connects with the circuit board 32, the top of which is combined with the solar power board 33. Accordingly, there would be a de-icing effect in winter in view of the provision of the heating element.

Referring to FIGS. 4 & 5, the power gatherer 30 in the engagement device 1 may also be provided as a convex 35 such that when the sun shines, the convex 35 may serve as a heat gathering purpose in the engagement device 1. Such a design can be applied in the freezing areas to increase the temperature of the ground and instantly melt the accumulated snow, as well as lead the melted snow into the underground by way of the engagement device 1. In addition, in an embodiment, the convex can be detached and replaced with an opaque cover 36 (as shown in FIG. 5), such that when in summer, the opaque cover 36 may cover the surface of the convex 35 to block the sunshine.

Referring to FIGS. 6 & 7, in the embodiment shown in FIG. 1, the bottom of the tube 10 is provided with a connecting pipe section 12 having a relatively smaller diameter and connecting with the interior of the tube 10 for connecting with the central pipe 21 in the water accumulating box 20. In the embodiment shown in FIG. 6, the bottom of the tube 10 is provided with an engagement hole 14 which has a coupling pipe 15 having a step 15a at its top. The rest structure of the water accumulating box 20 is the same as that of the aforementioned embodiments. By way of the connection of the coupling pipe 15 between the bottom of the tube 10 and the central pipe 21 of the water accumulating box 20 (as shown in FIG. 7), a water inlet space A would form between the bottom of the tube 10 and the water accumulating box 20 to serve as a gas storage 25 at the time when the water is full, thereby accomplishing the solar power ground engagement device 1 with an ecological environmental protection function.

As shown in FIGS. 8 & 9, the alternative design is the central pipe 21 of the water accumulating box 20 in a relatively higher position, and a step 15a provided on the top of the central pipe 21, as well as an engagement hole 14 provided at the bottom of the tube 10, thereby the step 15a on the top of the central pipe 21 may engage into the engagement hole 14 to allow combination of the tube 10 bottom and the water accumulating box 20. Thereafter a water inlet space A would form to serve as a gas storage 25 after the water is full, thereby accomplishing the solar power ground engagement device 1 with an ecological environmental protection function.

While certain novel features of this invention have been shown and described and are pointed out in the annexed Claims, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing in any way from the spirit of the present invention.

Although specific embodiments have been illustrated and described, it will be obvious to those skilled in the art that various modifications may be made without departing from what is intended to be limited solely by the appended claims.

Claims

1. A solar power ground engagement device with an ecological environmental protection function, primarily consisting of a tube, a water accumulating box and a power gatherer, characterized by:

the tube is provided with a water permeable structure on its top, and a water accumulating box at its bottom; and
the water accumulating box is provided with a partition and is combined with a tube to form a water inlet space on the top of the water accumulating box;
thereby the rain accumulated on the ground can be efficiently led to the macadam layer through the tube, and subsequently led to the deep ground; alternatively, the rain can be stored in the water accumulating box for regulating the integral temperature and humidity of the environment via the power gatherer.

2. The solar power ground engagement device with an ecological environmental protection function according to claim 1, wherein the water permeable structure provided in the tube refers to a step having a wave-form wall and being provided on the inner top of the tube, and a power gatherer covered thereon to form permeable holes.

3. The solar power ground engagement device with an ecological environmental protection function according to claim 1, wherein the bottom of the tube has a coupling pipe section having a relatively smaller diameter and going through to the interior of the tube, such that the coupling pipe section can integrally combine with the water accumulating box.

4. The solar power ground engagement device with an ecological environmental protection function according to claim 3, wherein the center of the water accumulating box is provided with a central pipe; a partition is formed between the central tube and the inner wall of the water accumulating box; the top edge of the central pipe is in a relatively higher position for forming a water inlet space after the central pipe is combined with the tube.

5. The solar power ground engagement device with an ecological environmental protection function according to claim 3, wherein the center of the water accumulating box is provided with a central pipe; a partition is formed between the central pipe and the inner wall of the water accumulating box, while the top of the water accumulating box is provided with protrusions for forming a water inlet space after the water accumulating box is combined with the tube.

6. The solar power ground engagement device with an ecological environmental protection function according to claim 1, wherein the bottom of the tube has an engagement hole and a coupling pipe such that the coupling pipe can connect the bottom of the tube and the water accumulating box.

7. The solar power ground engagement device with an ecological environmental protection function according to claim 1, wherein the bottom of the tube has an engagement hole, and the central pipe of the water accumulating box is in a relatively higher position, such that the top of the central pipe can directly engage with the engagement hole of the tube to allow combination of the tube bottom and the water accumulating box.

8. The solar power ground engagement device with an ecological environmental protection function according to claim 1, wherein the power gatherer is a condensed board provided on the surrounding of the tube interior; the condensed board is electrically connected to an electric circuit board, the top of which is connected to a solar power board.

9. The solar power ground engagement device with an ecological environmental protection function according to claim 1, wherein the power gatherer is a heating element provided on the surrounding of the tube interior; the heating element is electrically connected to an electric circuit board, the top of which is connected to a solar power board.

10. The solar power ground engagement device with an ecological environmental protection function according to claim 6, wherein the top of the coupling pipe is provided with an engagement step.

11. The solar power ground engagement device with an ecological environmental protection function according to claim 7, wherein the top of the central pipe in the water accumulating box is provided with an engagement step.

12. The solar power ground engagement device with an ecological environmental protection function according to claim 8, wherein the top of the circuit board is provided with an LED light, whereas the bottom of the circuit board is provided with an accumulator (battery).

13. The solar power ground engagement device with an ecological environmental protection function according to claim 9, wherein the top of the circuit board is provided with an LED light, whereas the bottom of the circuit board is provided with an accumulator (battery).

14. The solar power ground engagement device with an ecological environmental protection function according to claim 8, wherein the circuit board and the solar power board are formed integrally to be covered by a transparent protective cover.

15. The solar power ground engagement device with an ecological environmental protection function according to claim 9, wherein the circuit board and the solar power board are formed integrally to be covered by a transparent protective cover.

16. The solar power ground engagement device with an ecological environmental protection function according to claim 8, wherein the power gatherer has a convex design, and is engaged with the step on the top of the tube.

17. The solar power ground engagement device with an ecological environmental protection function according to claim 9, wherein the power gatherer has a convex design, and is engaged with the step on the top of the tube.

18. The solar power ground engagement device with an ecological environmental protection function according to claim 16, wherein the surface of the convex is provided with an opaque cover.

Patent History
Publication number: 20120085337
Type: Application
Filed: Aug 1, 2011
Publication Date: Apr 12, 2012
Inventors: JUI-WEN CHEN (New Taipei City), Ting-Hao Chen (New Taipei City)
Application Number: 13/195,040
Classifications
Current U.S. Class: Surface (126/271.1)
International Classification: E01C 23/14 (20060101);