Multi-Function Automotive Radiator and Condenser Airflow System

- Tesla Motors

A vehicle thermal management system is provided that includes two or more heat exchangers configured in a non-stacked arrangement, where separate air inlets corresponding to each of the heat exchangers allow a direct intake of ambient air. Corresponding to each heat exchanger is a set of adjustable louvers that control ambient air flowing directly into the heat exchanger. The adjustable louvers may be adjustable between two positions; fully opened or fully closed. Alternately, the adjustable louvers may be adjustable over a range between fully opened and fully closed. Alternately, each set of adjustable louvers may be comprised of multiple groups of independently controllable louvers. Air ducts may be used to couple the output from one heat exchanger to the input of a different heat exchanger.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/429,825, filed 5 Jan. 2011, the disclosure of which is incorporated herein by reference for any and all purposes.

FIELD OF THE INVENTION

The present invention relates generally to vehicles and, more particularly, to an automotive radiator and condenser airflow system.

BACKGROUND OF THE INVENTION

Vehicle cooling systems vary widely in complexity, depending primarily upon the thermal requirements of the various vehicle systems employed in the vehicle in question. In general, these cooling systems utilize heat exchangers of one form or another to transfer the heat generated by the vehicle subsystems to the surrounding ambient environment. Such heat transfer may either be performed directly, for example in the case of a simple radiator coupled to a vehicle engine, or indirectly, for example in the case of a thermal management system utilizing multiple heat transfer circuits to transfer the heat through multiple stages in order to sufficiently lower the temperature of the component in question.

In general, vehicle heat exchangers are designed to exchange heat between two different fluids, or two similar fluids that are at different temperatures, thereby helping to maintain the various vehicle systems and components within a safe and effective operating range of temperatures. One of the fluids is typically composed of a refrigerant or water, the water often mixed with ethylene glycol or propylene glycol or a similar liquid that provides anti-freeze protection at low temperatures. In many vehicle heat exchangers such as condensers and radiators, the second fluid is air which is forced to flow through the heat exchanger, either as a result of vehicle movement or through the use of a fan.

Within the automotive industry there are several types of air heat exchangers, the design of each being based on their intended application. Exemplary heat exchangers include:

A powertrain radiator in which a coolant-to-air heat exchanger is used to remove heat from an internal combustion engine or electric motor.

A condenser in which a refrigerant-to-air heat exchanger is used to remove heat for cabin air conditioning systems or other systems (e.g., battery packs and power electronics) that employ refrigerant as the cooling fluid.

A transmission oil cooler in which an oil-to-air heat exchanger is used to remove heat from the transmission via the transmission fluid.

A steering pump oil cooler in which an oil-to-air heat exchanger is used to remove heat from the steering system via the steering fluid.

A charge air cooler in which an air-to-air heat exchanger is used to remove heat from turbocharged (compressed) air used in the engine intake system.

For a given set of fluid temperatures, the performance of a fluid-to-fluid heat exchanger depends primarily on the surface area of the heat exchanger and the volume flow rate of the two fluids through the heat exchanger. Flow rate is commonly determined as the fluid velocity through the heat exchanger multiplied by the frontal area of the heat exchanger. Larger heat exchanger surface areas and mass flow rates result in greater heat transfer from the inner fluid to the outer fluid. An increase in these same variables, however, also results in an increase in the hydraulic losses, or pressure drop losses, which are manifested in increased aerodynamic drag (i.e., vehicle motive power), pump power, and fan power. Additionally, in a fluid-to-fluid heat exchanger, the transfer of heat between the two fluids increases as the temperature difference between the two fluids increases.

In a conventional vehicle utilizing multiple heat exchangers, regardless of whether the vehicle utilizes a combustion engine, an electric motor, or a combination of both (i.e., a hybrid), the individual heat exchangers are typically positioned one in front of the other, followed by a fan, this configuration referred to as a “stack”. In such a stacking arrangement, commonly the heat exchanger with the lowest outlet air temperature is located upstream, followed by higher temperature heat exchangers downstream. An example of such a configuration is a condenser followed directly by an engine radiator, followed by one or more fans. While this arrangement is more common with vehicles utilizing a combustion engine, hybrid vehicles may also use a stack of heat exchangers in order to provide cooling for the battery pack, power electronics and the motor. A principal drawback of the practice of stacking heat exchangers is an increase in hydraulic losses (i.e., fan power, aerodynamic drag) that result regardless of whether each heat exchanger in the stack is in active use. Additionally, since the temperature of the air entering the inner heat exchanger(s) will be the temperature of the air exiting the upstream heat exchanger which is typically higher than the ambient temperature, the efficiency and overall performance of the inner heat exchanger(s) is compromised. As a consequence, it is common practice to increase the surface area or thickness of the downstream heat exchangers to compensate for this decrease in expected performance which, in turn, adds weight and cost to the affected heat exchangers.

While a variety of different techniques and system configurations have been used to control the temperatures of the various subsystems and components in a vehicle, they are often inefficient, which in turn affects vehicle performance. Accordingly, what is needed is a thermal management system that maximizes heat transfer while minimizing the hydraulic power consumed in the process. The present invention provides such a thermal management system.

SUMMARY OF THE INVENTION

A vehicle thermal management system is provided that is comprised of at least first and second heat exchangers configured in a non-stacked arrangement, wherein the first heat exchanger is coupled to a first vehicle cooling subsystem and the second heat exchanger is coupled to a second vehicle cooling subsystem; a first air inlet, wherein air flowing through the first air inlet flows directly into the first heat exchanger without first passing through the second heat exchanger; a second air inlet, wherein air flowing through the second air inlet flows directly into the second heat exchanger without first passing through the first heat exchanger; and a first set of adjustable louvers that controls air flowing directly through the first air inlet into the first heat exchanger. The system may further comprise a second set of adjustable louvers that controls air flowing directly through the second air inlet into the second heat exchanger. The second set of adjustable louvers may be located between the second heat exchanger's airflow entrance surface and the ambient environment. The first and second sets of adjustable louvers may each have a first, fully opened position and a second, fully closed position. The first and second sets of adjustable louvers may each be adjustable over a range of positions between fully opened and fully closed. The first and second sets of adjustable louvers may each be comprised of two or more groups of adjustable louvers that are independently operable from one another.

In one aspect of the invention, an air duct couples at least a portion of the airflow exit surface of the first heat exchanger to an airflow entrance surface of the second heat exchanger. If there is a single set of adjustable louvers, they may be (i) positioned within the air duct and between the airflow exit surface of the first heat exchanger and the airflow entrance surface of the second heat exchanger, or (ii) positioned between the second heat exchanger's airflow entrance surface and the ambient environment. If the system includes a second set of adjustable louvers, preferably the first set of adjustable louvers is positioned within the air duct and between the airflow exit surface of the first heat exchanger and the airflow entrance surface of the second heat exchanger and the second set of adjustable louvers is located between the second heat exchanger's airflow entrance surface and the ambient environment, for example adjacent to the second heat exchanger's airflow entrance surface. A fan may be positioned adjacent to the airflow exit surface of the second heat exchanger.

In another aspect of the invention, the system further comprises a second set of adjustable louvers that controls air flowing directly through the second air inlet into the second heat exchanger; a third heat exchanger configured in a non-stacked arrangement with the first and second heat exchangers, wherein the third heat exchanger is coupled to a third vehicle cooling subsystem; a third air inlet, wherein air flowing through the third air inlet flows directly into the third heat exchanger without first passing through either the first or second heat exchangers; and a third set of adjustable louvers that controls air flowing directly through the third air inlet into the third heat exchanger that does not first pass through either the first or second heat exchangers. The first, second and third sets of adjustable louvers may each have a first, fully opened position and a second, fully closed position. The first, second and third sets of adjustable louvers may each be adjustable over a range of positions between fully opened and fully closed. The first, second and third sets of adjustable louvers may each be comprised of two or more groups of adjustable louvers that are independently operable from one another. The first, second and third vehicle cooling subsystems may be selected from battery cooling subsystems, refrigeration subsystems, passenger cabin HVAC subsystems, power electronics cooling subsystems, motor cooling subsystems, transmission cooling subsystems, and charging system cooling subsystems. The second and third vehicle cooling subsystems may be the same cooling subsystem. The system may further comprise a first air duct that couples at least a first portion of the airflow exit surface of the first heat exchanger to an airflow entrance surface of the second heat exchanger, and a second air duct that couples at least a second portion of the airflow exit surface of the first heat exchanger to an airflow entrance surface of the third heat exchanger. The first set of adjustable louvers may be comprised of at least a first group and a second group of adjustable louvers, where the first group of adjustable louvers is positioned within the first air duct and between the airflow exit surface of the first heat exchanger and the airflow entrance surface of the second heat exchanger, and where the second group of adjustable louvers is positioned within the second air duct and between the airflow exit surface of the first heat exchanger and the airflow entrance surface of the third heat exchanger. The second set of adjustable louvers may be located between the airflow entrance surface of the second heat exchanger and the ambient environment, for example adjacent to the airflow entrance surface of the second heat exchanger, and the third set of adjustable louvers may be located between the airflow entrance surface of the third heat exchanger and the ambient environment, for example adjacent to the airflow entrance surface of the third heat exchanger. The system may further comprise a first fan adjacent to the airflow exit surface of the second heat exchanger and a second fan adjacent to the airflow exit surface of the third heat exchanger.

In another aspect of the invention, the system further comprises a third heat exchanger configured in a non-stacked arrangement with the first and second heat exchangers, wherein the third heat exchanger is coupled to a third vehicle cooling subsystem; a third air inlet, wherein air flowing through the third air inlet flows directly into the third heat exchanger without first passing through either the first or second heat exchangers; a first air duct that couples at least a first portion of the airflow exit surface of the first heat exchanger to an airflow entrance surface of the second heat exchanger; a second air duct that couples at least a second portion of the airflow exit surface of the first heat exchanger to an airflow entrance surface of the third heat exchanger; a second set of adjustable louvers that controls air flowing directly through the third air inlet into the third heat exchanger that does not first pass through either the first or second heat exchangers, and wherein the first set of adjustable louvers controls air flowing directly through the second air inlet into the second heat exchanger that does not first pass through either the first or third heat exchangers.

A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a simplified view of a vehicle thermal management system in accordance with the invention;

FIG. 2 illustrates the vehicle thermal management system shown in FIG. 1, modified to allow air to pass unimpeded through the central heat exchanger;

FIG. 3 illustrates a preferred embodiment of the invention based on the thermal management system shown in FIG. 1;

FIG. 4 illustrates a preferred embodiment of the invention based on the thermal management system shown in FIG. 2;

FIG. 5 illustrates an alternate embodiment utilizing only a portion of the louvers shown in FIG. 3;

FIG. 6 illustrates another alternate embodiment utilizing only a portion of the louvers shown in FIG. 3;

FIG. 7 provides a first airflow pattern for a given arrangement of the louvers shown in the thermal management system of FIG. 3;

FIG. 8 provides a second airflow pattern for a given arrangement of the louvers shown in the thermal management system of FIG. 3;

FIG. 9 provides a third airflow pattern for a given arrangement of the louvers shown in the thermal management system of FIG. 3;

FIG. 10 provides a fourth airflow pattern for a given arrangement of the louvers shown in the thermal management system of FIG. 3;

FIG. 11 provides a fifth airflow pattern for a given arrangement of the louvers shown in the thermal management system of FIG. 3;

FIG. 12 provides a sixth airflow pattern for a given arrangement of the louvers shown in the thermal management system of FIG. 3;

FIG. 13 illustrates an alternate embodiment of the thermal management system shown in FIG. 3;

FIG. 14 provides a front, perspective view of a preferred embodiment of the thermal management system of the invention;

FIG. 15 provides a rear, perspective view of the thermal management system shown in FIG. 14;

FIG. 16 provides a top view of the thermal management system shown in FIGS. 14 and 15; and

FIG. 17 provides a high-level view of the primary vehicle subsystems involved in a thermal management system designed in accordance with a preferred embodiment of the invention.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

In the following text, the terms “battery”, “cell”, and “battery cell” may be used interchangeably and may refer to any of a variety of different cell types, chemistries and configurations including, but not limited to, lithium ion (e.g., lithium iron phosphate, lithium cobalt oxide, other lithium metal oxides, etc.), lithium ion polymer, nickel metal hydride, nickel cadmium, nickel hydrogen, nickel zinc, silver zinc, or other battery type/configuration. The term “battery pack” as used herein refers to multiple individual batteries contained within a single piece or multi-piece housing, the individual batteries electrically interconnected to achieve the desired voltage and capacity for a particular application. The term “electric vehicle” as used herein refers to either an all-electric vehicle, also referred to as an EV, plug-in hybrid vehicles, also referred to as a PHEV, or a hybrid vehicle (HEV), a hybrid vehicle utilizing multiple propulsion sources one of which is an electric drive system. It should be understood that identical element symbols used on multiple figures refer to the same component, or components of equal functionality. Additionally, the accompanying figures are only meant to illustrate, not limit, the scope of the invention and should not be considered to be to scale.

FIG. 1 provides a simplified view of a vehicle thermal management system in accordance with the invention. System 100 includes three heat exchangers 101-103; more specifically, central heat exchanger 101 and a pair of heat exchangers 102/103 that are mounted on either side of central heat exchanger 101. Heat exchangers 101-103 are thermally coupled to one or more vehicle cooling subsystems (e.g., battery cooling subsystem, refrigeration subsystem, passenger cabin HVAC subsystem, power electronics cooling subsystem, motor and/or transmission cooling subsystem, charging system cooling subsystem, etc.). While the use of three heat exchangers is preferred, it should be understood that the invention described herein is equally applicable to thermal management systems utilizing only a pair of side-by-side exchangers, e.g., heat exchangers 101 and 102 or heat exchangers 101 and 103, or systems utilizing more than three heat exchangers. System 100 is designed to provide symmetry about central vehicular axis 105. Note that in this configuration, forward vehicle motion is shown by arrow 107, resulting in airflow through the heat exchangers in direction 109.

Thermal management system 100, as with other embodiments of the invention, includes a number of air ducts that control the flow of air through, or around, the heat exchangers. In the illustrated system, rear ducting 111A prevents air from flowing unimpeded through heat exchanger 101. Rather, the air that flows through the left side of heat exchanger 101 and exits rear heat exchanger surface 112 is forced to flow through heat exchanger 102, following path 113. Similarly, rear ducting 111B forces air flowing through the right side of heat exchanger 101 and exiting rear heat exchanger surface 112 to pass through heat exchanger 103, following path 115. Note that in this and other preferred embodiments, ducting section 117 prevents air from flowing through the left side of heat exchanger 101 without also passing through heat exchanger 102. Similarly, ducting section 119 prevents air from flowing through the right side of heat exchanger 101 without also passing through heat exchanger 103. Alternate embodiments eliminate ducting sections 117/119, thus allowing air to flow through central heat exchanger 101 and then exit the system without also passing through one of the side-mounted heat exchangers 102/103. Note that adjustable louvers may be positioned at ducting sections 117/119, thus allowing control over whether the air flowing through the central heat exchanger 101 passes through a side-mounted heat exchanger.

The forward portions of the air ducting include a pair of air inlets 121 and 123, shown in phantom, which are positioned in front of heat exchangers 102 and 103, respectively. Additionally, the entrance 124 to the central heat exchanger 101 forms a third air inlet that provides a pathway for air to flow directly into heat exchanger 101. Air duct inlet 121 provides an airflow path 125 that bypasses heat exchanger 101 as shown. Similarly, air duct inlet 123 allows air to flow directly through heat exchanger 103 without passing through central heat exchanger 101, following path 127.

Thermal management system 200, shown in FIG. 2, illustrates a minor modification of the air ducts of system 100. In the illustrated system, at least a portion of rear ducting 111A/111B is modified to include air exhaust ports 201 and 202. Outlets 201 and 202 allow air passing through heat exchanger 101 to flow out of the back of heat exchanger 101 without also passing through one or both heat exchangers 102 and 103 (e.g., pathways 203/204). Depending upon the size of outlets 201 and 202 as well as the amount of air flowing through heat exchanger 101, air may or may not follow pathways 113 and 115 shown in FIG. 1. As with system 100, air passing through inlets 121/123 will flow directly through the side heat exchangers without first passing through central heat exchanger 101.

FIG. 3 illustrates a preferred embodiment of the invention based on thermal management system 100. System 300 includes four sets of louvers 301-304 that provide means for controlling the flow of air through heat exchangers 101-103. In addition to providing independent control of the flow of air through the side heat exchangers versus the central heat exchanger, preferably louvers 301-304 are completely independent from one another, thereby providing even finer thermal management control. Preferably system 300 includes at least one fan, and more preferably at least two fans 305/306, to augment airflow by drawing air through the heat exchangers or, in some embodiments, blowing air through the heat exchangers.

FIG. 4 illustrates a preferred embodiment of the invention based on thermal management system 200. In this embodiment, the system not only includes louvers 301-304, but also louvers 401 and 402 as shown. Louvers 401 and 402 control whether the air that passes through central heat exchanger 101 also passes through a side-mounted heat exchanger, i.e., heat exchanger 102 and/or 103, or simply flow through the central heat exchanger following a pathway 203/204. It will be appreciated that a fan, or fans, may be mounted at one or both air outlets 201/202.

While the use of multiple louvers 301-304 and 401-402 maximizes airflow control through heat exchangers 101-103, it should be understood that the invention may utilize a different number of control louvers, depending primarily upon the constraints and requirements placed on the thermal management system by the vehicle's design. For example, system 500 shown in FIG. 5 only includes outboard louvers 303 and 304 and system 600 shown in FIG. 6 only includes inboard louvers 301 and 302.

FIGS. 7-12 illustrate a variety of airflow paths through preferred system 300, the designated flow path depending upon the relative positions of louvers 301-304. In FIG. 7, louvers 301-304 are completely closed. As a result, the air flowing in direction 109, which is due to the forward movement of the vehicle, bypasses heat exchangers 101-103 altogether and instead follows pathways 701/702. In FIG. 8, louvers 303 and 304, positioned in front of heat exchangers 102 and 103, respectively, are open while louvers 301 and 302 are closed. This arrangement causes the incoming air to follow pathways 801 and 802 through heat exchangers 102 and 103, respectively, while bypassing heat exchanger 101. In FIG. 9, louvers 301 and 302 which control the flow of air through the left and right sides of heat exchanger 101 are in an open position while louvers 303 and 304 are closed. Due to the ducting, the air flowing through heat exchanger 101 must also pass through heat exchangers 102 and 103 following airflow paths 901 and 902. Since the air flowing through heat exchangers 102 and 103 must first pass through heat exchanger 101, typically the air flowing through heat exchangers 102/103 will be at a higher temperature than the ambient temperature unless coolant is by-passing this heat exchanger and not adding heat to the airstream. In FIG. 10, all louvers 301-304 are in an open position. As a result, air will flow through all three heat exchangers, i.e., following pathways 1001 and 1002 through center heat exchanger 101 and following pathways 1003 and 1004 through side-mounted heat exchangers 102 and 103.

As previously noted, in the preferred embodiment of the invention the louvers are completely independent from one another. This allows fine tuning of the thermal management system depending upon the requirements of the vehicle subsystems to which the various heat exchangers are coupled. The arrangement shown in FIG. 11 illustrates this flexibility. Specifically, on the left side of the vehicle, louver 301 is in the open position while louver 303 is in the closed position. As a result, most of the air flowing against the left side of the vehicle will follow pathway 1101 and pass first through heat exchanger 101, and then through heat exchanger 102. On the right side of the vehicle, louver 302 is in the closed position and louver 304 is in the open position, thus causing most of the air flowing against the right side of the vehicle to pass directly through heat exchanger 103 following pathway 1103 rather than first going through heat exchanger 101.

In at least one preferred embodiment of the invention, the louvers may be positioned in a range of positions from fully open to fully closed, thus allowing fine modulation of the airflow. As a result of allowing a range of louver positions, the thermal management system may be fine-tuned to insure efficient use of the heat exchangers, i.e., achieving the airflow required for cooling while minimizing hydraulic and aerodynamic losses. This aspect of the invention is illustrated in FIG. 12, based on preferred system 300. In this figure, louver 302 on the right side of the vehicle is fully closed and louver 304 is fully opened, thus causing the air flowing against the right side of the vehicle to pass directly through heat exchanger 103 following pathway 1201. On the left side of the vehicle, louver 301 is opened to a very small degree, thus allowing only a small portion of air to follow path 1203 through both heat exchanger 101 and heat exchanger 102. Additionally, on this side of the vehicle louver 303 is opened to the maximum extent possible, causing most of the air on this side of the vehicle to follow path 1205 and pass through heat exchanger 102 without first passing through heat exchanger 101.

In an alternate embodiment, fine adjustment of the air flowing through the louvers is achieved by utilizing two or more sets of louvers for each opening where fine control is desired. Preferably each set of louvers is only capable of two positions: fully open or fully closed, thus simplifying louver operation. In an exemplary configuration shown in FIG. 13 and based on system 300, louvers 301 and 302 have each been replaced by two sets of louvers each, i.e., 1301A/1301B and 1302A/1302B, respectively. Louvers 303 and 304 have each been replaced by three sets of louvers each, i.e., 1303A/1303B/1303B and 1304A/1304B/1304C, respectively. In the illustrated configuration, one of the louvers that controls the airflow through the left side of heat exchanger 101, louver 1301A, is closed while the other louver in this set, louver 1301B, is open. Both louvers 1302A and 1302B that control airflow through the right side of heat exchanger 101 are closed in this figure. In front of heat exchanger 102, louvers 1303B and 1303C are shown open, while louver 1303A is closed. In front of heat exchanger 103, two sets of louvers, i.e., louvers 1304A and 1304C are closed while the middle set of louvers, 1304B, is open. It will be appreciated that each air duct opening may use less than the illustrated number of louver sets, or more than the illustrated number of louver sets.

FIGS. 14-16 illustrate a preferred embodiment of the invention, this embodiment utilizing three heat exchangers as shown in FIGS. 1-13. FIG. 14 provides a front, perspective view of assembly 1400; FIG. 15 provides a rear, perspective view of assembly 1400; and FIG. 16 provides a view from above assembly 1400. In preferred system 1400, the central heat exchanger 1401 is a radiator, and the left-side and right side heat exchangers, 1402 and 1403 respectively, are condensers. It will be appreciated that due to the fans, louvers and ducting, heat exchangers 1402 and 1403 are not clearly visible. Situated behind heat exchangers 1402 and 1403 are fans 1405 and 1406, respectively. Louvers 1407 and 1408, positioned in front of heat exchangers 1402 and 1403, respectively, are clearly shown in FIG. 14. Note that louvers 1407 and 1408 are horizontal louvers as preferred, rather than the vertical louvers shown in FIGS. 3-13. Louvers 1409 and 1410 control the airflow through the left and right sides, respectively, of central heat exchanger 1401. Note that as louvers 1409 and 1410 are located within the air ducts as previously described relative to FIGS. 3-13, they are not clearly visible in FIGS. 14-16. Also visible in FIGS. 14-16 are the left and right air ducts 1411 and 1412, respectively.

FIG. 17 provides a high-level view of the primary vehicle subsystems involved in a thermal management system designed in accordance with a preferred embodiment of the invention. It will be appreciated that a vehicle can utilize other system configurations while still retaining the functionality of the present invention. Additionally, it should be understood that FIG. 17 only illustrates portions of a thermal management system and such a system may include other subsystems, depending upon the type of vehicle, power train design and configuration, battery pack composition, etc.

At the heart of system 1700 is a thermal management control system 1701. System 1701 may be integrated within another vehicle control system or configured as a stand-alone control system. Typically control system 1701 includes a control processor as well as memory for storing a preset set of control instructions. Coupled to controller 1701 are a plurality of temperature sensors 1703 that monitor the temperature of the various vehicle components in general, and the vehicle components that are coupled to the vehicle cooling systems in particular. Exemplary components that may be monitored include the battery or batteries, motor, drive electronics, transmission, and coolant. Ambient temperature is preferably monitored as well. Depending upon the configuration of the vehicle, the charging system temperature may also be monitored. The monitored temperatures at these various locations are used by control system 1701 to determine the operation of the various thermal management subsystems. In addition to preferably regulating the flow of coolant within the coolant loop(s) utilizing any of a variety of regulators 1705 (e.g., circulation pump operation or flow rate, flow valves, etc.), controller 1701 preferably controls fan operation (e.g., fans 305/306, 1405/1406, etc.). Controller 1701 also controls operation of the louvers (e.g., louvers 301-304, 401-402, 1301A-C, 1302A-C, 1303A-C, 1304A-C, 1407-1410, etc.). Preferably louver control is provided by electro-mechanical actuators although other means may be used (e.g., hydraulic actuators). Preferably control system 1701 is designed to operate automatically based on programming implemented by the system's processor. Alternately, system 1700 may be manually controlled, or controlled via a combination of manual and automated control.

As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention.

Claims

1. A vehicle thermal management system, comprising:

at least a first heat exchanger and second heat exchanger, wherein said first and second heat exchangers are configured in a non-stacked arrangement, and wherein said first heat exchanger is in thermal communication with a first vehicle cooling subsystem and said second heat exchanger is in thermal communication with a second vehicle cooling subsystem;
a first air inlet, wherein air flowing through said first air inlet flows directly into said first heat exchanger without first passing through said second heat exchanger;
a second air inlet, wherein air flowing through said second air inlet flows directly into said second heat exchanger without first passing through said first heat exchanger; and
a first set of adjustable louvers that controls air flowing directly through said first air inlet into said first heat exchanger that does not first pass through said second heat exchanger.

2. The vehicle thermal management system of claim 1, further comprising a fan adjacent to an airflow exit surface of said second heat exchanger.

3. The vehicle thermal management system of claim 1, further comprising an air duct that couples an airflow exit surface of at least a portion of said first heat exchanger to an airflow entrance surface of said second heat exchanger.

4. The vehicle thermal management system of claim 3, wherein said first set of adjustable louvers is located between said airflow entrance surface of said second heat exchanger and an ambient environment.

5. The vehicle thermal management system of claim 3, wherein said first set of adjustable louvers is located within said air duct and between said airflow exit surface of said first heat exchanger and said airflow entrance surface of said second heat exchanger.

6. The vehicle thermal management system of claim 5, further comprising a second set of adjustable louvers that controls air flowing directly through said second air inlet into said second heat exchanger that does not first pass through said first heat exchanger.

7. The vehicle thermal management system of claim 6, wherein said second set of adjustable louvers is located between said airflow entrance surface of said second heat exchanger and an ambient environment.

8. The vehicle thermal management system of claim 6, wherein said first set of adjustable louvers has a first position and a second position, wherein said first position of said first set of adjustable louvers is fully opened and said second position of said first set of adjustable louvers is fully closed, and wherein said second set of adjustable louvers has a first position and a second position, wherein said first position of said second set of adjustable louvers is fully opened and said second position of said second set of adjustable louvers is fully closed.

9. The vehicle thermal management system of claim 6, wherein said first set of adjustable louvers is adjustable over a range of positions between fully opened and fully closed, and wherein said second set of adjustable louvers is adjustable over a range of positions between fully opened and fully closed.

10. The vehicle thermal management system of claim 6, wherein said first set of adjustable louvers is comprised of at least a first group of adjustable louvers and a second group of adjustable louvers, wherein said first and second groups of adjustable louvers are independently operable from one another, wherein said second set of adjustable louvers is comprised of at least a third group of adjustable louvers and a fourth group of adjustable louvers, and wherein said third and fourth groups of adjustable louvers are independently operable from one another.

11. The vehicle thermal management system of claim 6, further comprising a fan adjacent to an airflow exit surface of said second heat exchanger.

12. The vehicle thermal management system of claim 1, further comprising a second set of adjustable louvers that controls air flowing directly through said second air inlet into said second heat exchanger that does not first pass through said first heat exchanger.

13. The vehicle thermal management system of claim 12, wherein said second set of adjustable louvers is located between an airflow entrance surface of said second heat exchanger and an ambient environment.

14. The vehicle thermal management system of claim 12, further comprising:

a third heat exchanger, wherein said third heat exchanger is configured in said non-stacked arrangement with said first and second heat exchangers, and wherein said third heat exchanger is in thermal communication with a third vehicle cooling subsystem;
a third air inlet, wherein air flowing through said third air inlet flows directly into said third heat exchanger without first passing through said first or second heat exchangers; and
a third set of adjustable louvers that controls air flowing directly through said third air inlet into said third heat exchanger that does not first pass through said first or second heat exchangers.

15. The vehicle thermal management system of claim 14, further comprising:

a first air duct that couples a first portion of an airflow exit surface of said first heat exchanger to an airflow entrance surface of said second heat exchanger; and
a second air duct that couples a second portion of said airflow exit surface of said first heat exchanger to an airflow entrance surface of said third heat exchanger.

16. The vehicle thermal management system of claim 15, wherein said first set of adjustable louvers is comprised of at least a first group of adjustable louvers and a second group of adjustable louvers, said first group of adjustable louvers located within said first air duct and between said first portion of said airflow exit surface of said first heat exchanger and said airflow entrance surface of said second heat exchanger, and said second group of adjustable louvers located within said first air duct and between said second portion of said airflow exit surface of said first heat exchanger and said airflow entrance surface of said third heat exchanger.

17. The vehicle thermal management system of claim 16, wherein said second set of adjustable louvers is located between said airflow entrance surface of said second heat exchanger and an ambient environment, and wherein said third set of adjustable louvers is located between said airflow entrance surface of said third heat exchanger and said ambient environment.

18. The vehicle thermal management system of claim 15, further comprising a first fan adjacent to an airflow exit surface of said second heat exchanger and a second fan adjacent to an airflow exit surface of said third heat exchanger.

19. The vehicle thermal management system of claim 14, wherein said first set of adjustable louvers has a first position and a second position, wherein said first position of said first set of adjustable louvers is fully opened and said second position of said first set of adjustable louvers is fully closed, wherein said second set of adjustable louvers has a first position and a second position, wherein said first position of said second set of adjustable louvers is fully opened and said second position of said second set of adjustable louvers is fully closed, wherein said third set of adjustable louvers has a first position and a second position, and wherein said first position of said third set of adjustable louvers is fully opened and said second position of said third set of adjustable louvers is fully closed.

20. The vehicle thermal management system of claim 14, wherein said first set of adjustable louvers is adjustable over a range of positions between fully opened and fully closed, wherein said second set of adjustable louvers is adjustable over a range of positions between fully opened and fully closed, and wherein said third set of adjustable louvers is adjustable over a range of positions between fully opened and fully closed.

21. The vehicle thermal management system of claim 14, wherein said first set of adjustable louvers is comprised of at least a first group of adjustable louvers and a second group of adjustable louvers, wherein said first and second groups of adjustable louvers are independently operable from one another, wherein said second set of adjustable louvers is comprised of at least a third group of adjustable louvers and a fourth group of adjustable louvers, wherein said third and fourth groups of adjustable louvers are independently operable from one another, wherein said third set of adjustable louvers is comprised of at least a fifth group of adjustable louvers and a sixth group of adjustable louvers, and wherein said fifth and sixth groups of adjustable louvers are independently operable from one another.

22. The vehicle thermal management system of claim 14, wherein said first, second and third vehicle cooling subsystems are selected from the group consisting of battery cooling subsystems, refrigeration subsystems, passenger cabin HVAC subsystems, power electronics cooling subsystems, motor cooling subsystems, transmission cooling subsystems, and charging system cooling subsystems.

23. The vehicle thermal management system of claim 14, wherein said second and third vehicle cooling subsystems are the same vehicle cooling subsystem.

24. The vehicle thermal management system of claim 1, further comprising:

a third heat exchanger, wherein said third heat exchanger is configured in said non-stacked arrangement with said first and second heat exchangers, and wherein said third heat exchanger is in thermal communication with a third vehicle cooling subsystem;
a third air inlet, wherein air flowing through said third air inlet flows directly into said third heat exchanger without first passing through said first or second heat exchangers;
a first air duct that couples a first portion of an airflow exit surface of said first heat exchanger to an airflow entrance surface of said second heat exchanger;
a second air duct that couples a second portion of said airflow exit surface of said first heat exchanger to an airflow entrance surface of said third heat exchanger; and
a second set of adjustable louvers that controls air flowing directly through said third air inlet into said third heat exchanger that does not first pass through said first or second heat exchangers, wherein said first set of adjustable louvers is located between said airflow entrance surface of said second heat exchanger and an ambient environment, and wherein said second set of adjustable louvers is located between said airflow entrance surface of said third heat exchanger and said ambient environment.
Patent History
Publication number: 20120168125
Type: Application
Filed: Jun 1, 2011
Publication Date: Jul 5, 2012
Applicant: Tesla Motors, Inc. (Palo Alto, CA)
Inventors: Vincent George Johnston (Half Moon Bay, CA), Sungyong Bang (East Palo Alto, CA), Paul Daniel Yeomans (San Francisco, CA)
Application Number: 13/150,553
Classifications
Current U.S. Class: With Adjustor For Heat, Or Exchange Material, Flow (165/96)
International Classification: F28F 27/00 (20060101);