Body armor of ceramic ball embedded polymer

A body armor composite material is provided to protect a wearer from small-arms projectiles. The material includes a flexible liner, a polymer binder disposed on the liner, and ceramic solids embedded in the binder. The flexible liner conforms to a portion of the wearer and elastically deforms in response to application of mechanical force. The binder can be a polyurea foam. The solids can be spheres arranged in a single-layer pattern substantially parallel to liner.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

Pursuant to 35 U.S.C. §119, the benefit of priority from provisional application 61/632,734, with a filing date of Jan. 9, 2012, is claimed for this non-provisional application. The invention is a Continuation-in-Part, claims priority to and incorporates by reference in its entirety U.S. patent application Ser. No. 11/197,751 filed Jun. 21, 2005, published as Application Publication 2007/0017359 and assigned Navy Case 97280.

STATEMENT OF GOVERNMENT INTEREST

The invention described was made in the performance of official duties by one or more employees of the Department of the Navy, and thus, the invention herein may be manufactured, used or licensed by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

BACKGROUND

The invention relates generally to body armor for personnel subject to small-arms fire, such as soldiers and marines in combat as well as law enforcement personnel. In particular, the invention relates to flexible material for protecting personnel from bullet and related projectiles using ceramic balls embedded in polymer.

Military personnel have required protection from enemy weapons for at least four millennia. The advent of kinetic projectiles propelled by chemically produced gas discharge, such as from firearms in the past few centuries, substantially increased kinetic energy transfer to the target's body, thereby raising the risk of mortal injury. Conventional armor has typically focused on either high tensile strength fibrous weave or rigid plates. The former lacks protection from sharp ogive projectiles at high-velocity impact, and the latter constrains motion by inertial weight to carry and by constraints on body movement. In addition the rigid plates have minimal multi-hit capability.

SUMMARY

Conventional personnel armor yield disadvantages addressed by various exemplary embodiments of the present invention. In particular, various exemplary embodiments provide body armor composite material to protect a wearer from small-arms projectiles. The material includes a flexible liner, a polymer binder disposed on the liner, and ceramic solids embedded in the binder. The flexible liner conforms to a portion of the wearer and elastically deforms in response to application of mechanical force.

In various embodiments, the binder can be a foam of polyurea or polyurethane. The solids can be spheres arranged in a single-layer pattern substantially parallel to liner. Other various embodiments alternatively or additionally provide for the ceramic being a metal oxide, nitride or carbide. The liner can be a weave of aramid fibers or alternatively of ultra-high-molecular-weight polyethylene fibers.

BRIEF DESCRIPTION OF THE DRAWINGS

These and various other features and aspects of various exemplary embodiments will be readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, in which like or similar numbers are used throughout, and in which:

FIG. 1 is elevation and plan views of an armor portion; and

FIG. 2 is an elevation view of the portion under stress.

DETAILED DESCRIPTION

In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized, and logical, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.

Conventional body armor teaches, for example, molded ceramic tiles disposed in armor pockets contoured to the body geometry where the tile can be disposed. Each tile forms a small-arms protective insert (SAPI) ballistic plate to protect the wearer from small caliber projectile weapons. Three problems occur with this conventional configuration: limited flexibility, tile interface vulnerabilities and lack of multi-hit capability. As a large fixed tile, the SAPI plate restricts movement of the soldier, and after an impact the plate may experience large damage areas leaving vulnerabilities when a second impact occurs in a nearby area. Typically there are four tiles placed at locations both front and back as well as left and right sides. This leaves unprotected areas in the gaps between the plates.

Using the exemplary ceramic ball concept, a continuous mesh of the ceramic balls avoids such gap vulnerabilities by being disposed throughout the protected areas by absorption and deflection of kinetic energy from the striking projectile. Recent tests have demonstrated that performance characteristic even when impacts are performed within “gaps” between balls, minimizing the performance difference between striking in the gaps and direct impact to the sphere. Exemplary embodiments of personnel armor can be designed to specified performance levels at https://www.ncjrs.gov/pdffiles1/nij/223054.pdf by the National Institute of Justice (NIJ). Through varying both ceramic ball diameter and spall liner thickness, various levels can be achieved, with higher NIJ levels requiring more material than lower levels.

Conventional body armor protection incorporates boron carbide (B4C) ceramic SAPI plates backed by a spall liner of Kevlar® or ultra-high molecular weight polyethylene (UHMWPE). Example conventional body armor configurations include the Outer Tactical Vest (OTV) used by the U.S. Army, and the Modular Tactical Vest (MTV) used by the U.S. Marine Corps. These use an embedded spall liner and large pockets in which to insert SAPI plates in the front, back and sides of the MTV to protect key organs. Such a design is comparatively bulky and heavy, so as to limit flexibility and contribute to fatigue of the wearer. Additionally, exemplary SAPI plates cost between $350 and $600 each, so the vests can be expensive. Further, the conventional SAPI plates lack multi-impact protection.

FIG. 1 shows an exemplary armor portion in an elevation view 100 and a plan view 110. A cross-section 120 of the armor portion reveals a laminate structure that includes a flexible substrate 130 and a flexible polymer binder 140 that contains ceramic spheres 150. The substrate 130 can constitute a flexible spall liner to conform to a portion of the wearer to be protected. The binder 140 can constitute a light-weight flexible filler material. The spheres 150 can be produced from various metal carbide, nitride or oxide compounds. In the elevation view 100, the structure shows the binder 140 facing a front surface 160, and the substrate 130 facing a rear surface 170 adjacent to a body portion of the wearer. In the plan view 110, the arrangement of the spheres 150 shows them to share a common plane and be patterned so that six neighboring spheres flank each non-edge counterpart in a hexagonal close packed (HCP) geometric arrangement 180 substantially parallel to the substrate 130. A cover fabric for camouflage or decorative purpose can be overlaid to obscure the binder 140 and the spheres 150 from visual observation.

FIG. 2 shows an elevation view 200 of the section elastically deforming under stress. Forces 210 cause the structure to flex such that the cross-section 120 bows in response, particularly in view of the mechanical properties of the substrate 130. As shown, the rear surface 170 bends to form a convex profile in cross-section, whereas the front surface 160 bends to form a concave profile.

U.S. patent application Ser. No. 11/197,751 illustrates, in parent FIGS. 2A and 2B, a composite armor panel 42 for mounting to a vehicle door 40. The panel 42 includes a metal substrate 46 overlaid with a polymer layer 50 in which a layer 44 of ceramic spheres 48 are disposed. Techniques for producing these laminate structures are described with parent FIGS. 3A through 4C. Further, parent FIGS. 5A through 5C illustrate the damage mitigation effects to protect the body behind the panel by kinetic absorption through the ceramic spheres 136.

By contrast, various exemplary embodiments for the present invention provide for protection to be worn on a human body, rather than mounted to a vehicle, and thus requiring greater flexibility and lighter weight than for the parent application. In particular, the substrate 130 and the binder 140 constitute less dense and more flexible material than disclosed in the parent application. For example, the substrate 130 can be composed of Kevlar® or UHMWPE, with or without adhesives.

The exemplary structure provides a light-weight, flexible, multi-hit-capable body armor material. Within the exemplary design, the ceramic spheres 150 are encapsulated within the light-weight flexible polymer binder 140 to provide flexibility reinforced by a spall liner that constitutes the substrate 130. The solution can be incorporated to all applications related to protecting the torso and groin regions of the wearer. Preferred applications include vest and an outer garment to protect the groin region.

Various exemplary embodiments provide the ceramic spheres 150 to include diameters ⅜″ (0.375 inch) up to ¾″ (0.75 inch) and form an encapsulated layer having thicknesses that substantially correspond to the diameters of the spheres 150. The ceramic components form a spherical shape, although alternate substantially symmetrical solids, such as the octahedron, dodecahedron and icosahadron can be used without departing from the scope of the invention. Complete encapsulation with overall layer thickness between ⅜″ and ¾″.

Candidate ceramic materials include aluminum oxide (alumina or Al2O3) of all chemical purity varieties, silicon carbide (SiC), and boron carbide (B4C), the latter two being both sintered and hot pressed. Alternate materials include boron nitride (BN), silicon nitride (Si3N4), and zirconium oxide (zirconia or ZrO2). Preferably, the ceramic spheres 150 are at least 90% alumina. Regardless of the ceramic material selected, a high hardness and compression strength is preferable. A Vickers Hardness number of at least 15 is suitable, and a Vickers Hardness number of at least 30 is preferable. The pattern 180 exhibits a high degree of symmetry. The ceramic spheres 150 are uniform and oriented in the direction of anticipated impact.

The ceramic spheres 150 are encapsulated in a single layer within the lightweight flexible polymer binder 140 in the HCP pattern 180. The polymer binder 140 enables flexible motion of the encapsulated ceramic ball matrix, which is backed by the spall liner substrate 130 and affixed thereto by an optional adhesive. Additionally, the ceramic spheres 150 can be tightly wrapped in a high strength polymer thread, similar to a ball of yarn prior to being embedded in the encapsulating polymer binder 140. This thread-wrapping measure enables the spheres 150 to be held in compression and provides additional integrity to the spheres 150 when subject to kinetic impact. Such threads can be composed of a light metal weave or high tensile strength fiber, such as UHMWPE, or an aromatic polyamide for example, the best known being Kevlar® from duPont of Wilmington, Del.

The polymer layer 140 may comprise preferably light-weight flexible polyurea foam. Related materials can include polyurethanes, polyureas, rubbers or combinations of elastomeric materials incorporating urethanes, polyureas or hybrids thereof such as acrylics and methacrylates. Preferably, the polymer thermosets and demonstrates medium to high elongation (e.g., 50% to 100%), a medium to high modulus, and high tensile strength, such as a polyurea, notable for high durability.

Alternatively, the polymer layer 140 may comprise polyurethane, which has a lower density than polyurea (for reduced weight at the cost of decreased durability). Further material differences between polyurea and polyurethane is available in a report “Polyurea Elastomer Technology” by Dudley J. Primeaux II from Primeaux Associates LLC in Elgin, Tex., available in http://www.hansonco.net/PUAHistChemFormulate%20by%20Dudley.pdf as a report.

In another embodiment, the polyurea elastomers may be derived from hybridized isocyanate/resin components. The isocyanate may be aromatic or aliphatic in nature. Additionally, the isocyanate may be a monomer, a polymer, or any variant reaction of isocyanates, quasi-prepolymer or a prepolymer.

The prepolymer, or quasi-prepolymer, may comprise an amine-terminated polymer resin, or a hydroxyl terminated polymer resin. More specifically, the resin blend utilized with the prepolymer or quasi-prepolymer may comprise amine-terminated polymer resins, and/or terminated chain extenders. The resin blend may also contain additives, or non-primary components. For example, the additives may serve cosmetic functions, weight reduction functions, or provide fire-retardant characteristics. By way of further example, these additives may contain hydroxyls, such as pre-dispersed pigments in a polyol carrier. By way of another example, a polyurethane/polyurea hybrid elastomer may be utilized which is the reaction product of an isocyanate component and a resin blend component.

The isocyanate may be aromatic or aliphatic in nature. Further, the isocyanate may be a monomer, a polymer, or any variant reaction of isocyanates, quasi-prepolymers or prepolymers. The prepolymer, or quasi-prepolymer, may comprise an amine-terminated polymer resin, or a hydroxyl-terminated polymer resin. Additionally, the resin blend may comprise blends of amine-terminated and/or hydroxyl-terminated polymer resins, and/or amine-terminated and/or hydroxyl-terminated chain extenders.

In one embodiment, the resin blend contains blends of amine-terminated and hydroxyl-terminated moieties. The resin blend may also contain additives, non-primary components or catalysts. As a further example, a polyurethane elastomer may be the reaction product of an isocyanate component and a resin blend component. In another embodiment, the polyurethane elastomer is the reaction product of hybridized isocyanate and resins.

The isocyanate component may be aromatic or aliphatic in nature. Further, the isocyanate component may be a monomer, polymer, or any variant reaction of isocyanates, quasi-prepolymer, or a prepolymer. The prepolymer, or quasi-prepolymer, may comprise hydroxyl-terminated polymer resins. The resin blend may be composed of hydroxyl-terminated polymer resins, being -diol, -triol or multi-hydroxyl polyols, and/or aromatic or aliphatic hydroxyl-terminated chain extenders. The resin blend may also contain additives, non-primary components, or catalysts.

Both the adhesive and spall liner substrate 130 must be of equal or greater compliancy as the ceramic ball matrix. Compliancy may be obtained through reduced bonding resins or reduced heat and pressure used to combine the multi-layers that form the substrate 130 as the spall liner. Candidate materials include both aramid and UHMWPE fibers such as Dyneema® fiber (or yarn) by Royal DSM N.V. of Amsterdam, the Netherlands, and Spectra® yarn of Honeywell in Morristown, N.J. These fibers can be woven to establish a weave that conforms to the wearer, and thereby serve as the flexible substrate 130.

Returning to FIG. 1, the configuration and arrangement of the composite ceramic body armor system can be characterized as encapsulated ball matrix serving as the “strike face” along the front surface 160. The ceramic spheres 150 arranged in a patterned layer within the polymer binder 140 constitute the encapsulated ball matrix. A flexible adhesion is provided between that encapsulated ball matrix and the spall liner substrate 130. Additionally the entire body armor system may be wrapped in a fabric material to provide: protection of armor system, uniformity with existing clothing and camouflage options. Performance gains from this feature include: increased flexibility, multi-hit capability, lower cost and lighter weight (as compared to conventional armor for equal performance characteristics).

Damage areas after an impact tend to be minimal where typically only two or three ceramic spheres 150 are removed. The application of the ceramic ball body armor can be integrated to primarily protect the torso and groin area due not only to damage vulnerability but also to target size compared to the head and appendages, such as arms and legs.

The exemplary garment form can be described primarily of a vest, but could include an outer garment protecting the groin area. Customized designs can be incorporated based on threat requirements. Increased threats would need to include larger ceramic balls and thicker spall liners. The protection system would be worn similar to the conventional existing SAPI system as an over garment in tactical conditions. In 2008, the United States Army stated that the SAPI plate system was not a final state for body armor protection. Future requirements would include increased flexibility and lighter weight. The ceramic ball armor disclosed in exemplary embodiments addresses both issues.

Production of the composite body armor include spraying polymer binder 140 onto the substrate 130, such as with Gusmer® spray equipment from Gusmer-Decker (acquired by Graco) of North Canton, Ohio, and potting the spheres 150 in the HCP pattern 180 into the sprayed polymer prior to its curing. The polymer surrounding the ceramic balls must enable flexible motion of the encapsulated ceramic ball matrix. Other techniques for producing such body armor can be envisioned by artisans of ordinary skill without departing from the scope of the invention.

In exemplary embodiments, the encapsulated ceramic ball serves as the “strike face” of the body armor system. Flexible adhesion is provided between the encapsulated ball system and the spall liner. Additionally the entire body armor system may be wrapped in a fabric material to provide: protection of armor system, uniformity with existing clothing and camouflage options. Benefits from this design include: increased flexibility, multi-hit capability, lower cost and lighter weight (as compared to conventional armor for comparable performance characteristics).

While certain features of the embodiments of the invention have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the embodiments.

Claims

1. A body armor composite material for protecting a wearer from small- arms projectiles and shrapnel, said material comprising:

a flexible liner that conforms to a portion of the wearer and elastically deforms in response to application of mechanical force;
a polymer binder disposed on said flexible liner; and
a plurality of ceramic solids embedded within said polymer binder, said plurality arranged in a single-layer pattern substantially parallel to said liner.

2. The body armor according to claim 1, wherein said ceramic solids are spherical.

3. The body armor according to claim 2, wherein said ceramic solids are between ⅜″ and ¾″ in diameter.

4. The body armor according to claim 1, wherein said ceramic solids are composed of at least one of aluminum oxide (Al2O3), silicon carbide (SiC), boron carbide (B4C), boron nitride (BN), silicon nitride (Si3N4), and zirconium oxide (ZrO2).

5. The body armor according to claim 1, wherein said ceramic solids are composed substantially of aluminum oxide (Al2O3).

6. The body armor according to claim 1, wherein said pattern is a hexagonal close packed geometric arrangement in which each non-edge solid has six neighboring solid that share a common plane.

7. The body armor according to claim 1, wherein said binder is a polyurea foam.

8. The body armor according to claim 1, wherein said binder is a polyurethane foam.

9. The body armor according to claim 1, wherein said binder is a rubber foam.

10. The body armor according to claim 1, wherein said binder is an isocyanate foam.

11. The body armor according to claim 1, wherein said binder is between ⅜″ and ¾″ in thickness.

12. The body armor according to claim 1, wherein said liner comprises a weave of aramid fibers.

13. The body armor according to claim 12, wherein said aramid fibers are composed of Kevlar®.

14. The body armor according to claim 1, wherein said liner is a weave of ultra-high-molecular-weight polyethylene (UHMWPE) fibers.

15. The body armor according to claim 14, wherein said UHMWPE fibers are composed of Dyneema® fiber.

16. The body armor according to claim 14, wherein said UHMWPE fibers are composed of Spectra® yarn.

17. A body armor composite material for protecting a wearer from small- arms projectiles and shrapnel, said material comprising:

a flexible liner that conforms to a portion of the wearer and elastically deforms in response to application of mechanical force;
a polymer binder disposed on said flexible liner;
a plurality of balls, each said ball being embedded within said polymer binder, said plurality being arranged in a single-layer pattern substantially parallel to said liner, wherein each said ball comprises:
a ceramic solid, and
a high-tensile-strength fiber that securely wraps around said ceramic solid to produce said ball.

18. The body armor according to claim 17, wherein said fiber is composed of an aramid.

19. The body armor according to claim 17, wherein said fiber is composed of UHMWPE.

20. The body armor according to claim 17, wherein each said ceramic solid is composed substantially of aluminum oxide (Al2O3).

Patent History
Publication number: 20120312150
Type: Application
Filed: Mar 9, 2012
Publication Date: Dec 13, 2012
Applicant: United States Govemment, as represented by the Secretary of the Navy (Arlington, VA)
Inventors: Raymond M. Gamache (Indian Head, MD), C. Michael Roland (Waldorf, MD)
Application Number: 13/506,376