METHOD OF REDUCING SILICOSIS CAUSED BY INHALATION OF SILICA-CONTAINING PROPPANT, SUCH AS SILICA SAND AND RESIN-COATED SAND, AND APPARATUS THEREFOR

A method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated silica sand, and apparatus therefor. The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b): A brief abstract of the technical disclosure in the specification must commence on a separate sheet, preferably following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims. Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CONTINUING APPLICATION DATA

This application is a Continuation-In-Part application of U.S. patent application Ser. No. 13/416,256, filed on Mar. 9, 2012, which claims priority to U.S. Provisional Patent Application 61/451,435, filed Mar. 10, 2011, and U.S. Provisional Patent Application 61/590,233, filed Jan. 24, 2012, and U.S. Provisional Patent Application 61/601,875, filed Feb. 22, 2012.

BACKGROUND

1. Technical Field

The present application relates to a method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated silica sand, and apparatus therefor.

2. Background Information

Hydraulic fracturing is the propagation of fractures in a rock layer, which process is used by oil and gas companies in order to release petroleum, natural gas, coal seam gas, or other substances for extraction. The hydraulic fracturing technique is known in the oil and gas industry as “fracking” or “hydrofracking.” In hydraulic fracturing, a proppant is used to keep the fractures open, which proppant is often a silica-containing material, such as silica sand and resin-coated silica sand. Many tons of proppant are used at a fracking site, thereby exposing workers to inhalation of silica dust, which can lead to a lung disease known as silicosis, or Potter's rot. Silicosis is a form of occupational lung disease caused by inhalation of crystalline silica dust, and is marked by inflammation and scarring in forms of nodular lesions in the upper lobes of the lungs. It is a type of pneumoconiosis, or lung disease caused by the inhalation of dust, usually from working in a mining operation.

When preparing proppant for use in hydraulic fracturing, large amounts of dust, such as silica dust and other proppant dust, are created by the movement of proppants. This dust can produce potential detrimental effects, such as contaminating atmospheric air, creating a nuisance to adjacent landowners, and damaging equipment on the hydraulic fracturing site. A significant concern, as discussed above, is the inhalation of silica dust or other proppant dust, which can lead to lung conditions such as silicosis and other specific forms of pneumoconiosis.

Hydraulic fracturing jobs use a large amount of proppant, often as much as 15,000 tons. This large quantity of proppant is brought in by pneumatic tankers and then blown into proppant storage trailers known as “mountain movers,” “sand hogs” or “sand kings.” Some well-known storage devices of this type have been developed by Halliburton (headquartered in Houston, Tex. and Dubai, UAE), such as the Model FSR-2500 Mountain Mover®. This particular model is capable of storing 2,500 cubic feet of proppant in five individual compartments consisting of two 560 cubic feet compartments and three 460 cubic feet compartments. The FSR-2500 has a length of 48 feet, width of 8.5 feet, height of 13.5 feet, and a total weight of 51,400 pounds. Other storage devices of this type are the Sand King 3000 and the Sand King 4000 developed by Convey-All Industries, 130 Canada Street, Winkler, Manitoba, Canada R6W 4B7. The Model FSR-2500 Mountain Mover®, Sand King 3000, and the Sand King 4000, and the technical data relating thereto, are hereby incorporated by reference as if set forth in their entirety herein, except for the exceptions indicated herein. The dimensions and weight of such storage trailers may require a permit for transport, depending on the states, territories, or countries in which the storage trailers are to be transported. For example, U.S. federal rules require that gross vehicle weight be no more than 80,000 pounds, and that the overall vehicle length be no longer than 65 feet, or 75 feet, depending on the type of connection between the tractor and the trailer. Such storage trailers are generally designed such that the gross vehicle weight and overall vehicle length during transport is less than the federal limit. The motor vehicle codes relating to trucks and/or trailers of the various states, provinces, and/or territories in which such motor vehicle codes are utilized, are hereby incorporated by reference as if set forth in their entirety herein, except for the exceptions indicated herein.

Such storage trailers generally have access doors on top which vent the incoming air to the atmosphere. The flow of air creates large dust clouds, such as silica dust clouds, which blow out of the access doors, which can be especially problematic for workers who are looking into the interior of the storage trailers to monitor the proppant fill level. The proppant is then gravity fed onto a conveyor belt that carries the proppant to another conveyor, usually a T-belt which runs transverse to and collects the proppant from multiple storage trailers. The gravity feed of the proppant once again disturbs the proppant resulting in additional dust clouds. The T-belt then carries the proppant to be discharged into the hopper of one or more blenders, at which point the proppant is again disturbed and additional dust clouds are created.

During this entire process, workers are often standing near or directly in the path of a cloud or airborne flow of silica dust or proppant dust. When small silica dust particles are inhaled, they can embed themselves deeply into the tiny alveolar sacs and ducts in the lungs, where oxygen and carbon dioxide gases are exchanged. The lungs cannot clear out the embedded dust by mucous or coughing. Substantial and/or concentrated exposure to silica dust can therefore lead to silicosis.

Some of the signs and/or symptoms of silicosis include: dyspnea (shortness of breath), persistent and sometimes severe cough, fatigue, tachypnea (rapid breathing), loss of appetite and weight loss, chest pain, fever, and gradual dark shallow rifts in nails which can eventually lead to cracks as protein fibers within nail beds are destroyed. Some symptoms of more advanced cases of silicosis could include cyanosis (blue skin), cor pulmonale (right ventricle heart disease), and respiratory insufficiency.

Aside from these troublesome conditions, persons with silicosis are particularly susceptible to a tuberculosis infection known as silicotuberculosis. Pulmonary complications of silicosis also include chronic bronchitis and airflow limitation (similar to that caused by smoking), non-tuberculous Mycobacterium infection, fungal lung infection, compensatory emphysema, and pneumothorax. There is even some data revealing a possible association between silicosis and certain autoimmune diseases, including nephritis, scleroderma, and systemic lupus erythematosus. In 1996, the International Agency for Research on Cancer (IARC) reviewed the medical data and classified crystalline silica as “carcinogenic to humans.”

In all hydraulic fracturing jobs, a wellbore is first drilled into rock formations. A hydraulic fracture is then formed by pumping a fracturing fluid into the wellbore at a rate sufficient to increase pressure downhole to exceed that of the fracture gradient of the rock to be fractured. The rock cracks and the fracture fluid continues farther into the rock, thereby extending the crack or fracture. To keep this fracture open after the fluid injection stops, the solid proppant is added to the fluid. The fracturing fluid is about 95-99% water, with the remaining portion made up of the proppant and chemicals, such as hydrochloric acid, methanol propargyl, polyacrylamide, glutaraldehyde, ethanol, ethylene glycol, alcohol and sodium hydroxide. The propped fracture is permeable enough to allow the flow of formation fluids to the well, which fluids may include gas, oil, salt water, fresh water and fluids introduced during completion of the well during fracturing. The proppant is often a silica-containing material, such as sand, but can be made of different materials, such as ceramic or other particulates. These materials are selected based on the particle size and strength most suitable to handle the pressures and stresses which may occur in the fracture. Some types of commercial proppants are available from Saint-Gobain Proppants, 5300 Gerber Road, Fort Smith, Ark. 72904, USA, as well as from Santrol Proppants, 50 Sugar Creek Center Boulevard, Sugar Land, Tex. 77478, USA.

The most commonly used proppant is silica sand or silicon dioxide (SiO2) sand, known colloquially in the industry as “frac sand.” The frac sand is not just ordinary sand, but rather is chosen based on certain characteristics according to standards developed by the International Organization for Standardization (ISO) or by the American Petroleum Institute (API). The current ISO standard is ISO 13503-2:2006, entitled “Petroleum and natural gas industries—Completion fluids and materials—Part 2: Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations,” while the API standards are API RP-56 and API RP-19C. In general, these standards require that the natural sands must be from high silica (quartz) sandstones or unconsolidated deposits. Other essential requirements are that particles are well rounded, relatively clean of other minerals and impurities and will facilitate the production of fine, medium and coarse grain sands. Frac sand is preferably >99% quartz or silica, and high purity quartz sand deposits are relatively common in the U.S. However, the tight specifications for frac sands—especially in relation to roundness and sphericity—make many natural sand deposits unsuitable for frac sand production. One primary source of such high quality sand is the St. Peter sandstone formation, which spans north-south from Minnesota to Missouri and east-west from Illinois into Nebraska and South Dakota. Sand from this formation is commercially known as Ottawa sand. This sand generally is made of a very high percentage of silica, and some samples, such as found in Missouri, consist of quartz sand that is 99.44% silica.

One characteristic used to determine suitability of a proppant material, such as silica sand, is grain size, which can be measured using standard length measurements or by mesh size. Mesh size is determined by the percentage of particles that are retained by a series of mesh sieves having certain-sized openings. In a mesh size number, the small number is the smallest particle size while the larger number is the largest particle size in that category. The smaller the number, the coarser the grain. The vast majority of grains range from 12 to 140 mesh and include standard sizes such as 12/20, 16/30, 20/40, 30/50, and 40/70, whereby 90% of the product falls between the designated sieve sizes. Some specific examples are 8/12, 10/20, 20/40, and 70/140. Grain size can also be measured in millimeters or micrometers, with some examples being grain size ranges of 2.38-1.68 mm, 2.00-0.84 mm, 0.84-0.42 mm, and 210-105 micrometers.

Another important characteristic of a proppant material, such as silica sand, for hydraulic fracturing is the sphericity and roundness of the grains, that is, how closely the grains conform to a spherical shape and its relative roundness. The grains are assessed by measuring the average radius of the corners over the radius of a maximum inscribed circle. Krumbein and Sloss devised a chart for the visual estimation of sphericity and roundness in 1955, as shown in FIG. 4. The API, for example, recommends sphericity and roundness of 0.6 or larger based on this scale.

An additional characteristic of a proppant material, such as silica sand, is crush resistance, which, as the phrase implies, is the ability of the proppant to resist being crushed by the substantial forces exerted on the proppant after insertion into a fracture. The API requires that silica sand withstand compressive stresses of 4,000 to 6,000 psi before it breaks apart or ruptures. The tested size range is subjected to 4,000 psi for two minutes in a uniaxial compression cylinder. In addition, API specifies that the fines generated by the test should be limited to a maximum of 14% by weight for 20-40 mesh and 16-30 mesh sizes. Maximum fines for the 30-50 mesh size is 10%. Other size fractions have a range of losses from 6% for the 70-40 mesh to 20% for the 6-12 mesh size. According to the anti-crushing strength measured in megapascals (MPa), types of frac sand can possibly be divided, for example, into 52 Mpa, 69 Mpa, 86 Mpa and 103 Mpa three series.

Yet another characteristic of a proppant material, such as silica sand, is solubility. The solubility test measures the loss in weight of a 5 g sample that has been added to a 100 ml solution that is 12 parts hydrochloric acid (HCl) and three parts hydrofluoric acid (HF), and heated at 150° F. (approx. 65.5° C.) in a water bath for 30 minutes. The test is designed to determine the amount of non-quartz minerals present. However, a high silica sandstone or sand deposit and its subsequent processing generally removes most soluble materials (e.g. carbonates, iron coatings, feldspar and mineral cements). The API requires (in weight percent) losses of <2% for the 6-12 mesh size through to the 30-50 mesh size and 3% for the 40-70 mesh through to 70-140 mesh sizes.

OBJECT OR OBJECTS

An object of the present application is to prepare proppant, such as silica sand, resin-coated silica sand, and ceramic proppant materials, for use in hydraulic fracturing while minimizing dust production in order to reduce exposure of workers to silica dust and proppant dust, and thereby minimize the chances of the workers developing silicosis or other types of pneumoconiosis.

SUMMARY

As discussed above, in a hydraulic fracturing operation, large quantities (as much as 15,000 tons or more) of proppant, such as silica sand, resin-coated silica sand, and ceramic proppant materials, are used. One of the drawbacks of using proppant materials, especially silica sand, is that dust clouds, such as silica dust clouds, are formed during the handling of the proppant material. The dust clouds can be controlled by using a control arrangement. According to one possible embodiment of the application, the control arrangement is separate from but connectable to the proppant storage device. According to another possible embodiment of the application, at least a portion of the control arrangement is integrated into the body of the proppant storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a microscopic view of silica dust particles;

FIG. 2 shows proppant grains;

FIG. 3 shows proppant grains;

FIG. 4 shows the Krumbein and Sloss chart;

FIG. 5 shows a human lung affected by silicosis;

FIG. 6 shows a cross-sectional end view of a portion of the body of a proppant storage device according to at least one embodiment of the application;

FIG. 7 shows a top view of a portion of the body of the proppant storage device according to FIG. 6;

FIG. 8 shows a cross-sectional view of a portion of the body of a proppant storage device according to at least one embodiment of the application;

FIG. 9 shows a top view of a portion of the body of the proppant storage device according to FIG. 8;

FIG. 10 shows a cross-sectional end view of a portion of the body of the proppant storage device according to FIG. 6 with additional features;

FIG. 11 shows a top view of a portion of the body of the proppant storage device according to FIG. 10;

FIG. 12 shows a cross-sectional view of a portion of the proppant storage device according to FIG. 10;

FIG. 13 shows another cross-sectional view of the portion of the proppant storage device according to FIG. 12;

FIG. 14 shows a side view of the body of a proppant storage device according to at least one embodiment of the application;

FIG. 15 shows a side view of a portion of the body of the proppant storage device according to FIG. 14 with additional features;

FIG. 16 shows a side view of the body of the proppant storage device according to FIG. 14 connected to additional proppant storage devices;

FIG. 17 shows a side view of a portion of a collection device according to at least one embodiment of the application;

FIG. 18 shows a rear view of the collection device according to FIG. 17;

FIG. 19 shows a side view of a portion of a collection device according to at least one embodiment of the application;

FIG. 20 shows a rear view of the collection device according to FIG. 19;

FIG. 21 shows a top view of an installed collection system according to at least one embodiment of the application;

FIG. 22 shows a door arrangement of FIG. 21;

FIG. 23 shows a manifold arrangement of FIG. 21;

FIG. 24 shows a connector arrangement of FIG. 21;

FIG. 25 shows a support arrangement of FIG. 21;

FIG. 26 shows a tube arrangement of FIG. 21;

FIG. 27 shows a manifold arrangement of FIG. 21;

FIG. 28 shows a manifold arrangement of FIG. 21;

FIG. 29 shows a back view of a riser arrangement of FIG. 21;

FIG. 30 shows a front view of a riser arrangement of FIG. 21;

FIG. 31 shows a belt manifold arrangement of FIG. 21;

FIG. 32 shows a front view of a riser arrangement of FIG. 21;

FIG. 33 shows a back view of a riser arrangement of FIG. 21;

FIG. 34 shows a collector unit of FIG. 21; and

FIG. 35 shows a tube connector according to at least one embodiment of the application.

DESCRIPTION OF EMBODIMENT OR EMBODIMENTS

FIG. 1 shows a microscopic view of silica dust particles. These silica dust particles can become lodged in the lungs of a person who inhales the silica dust. Exposure to silica dust may lead to silicosis, a form of pneumoconiosis. FIGS. 2 and 3 show examples of proppant grains. FIG. 5 shows a human lung affected by silicosis. As can be easily seen, the lung is darkened and damaged by the presence of the silica dust particles.

FIG. 6 shows a cross-sectional end view of a portion of the body of a proppant storage device 1 according to at least one embodiment of the application. While the storage device 1 is being filled with proppant, the doors 3, which are shown in FIG. 6 as being closed, may be opened to allow air to vent through outlets 4 and to allow workers to monitor the fill level of proppant in the storage device 1. The exiting air and the feeding of the proppant disturb the proppant, causing the formation of dust clouds which exit via the outlets 4, regardless of whether the doors 3 are closed or opened. To minimize or prevent the spread or exit of these dust clouds, a vacuum suction system may be employed. In operation, a vacuum dust collection machine is connected via an air duct system to collect the dust. In FIG. 6, intake openings 5 are formed in the sides of the outlets 4. A junction duct 15 is located around the intake opening 5 and connects to a side air duct 7. The flow of air through the side air duct 7 can be controlled by a valve 13. The side air ducts 7 lead to a central air duct 9. The central air duct 9 ultimately leads to an exhaust duct 11, which is operatively connected to a dust collector (not shown). The flow of air therefore proceeds as follows: air is drawn in through the outlets 4, then through the intake openings 5, then through the side air ducts 7, then through the central air duct 9, and finally through the exhaust duct 11. The side air ducts 7, the central air duct 9, and the exhaust duct 11 may be located within the frame or body of the storage device 1.

FIG. 7 shows a top view of a portion of the body of the storage device 1 according to FIG. 6. As can be seen in this figure, each of the side air ducts 7 connects to the central air duct 9, which, in the embodiment shown, extends over the length of the storage device 1 before joining the exhaust duct 11 located at the rear of the storage device.

FIG. 8 shows a cross-sectional view of a portion of the body of a proppant storage device 2 according to at least one embodiment of the application. The embodiment shown in FIG. 8 differs from that shown in FIG. 6 in that side air ducts 27 proceed outwardly, rather than inwardly, toward outer air ducts 29, which run along the outer edges of the storage device 2 (as shown in FIG. 9). Valves 13 control the flow of air through the side air ducts 27. The outer air ducts 29 connect to an exhaust duct 21, which is similar to the exhaust duct 11. The exhaust duct 21 also has a small air intake 17 and a large air intake 19, which can be connected to a vacuum arrangement used to collect dust produced by the transport of proppant on a conveyor positioned transverse to the length of the storage device 2, which conveyor is also known as a T-belt. FIG. 9 also shows a walkway 23 which is located on the roof or top surface of the storage device 2.

FIG. 10 shows a cross-sectional end view of a portion of the body of the proppant storage device according to FIG. 6 with additional features, specifically valves 33, which can be used to allow or block airflow from the intake openings 5. FIG. 11 shows a top view of a portion of the body of the proppant storage device according to FIG. 10, with the valves 33 shown. FIGS. 12 and 13 show cross-sectional views of a portion of the proppant storage device according to FIG. 10, showing the valve 33.

FIG. 14 shows a side view of the body of a proppant storage device according to at least one embodiment of the application. This embodiment is similar to the one shown in FIG. 6, but in this embodiment there is an upper connecting duct 39 which connects a central duct 9 to an exhaust duct 43. The exhaust duct 43 leads to exhaust ports 35 on the sides thereof. In addition, each of the storage devices has located on the underside thereof a conveyor 24. In operation, the proppant is released through openings in the underside of the storage device and onto the conveyor 24. The conveyor 24 transports the proppant to a second conveyer 31, which then deposits the proppant onto another conveyor, specifically a T-belt. The transport of the proppant on the conveyor 24 can disturb the proppant, especially at the point of transition from the conveyor 24 to the conveyor 31. A vacuum intake 25 is therefore located adjacent this transition point between the two conveyors 24, 31. The intake 25 is connected via a lower rear connecting duct 41 to the exhaust duct 43, as seen in FIG. 16. Also as seen in FIG. 16, the exhaust ducts 43 of multiple storage devices can be connected together to form a single exhaust which leads to the dust collecting device. Flexible sleeves 37 are used to connect the exhaust ducts 43.

FIG. 15 shows a side view of a portion of the body of the proppant storage device according to FIG. 14 with additional features, specifically valves 33.

FIG. 17 shows a side view of a portion of a collection device 51 according to at least one embodiment of the application. The dust drawn into the vacuum system from the storage devices 1, 2 and/or the conveyor belts is ultimately collected in the collection device 51. An air intake 45 is connectable to tubes which connect to the storage devices 1, 2, and an air intake 47 is connectable to tubes which connect to air intakes for the T-belt. The collection device 51 houses air filter units 49. FIG. 18 shows a rear view of the collection device 51 according to FIG. 17. The air intake 45 is located at the end of a manifold 55, which is connected to ports 53 which lead into the interior of the collection device 51.

FIG. 19 shows a side view of a portion of a collection device 51 according to at least one embodiment of the application. The collection device 51 shown in FIG. 19 differs from that shown in FIG. 17 in that the manifold 55 is formed by a tube 75 and an articulated duct 61. The duct 61 is articulated at a hinge 69 and is movable by a hydraulic piston or arm 59. This movability allows for the upper portion of the duct 61 to be retracted downwardly for storage during the movement of the dust collector 51, and then extended upwardly to be connected to the vacuum system upon installation at a hydraulic fracturing site. As shown in FIG. 20, a valve 57 can be opened or closed using a valve handle 65. The tube 75 can be connected using a flexible connecting sleeve 37 to a connector box 71, which is supported by a connector box table 73. In this manner the dust collector 51 can be connected to other tubing which leads to the air intakes which draw dust from the storage devices and the areas around the conveyor belts.

FIG. 21 shows a top view of an installed collection system according to at least one embodiment of the application. The collection system is connected to a series of proppant storage trailers once they have been positioned at the well site. The collection system has adaptable or portable doors or door arrangements 101 (see FIG. 22) that are designed to be placed over existing door openings in the storage trailers. The door arrangements 101 are such that an operator can open the door and look inside the storage trailer to determine the amount of product in the storage trailer and the amount being taken out of the storage trailer, while at the same time not interfere with the operation of the collection system. Each storage trailer requires different numbers of door arrangements 101 depending on sand storage manufacturers. The proppant dust is removed via flex tubing 103, which can be connected to one or more door arrangements 101 as necessary.

The dust is then carried to manifold arrangements 105 (see FIG. 23). The manifold arrangements 105 are designed to be placed between and suspended from the storage trailers once the storage trailers have been placed on site. The dust is then carried to connector arrangements 107 (FIG. 24). Each connector arrangement 107 is a flexible connector that allows for the variation in the placement of the sand storage trailers. The number of connector arrangements 107 used depends on the number of sand storage trailers being used at a well site. Table arrangements 111 (FIG. 25) suspend the connector arrangements between the sand storage trailers so they can be connected to the manifold arrangements 105 via a flexible hose connector.

The dust is then carried to an adjustable, rigid sand/air handling tube arrangement 109 (FIG. 26). The purpose of the adjustable air handling tube arrangement 109 is to allow for the varying connection distances to the connector arrangements 107. The dust is then carried to the ninety-degree step manifold arrangement 113 (FIG. 27). The ninety-degree step manifold 113 allows for the making of turns with the air handling tubes and for the allowance of a right or left hand orientation.

The dust is then carried to the dual-riser manifold arrangement 115 (FIG. 28). The dual-riser manifold 115 is a tubing that has rectangular mating flanges that are attached to the tubing for the purpose of mating the round tubing to the two riser arrangements 117 (FIGS. 29 and 30). The dust is then carried to the dual riser arrangements 117, which are designed to take the vacuum from the vacuum source and elevate the air or vacuum to the desired height. The dual riser arrangements 117 also have open/close doors built into them with locking devices for control of airflow. The dust is then finally collected in a dust collector unit 125 (FIG. 34).

Another part of the collecting arrangement is collecting dust at the discharge slides of the sand blender T-belt. This is done by the T-belt manifold arrangement 119 (FIG. 31). The T-belt manifold arrangement 119 pulls the dust at the discharge openings of the T-belt and can be used in a right or left hand orientation. This manifold arrangement 119 is designed to be used on one of two blending units by the manipulation of built-in open/close door assemblies 120.1 located in each of tubes 120. The dust is then taken from the T-belt manifold arrangement 119 by tubing to the blender feed belt riser arrangement 123 (FIGS. 32 and 33), which takes vacuum from the source and elevates the air to the desired elevation. This arrangement is designed to be used in either a left or right hand configuration. The blender feed belt riser arrangement 123 has an open/close door built into it. The dust from the blender area is also finally collected in the collector unit 125.

FIG. 35 shows a tube connector 127 according to at least one embodiment of the application. The tube connector 127 is used for connecting large diameter pipe in vacuum applications. The pipes are connected with a steel, plastic, or aluminum alignment insert 110. The connection is then sealed with an elastic water tight sock 108, and finally pulled together with an elastic strap 128.

U.S. patent application Ser. No. 13/416,256, filed on Mar. 9, 2012, U.S. Provisional Patent Application 61/451,435, filed Mar. 10, 2011, U.S. Provisional Patent Application 61/590,233, filed Jan. 24, 2012, and U.S. Provisional Patent Application 61/601,875, filed Feb. 22, 2012, are hereby incorporated by reference as if set forth in their entirety herein.

One feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in a method of reducing silicosis caused by inhalation of silica-containing granular material comprising a proppant, said method comprising the steps of: moving said silica-containing granular material comprising particles of different sizes from a first location to a second location; during said moving, separating said particles of smaller sizes of said particles of different sizes into air and forming a crystalline silica dust cloud at at least one position between said first location and said second location; at each said at least one position between said first location and said second location, removing a substantial portion of said dust from said crystalline silica dust cloud, with an arrangement for sucking away a substantial portion of said crystalline silica dust cloud and filtering the dust sucked away; continuing moving said silica-containing granular material to said second location; utilizing said silica-containing granular material as a proppant; and said step of moving said silica-containing granular material comprises loading said silica-containing granular material into a storage container.

Another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the method of reducing silicosis wherein: said method further comprises venting air from said storage container during loading of said silica-containing granular material and thereby venting smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; and said step of removing a substantial portion of said dust from said crystalline silica dust cloud comprises sucking away a substantial portion of said vented smaller-sized particles.

Yet another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the method of reducing silicosis wherein: said step of moving said silica-containing granular material comprises loading said silica-containing granular material into a blender and thereby separating smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; and said step of removing a substantial portion of said dust from said crystalline silica dust cloud comprises sucking away a substantial portion of said smaller-sized particles in crystalline silica dust clouds adjacent said blender.

Still another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the method of reducing silicosis wherein: said step of moving said silica-containing granular material comprises: moving said silica-containing granular material from said storage container to a first conveyor belt; moving said silica-containing granular material from said first conveyor belt to a second conveyor belt and thereby separating smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; moving said silica-containing granular material from said second conveyor belt to a T-belt conveyor and thereby separating smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; and moving said silica-containing granular material from said T-belt conveyor to said blender; and said step of removing a substantial portion of said dust from said crystalline silica dust cloud comprises sucking away a substantial portion of said smaller-sized particles in crystalline silica dust clouds adjacent said conveyor belts.

A further feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the method of reducing silicosis wherein said steps of sucking away a substantial portion of said smaller-sized particles in crystalline silica dust clouds comprise: activating a vacuum system; drawing air through intake openings of said vacuum system disposed adjacent the positions at which crystalline silica dust clouds are formed; sucking air and crystalline silica dust through air ducts; and collecting said crystalline silica dust in a collecting device.

Another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the method of reducing silicosis wherein said step of sucking air and crystalline silica dust through air ducts comprises one of: sucking air and dust through air ducts connected to said storage container; and sucking air and dust through air ducts disposed within and/or formed integrally with the body of said storage container.

One feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in an arrangement for reducing silicosis caused by inhalation of silica-containing granular material comprising a proppant, said apparatus being configured to remove a substantial portion of crystalline silica dust from crystalline silica dust clouds formed from the moving of silica-containing granular material comprising particles of different sizes from a first location to a second location, said arrangement comprising: at least one intake disposed adjacent at least one position at which smaller-sized particles of silica-containing granular material are separated from particles of different sizes into air and form a crystalline silica dust cloud; said at least one intake being configured to remove a substantial portion of said dust from an adjacent crystalline silica dust cloud; an apparatus being configured to generate a vacuum force to suck in, through said at least one intake, a substantial portion of dust from an adjacent crystalline silica dust cloud; an air duct arrangement being configured to conduct air and crystalline silica dust therethrough; and a collection device being configured to collect crystalline silica dust received from said air duct arrangement.

Another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the arrangement in combination with a storage container configured to store silica-containing granular material, wherein air ducts are disposed within and/or are formed integrally with the body of said storage container.

Yet another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the combination, wherein: said storage container comprises outlets covered by doors; said doors being openable to permit air to vent through said outlets and to allow workers to monitor the fill level of silica-containing granular material in said storage container upon filling of said storage container with silica-containing granular material; said at least one intake comprises a plurality of intakes, wherein one of said intakes is formed into a side wall of each of said outlets; said storage container comprises a plurality of intake air ducts disposed beneath the roof of said storage container, wherein each of said intake air ducts is connected to a corresponding intake; and said storage container comprises a main air duct arrangement connected to said intake air ducts, which main air duct arrangement comprises one of: a longitudinal air duct disposed adjacent a central portion of said storage container and to run along the length of said storage container; and two longitudinal air ducts disposed along the sides of said storage container and to run along the length of said storage container.

Still another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the combination, wherein: each of said storage container intakes comprises a valve configured to open and close said storage container intakes; said intake air ducts are disposed transverse to the length of said storage container; said storage container comprises an exhaust duct disposed at an end of said storage container and configured to conduct dust and air received from said main air duct arrangement of said storage container; and said exhaust duct comprises a small air intake and a large air intake configured to be connected to a vacuum arrangement configured to collect dust produced by the transport of silica-containing granular material on a T-belt conveyor disposed transverse to the length of the storage container.

A further feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the combination, wherein: said storage container comprises a conveyor belt intake and a lower connecting duct configured to connect said conveyor belt intake to said exhaust duct; said conveyor belt intake is disposed adjacent a transition between a first conveyor belt and a second conveyor belt configured to convey silica-containing granular material from said storage container to a T-belt conveyor; said conveyor belt intake is configured to collect dust produced by the transport of silica-containing granular material from a first conveyor belt to a second conveyor belt; and said exhaust duct is configured to be connected to an exhaust duct of at least one other storage container to form a single exhaust.

Another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the combination, wherein: said plurality of storage container intakes are disposed in two groups; said main air duct arrangement comprises said longitudinal air duct, which is disposed between said two groups of intakes; and said storage container comprises an upper connecting duct configured to connect said longitudinal air duct to said exhaust duct.

Yet another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the arrangement, wherein: said collection device comprises a manifold having at least one air intake opening; said air duct arrangement comprises: a plurality of tubes configured to operatively connect said collection device to said at least one intake; at least one manifold arrangement configured to be connected by said tubes to a storage container to receive dust collected from a storage container; connector arrangements connected to said manifold arrangements; table arrangements configured to support said connector arrangements adjacent a storage container; a ninety-degree step manifold arrangement configured to permit the making of turns with said tubes and a right or left hand orientation; a dual-riser manifold arrangement and dual riser arrangements; said dual-riser manifold comprises round tubing and rectangular mating flanges attached to said round tubing to permit the mating of said round tubing to said dual riser arrangements; and said dual riser arrangements are configured to take the vacuum from the vacuum source and elevate the air or vacuum to a desired height; and said air duct arrangement is configured to conduct air and dust into said manifold arrangements, then into said connector arrangements then into said ninety-degree step manifold arrangement, then into said dual-riser manifold arrangement, then into said dual riser arrangements, and then into said collection device.

Still another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the arrangement, wherein: said air duct arrangement comprises a T-belt manifold arrangement configured to be disposed adjacent a blender at the end of a T-belt conveyor; said T-belt manifold arrangement is configured to remove a substantial portion of dust from a crystalline silica dust cloud formed at at least one blender; said air duct arrangement comprises a blender feed belt riser arrangement configured to take vacuum from said vacuum apparatus and elevate the air to a desired elevation; said air duct arrangement is configured to conduct air and dust into said T-belt manifold arrangement, then into said blender feed belt riser arrangement, and then into said collection device; said air duct arrangement comprises at least one tube connector configured to connect large diameter pipe with a steel, plastic, or aluminum alignment insert, an elastic water tight sock, and an elastic strap; said collection device comprises air filter units; said manifold further comprises a tube and an articulated duct; and said articulated duct is articulated at a hinge and is movable by a hydraulic piston or arm to permit the upper portion of said articulated duct to be retracted downwardly for storage during the movement of said collection device, and to be extended upwardly to be connected to said air duct arrangement.

Yet another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the arrangement in combination with a storage container configured to store silica-containing granular material, wherein air ducts are disposed within and/or are formed integrally with the body of said storage container.

Still another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the combination, wherein: said storage container comprises outlets covered by doors; said doors being openable to permit air to vent through said outlets and to allow workers to monitor the fill level of silica-containing granular material in said storage container upon filling of said storage container with silica-containing granular material; said at least one intake comprises a plurality of intakes, wherein one of said intakes is formed into a side wall of each of said outlets; said storage container comprises a plurality of intake air ducts disposed beneath the roof of said storage container, wherein each of said intake air ducts is connected to a corresponding intake; and said storage container comprises a main air duct arrangement connected to said intake air ducts, which main air duct arrangement comprises one of: a longitudinal air duct disposed adjacent a central portion of said storage container and to run along the length of said storage container; and two longitudinal air ducts disposed along the sides of said storage container and to run along the length of said storage container. each of said storage container intakes comprises a valve configured to open and close said storage container intakes; said intake air ducts are disposed transverse to the length of said storage container; said storage container comprises an exhaust duct disposed at an end of said storage container and configured to conduct dust and air received from said main air duct arrangement of said storage container; said exhaust duct comprises a small air intake and a large air intake configured to be connected to a vacuum arrangement configured to collect dust produced by the transport of silica-containing granular material on a T-belt conveyor disposed transverse to the length of the storage container; said storage container comprises a conveyor belt intake and a lower connecting duct configured to connect said conveyor belt intake to said exhaust duct; said conveyor belt intake is disposed adjacent a transition between a first conveyor belt and a second conveyor belt configured to convey silica-containing granular material from said storage container to a T-belt conveyor; said conveyor belt intake is configured to collect dust produced by the transport of silica-containing granular material from a first conveyor belt to a second conveyor belt; and said exhaust duct is configured to be connected to an exhaust duct of at least one other storage container to form a single exhaust.

A further feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in the combination, wherein: said plurality of storage container intakes are disposed in two groups; said main air duct arrangement comprises said longitudinal air duct, which is disposed between said two groups of intakes; and said storage container comprises an upper connecting duct configured to connect said longitudinal air duct to said exhaust duct.

One feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in a method of handling pneumoconiosis-causing proppant, which proppant comprises sand, ceramic, or other particulates, said method comprising the steps of: selecting a proppant material having a grain size of between 12 to 140 mesh and having a sphericity, crush resistance, and solubility sufficient for use as a proppant; blowing said proppant into a storage container; during blowing, disturbing said proppant and forcing proppant dust into the air, and thereby generating at least one proppant dust cloud; removing a substantial portion of said proppant dust from said at least one proppant dust cloud, with an arrangement for sucking away a substantial portion of said at least one proppant dust cloud, and filtering the proppant dust sucked away; moving said proppant from said storage container to a blender; during moving, disturbing said proppant and forcing proppant dust into the air, and thereby generating a proppant dust cloud at at least one position between said storage container and said blender; at each said at least one position between said storage container and said blender, removing a substantial portion of said proppant dust from said proppant dust cloud, with said arrangement for sucking away a substantial portion of said proppant dust cloud, and filtering the proppant dust sucked away; continuing moving said proppant to said blender; and blending said proppant with fluid materials to form a mixture comprising about 95-99% water and about 1-5% proppant and other chemicals, which chemicals comprise at least one of: hydrochloric acid, methanol propargyl, polyacrylamide, glutaraldehyde, ethanol, ethylene glycol, alcohol, and sodium hydroxide.

Another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in a method, wherein: said step of disturbing said proppant and forcing proppant dust into the air comprises venting air and proppant dust through outlets in said storage container; and said step of removing a substantial portion of said proppant dust from said at least one proppant dust cloud comprises sucking air and proppant dust through a plurality of intakes, wherein one of said intakes is formed into a side wall of each of said outlets.

Yet another feature or aspect of an embodiment is believed at the time of the filing of this patent application to possibly reside broadly in a method, wherein: said step of removing a substantial portion of said proppant dust from said at least one proppant dust cloud comprises conducting air and proppant dust from said plurality of intakes through a plurality of intake air ducts disposed beneath a roof of said storage container, wherein each of said intake air ducts is connected to a corresponding intake, and then out through an exhaust arrangement.

The components disclosed in the patents, patent applications, patent publications, and other documents disclosed or incorporated by reference herein, may possibly be used in possible embodiments of the present invention, as well as equivalents thereof.

The purpose of the statements about the technical field is generally to enable the Patent and Trademark Office and the public to determine quickly, from a cursory inspection, the nature of this patent application. The description of the technical field is believed, at the time of the filing of this patent application, to adequately describe the technical field of this patent application. However, the description of the technical field may not be completely applicable to the claims as originally filed in this patent application, as amended during prosecution of this patent application, and as ultimately allowed in any patent issuing from this patent application. Therefore, any statements made relating to the technical field are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

The appended drawings in their entirety, including all dimensions, proportions and/or shapes in at least one embodiment of the invention, are accurate and are hereby included by reference into this specification.

The background information is believed, at the time of the filing of this patent application, to adequately provide background information for this patent application. However, the background information may not be completely applicable to the claims as originally filed in this patent application, as amended during prosecution of this patent application, and as ultimately allowed in any patent issuing from this patent application. Therefore, any statements made relating to the background information are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

All, or substantially all, of the components and methods of the various embodiments may be used with at least one embodiment or all of the embodiments, if more than one embodiment is described herein.

The purpose of the statements about the object or objects is generally to enable the Patent and Trademark Office and the public to determine quickly, from a cursory inspection, the nature of this patent application. The description of the object or objects is believed, at the time of the filing of this patent application, to adequately describe the object or objects of this patent application. However, the description of the object or objects may not be completely applicable to the claims as originally filed in this patent application, as amended during prosecution of this patent application, and as ultimately allowed in any patent issuing from this patent application. Therefore, any statements made relating to the object or objects are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

All of the patents, patent applications, patent publications, and other documents cited herein, and in the Declaration attached hereto, are hereby incorporated by reference as if set forth in their entirety herein except for the exceptions indicated herein.

The summary is believed, at the time of the filing of this patent application, to adequately summarize this patent application. However, portions or all of the information contained in the summary may not be completely applicable to the claims as originally filed in this patent application, as amended during prosecution of this patent application, and as ultimately allowed in any patent issuing from this patent application. Therefore, any statements made relating to the summary are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

It will be understood that the examples of patents, patent applications, patent publications, and other documents which are included in this application and which are referred to in paragraphs which state “Some examples of . . . which may possibly be used in at least one possible embodiment of the present application . . . ” may possibly not be used or useable in any one or more embodiments of the application.

The sentence immediately above relates to patents, patent applications, patent publications, and other documents either incorporated by reference or not incorporated by reference.

All of the references and documents cited in any of the patents, patent applications, patent publications, and other documents cited herein, except for the exceptions indicated herein, are hereby incorporated by reference as if set forth in their entirety herein except for the exceptions indicated herein. All of the patents, patent applications, patent publications, and other documents cited herein, referred to in the immediately preceding sentence, include all of the patents, patent applications, patent publications, and other documents cited anywhere in the present application.

The purpose of incorporating patents, patent applications, patent publications, and other documents is solely to provide additional information relating to technical features of one or more embodiments, which information may not be completely disclosed in the wording in the pages of this application.

Words relating to the opinions and judgments of the author of all patents, patent applications, patent publications, and other documents cited herein and not directly relating to the technical details of the description of the embodiments therein are not incorporated by reference.

The words all, always, absolutely, consistently, preferably, guarantee, particularly, constantly, ensure, necessarily, immediately, endlessly, avoid, exactly, continually, expediently, ideal, need, must, only, perpetual, precise, perfect, require, requisite, simultaneous, total, unavoidable, and unnecessary, or words substantially equivalent to the above-mentioned words in this sentence, when not used to describe technical features of one or more embodiments of the patents, patent applications, patent publications, and other documents, are not considered to be incorporated by reference herein for any of the patents, patent applications, patent publications, and other documents cited herein.

The description of the embodiment or embodiments is believed, at the time of the filing of this patent application, to adequately describe the embodiment or embodiments of this patent application. However, portions of the description of the embodiment or embodiments may not be completely applicable to the claims as originally filed in this patent application, as amended during prosecution of this patent application, and as ultimately allowed in any patent issuing from this patent application. Therefore, any statements made relating to the embodiment or embodiments are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

The details in the patents, patent applications, patent publications, and other documents cited herein may be considered to be incorporable, at applicant's option, into the claims during prosecution as further limitations in the claims to patentably distinguish any amended claims from any applied prior art.

The purpose of the title of this patent application is generally to enable the Patent and Trademark Office and the public to determine quickly, from a cursory inspection, the nature of this patent application. The title is believed, at the time of the filing of this patent application, to adequately reflect the general nature of this patent application. However, the title may not be completely applicable to the technical field, the object or objects, the summary, the description of the embodiment or embodiments, and the claims as originally filed in this patent application, as amended during prosecution of this patent application, and as ultimately allowed in any patent issuing from this patent application. Therefore, the title is not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

The abstract of the disclosure is submitted herewith as required by 37 C.F.R. §1.72(b). As stated in 37 C.F.R. §1.72(b):

    • A brief abstract of the technical disclosure in the specification must commence on a separate sheet, preferably following the claims, under the heading “Abstract of the Disclosure.” The purpose of the abstract is to enable the Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract shall not be used for interpreting the scope of the claims.
      Therefore, any statements made relating to the abstract are not intended to limit the claims in any manner and should not be interpreted as limiting the claims in any manner.

The embodiments of the invention described herein above in the context of the preferred embodiments are not to be taken as limiting the embodiments of the invention to all of the provided details thereof, since modifications and variations thereof may be made without departing from the spirit and scope of the embodiments of the invention.

Claims

1. A method of reducing silicosis caused by inhalation of silica-containing granular material comprising a proppant, said method comprising the steps of:

moving said silica-containing granular material comprising particles of different sizes from a first location to a second location;
during said moving, separating said particles of smaller sizes of said particles of different sizes into air and forming a crystalline silica dust cloud at at least one position between said first location and said second location;
at each said at least one position between said first location and said second location, removing a substantial portion of said dust from said crystalline silica dust cloud, with an arrangement for sucking away a substantial portion of said crystalline silica dust cloud and filtering the dust sucked away;
continuing moving said silica-containing granular material to said second location;
utilizing said silica-containing granular material as a proppant; and
said step of moving said silica-containing granular material comprises loading said silica-containing granular material into a storage container.

2. The method of reducing silicosis according to claim 1, wherein:

said method further comprises venting air from said storage container during loading of said silica-containing granular material and thereby venting smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; and
said step of removing a substantial portion of said dust from said crystalline silica dust cloud comprises sucking away a substantial portion of said vented smaller-sized particles.

3. The method of reducing silicosis according to claim 2, wherein:

said step of moving said silica-containing granular material comprises loading said silica-containing granular material into a blender and thereby separating smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; and
said step of removing a substantial portion of said dust from said crystalline silica dust cloud comprises sucking away a substantial portion of said smaller-sized particles in crystalline silica dust clouds adjacent said blender.

4. The method of reducing silicosis according to claim 3, wherein:

said step of moving said silica-containing granular material comprises: moving said silica-containing granular material from said storage container to a first conveyor belt; moving said silica-containing granular material from said first conveyor belt to a second conveyor belt and thereby separating smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; moving said silica-containing granular material from said second conveyor belt to a T-belt conveyor and thereby separating smaller-sized particles of said silica-containing granular material into air and forming crystalline silica dust clouds; and moving said silica-containing granular material from said T-belt conveyor to said blender; and
said step of removing a substantial portion of said dust from said crystalline silica dust cloud comprises sucking away a substantial portion of said smaller-sized particles in crystalline silica dust clouds adjacent said conveyor belts.

5. The method of reducing silicosis according to claim 4, wherein said steps of sucking away a substantial portion of said smaller-sized particles in crystalline silica dust clouds comprise:

activating a vacuum system;
drawing air through intake openings of said vacuum system disposed adjacent the positions at which crystalline silica dust clouds are formed;
sucking air and crystalline silica dust through air ducts; and
collecting said crystalline silica dust in a collecting device.

6. The method of reducing silicosis according to claim 5, wherein said step of sucking air and crystalline silica dust through air ducts comprises one of:

sucking air and dust through air ducts connected to said storage container; and
sucking air and dust through air ducts disposed within and/or formed integrally with the body of said storage container.

7. An arrangement for reducing silicosis caused by inhalation of silica-containing granular material comprising a proppant, said apparatus being configured to remove a substantial portion of crystalline silica dust from crystalline silica dust clouds formed from the moving of silica-containing granular material comprising particles of different sizes from a first location to a second location, said arrangement comprising:

at least one intake disposed adjacent at least one position at which smaller-sized particles of silica-containing granular material are separated from particles of different sizes into air and form a crystalline silica dust cloud;
said at least one intake being configured to remove a substantial portion of said dust from an adjacent crystalline silica dust cloud;
an apparatus being configured to generate a vacuum force to suck in, through said at least one intake, a substantial portion of dust from an adjacent crystalline silica dust cloud;
an air duct arrangement being configured to conduct air and crystalline silica dust therethrough; and
a collection device being configured to collect crystalline silica dust received from said air duct arrangement.

8. The arrangement according to claim 7, in combination with a storage container configured to store silica-containing granular material, wherein air ducts are disposed within and/or are formed integrally with the body of said storage container.

9. The combination according to claim 8, wherein:

said storage container comprises outlets covered by doors;
said doors being openable to permit air to vent through said outlets and to allow workers to monitor the fill level of silica-containing granular material in said storage container upon filling of said storage container with silica-containing granular material;
said at least one intake comprises a plurality of intakes, wherein one of said intakes is formed into a side wall of each of said outlets;
said storage container comprises a plurality of intake air ducts disposed beneath the roof of said storage container, wherein each of said intake air ducts is connected to a corresponding intake; and
said storage container comprises a main air duct arrangement connected to said intake air ducts, which main air duct arrangement comprises one of: a longitudinal air duct disposed adjacent a central portion of said storage container and to run along the length of said storage container; and two longitudinal air ducts disposed along the sides of said storage container and to run along the length of said storage container.

10. The combination according to claim 9, wherein:

each of said storage container intakes comprises a valve configured to open and close said storage container intakes;
said intake air ducts are disposed transverse to the length of said storage container;
said storage container comprises an exhaust duct disposed at an end of said storage container and configured to conduct dust and air received from said main air duct arrangement of said storage container; and
said exhaust duct comprises a small air intake and a large air intake configured to be connected to a vacuum arrangement configured to collect dust produced by the transport of silica-containing granular material on a T-belt conveyor disposed transverse to the length of the storage container.

11. The combination according to claim 10, wherein:

said storage container comprises a conveyor belt intake and a lower connecting duct configured to connect said conveyor belt intake to said exhaust duct;
said conveyor belt intake is disposed adjacent a transition between a first conveyor belt and a second conveyor belt configured to convey silica-containing granular material from said storage container to a T-belt conveyor;
said conveyor belt intake is configured to collect dust produced by the transport of silica-containing granular material from a first conveyor belt to a second conveyor belt; and
said exhaust duct is configured to be connected to an exhaust duct of at least one other storage container to form a single exhaust.

12. The combination according to claim 11, wherein:

said plurality of storage container intakes are disposed in two groups;
said main air duct arrangement comprises said longitudinal air duct, which is disposed between said two groups of intakes; and
said storage container comprises an upper connecting duct configured to connect said longitudinal air duct to said exhaust duct.

13. The arrangement according to claim 7, wherein:

said collection device comprises a manifold having at least one air intake opening;
said air duct arrangement comprises: a plurality of tubes configured to operatively connect said collection device to said at least one intake; at least one manifold arrangement configured to be connected by said tubes to a storage container to receive dust collected from a storage container; connector arrangements connected to said manifold arrangements; table arrangements configured to support said connector arrangements adjacent a storage container; a ninety-degree step manifold arrangement configured to permit the making of turns with said tubes and a right or left hand orientation; a dual-riser manifold arrangement and dual riser arrangements; said dual-riser manifold comprises round tubing and rectangular mating flanges attached to said round tubing to permit the mating of said round tubing to said dual riser arrangements; and said dual riser arrangements are configured to take the vacuum from the vacuum source and elevate the air or vacuum to a desired height; and
said air duct arrangement is configured to conduct air and dust into said manifold arrangements, then into said connector arrangements then into said ninety-degree step manifold arrangement, then into said dual-riser manifold arrangement, then into said dual riser arrangements, and then into said collection device.

14. The arrangement according to claim 13, wherein:

said air duct arrangement comprises a T-belt manifold arrangement configured to be disposed adjacent a blender at the end of a T-belt conveyor;
said T-belt manifold arrangement is configured to remove a substantial portion of dust from a crystalline silica dust cloud formed at at least one blender;
said air duct arrangement comprises a blender feed belt riser arrangement configured to take vacuum from said vacuum apparatus and elevate the air to a desired elevation;
said air duct arrangement is configured to conduct air and dust into said T-belt manifold arrangement, then into said blender feed belt riser arrangement, and then into said collection device;
said air duct arrangement comprises at least one tube connector configured to connect large diameter pipe with a steel, plastic, or aluminum alignment insert, an elastic water tight sock, and an elastic strap;
said collection device comprises air filter units;
said manifold further comprises a tube and an articulated duct; and
said articulated duct is articulated at a hinge and is movable by a hydraulic piston or arm to permit the upper portion of said articulated duct to be retracted downwardly for storage during the movement of said collection device, and to be extended upwardly to be connected to said air duct arrangement.

15. The arrangement according to claim 14, in combination with a storage container configured to store silica-containing granular material, wherein air ducts are disposed within and/or are formed integrally with the body of said storage container.

16. The combination according to claim 15, wherein:

said storage container comprises outlets covered by doors;
said doors being openable to permit air to vent through said outlets and to allow workers to monitor the fill level of silica-containing granular material in said storage container upon filling of said storage container with silica-containing granular material;
said at least one intake comprises a plurality of intakes, wherein one of said intakes is formed into a side wall of each of said outlets;
said storage container comprises a plurality of intake air ducts disposed beneath the roof of said storage container, wherein each of said intake air ducts is connected to a corresponding intake; and
said storage container comprises a main air duct arrangement connected to said intake air ducts, which main air duct arrangement comprises one of: a longitudinal air duct disposed adjacent a central portion of said storage container and to run along the length of said storage container; and two longitudinal air ducts disposed along the sides of said storage container and to run along the length of said storage container.
each of said storage container intakes comprises a valve configured to open and close said storage container intakes;
said intake air ducts are disposed transverse to the length of said storage container;
said storage container comprises an exhaust duct disposed at an end of said storage container and configured to conduct dust and air received from said main air duct arrangement of said storage container;
said exhaust duct comprises a small air intake and a large air intake configured to be connected to a vacuum arrangement configured to collect dust produced by the transport of silica-containing granular material on a T-belt conveyor disposed transverse to the length of the storage container;
said storage container comprises a conveyor belt intake and a lower connecting duct configured to connect said conveyor belt intake to said exhaust duct;
said conveyor belt intake is disposed adjacent a transition between a first conveyor belt and a second conveyor belt configured to convey silica-containing granular material from said storage container to a T-belt conveyor;
said conveyor belt intake is configured to collect dust produced by the transport of silica-containing granular material from a first conveyor belt to a second conveyor belt; and
said exhaust duct is configured to be connected to an exhaust duct of at least one other storage container to form a single exhaust.

17. The combination according to claim 16, wherein:

said plurality of storage container intakes are disposed in two groups;
said main air duct arrangement comprises said longitudinal air duct, which is disposed between said two groups of intakes; and
said storage container comprises an upper connecting duct configured to connect said longitudinal air duct to said exhaust duct.

18. A method of handling pneumoconiosis-causing proppant, which proppant comprises sand, ceramic, or other particulates, said method comprising the steps of:

selecting a proppant material having a grain size of between 12 to 140 mesh and having a sphericity, crush resistance, and solubility sufficient for use as a proppant;
blowing said proppant into a storage container;
during blowing, disturbing said proppant and forcing proppant dust into the air, and thereby generating at least one proppant dust cloud;
removing a substantial portion of said proppant dust from said at least one proppant dust cloud, with an arrangement for sucking away a substantial portion of said at least one proppant dust cloud, and filtering the proppant dust sucked away;
moving said proppant from said storage container to a blender;
during moving, disturbing said proppant and forcing proppant dust into the air, and thereby generating a proppant dust cloud at at least one position between said storage container and said blender;
at each said at least one position between said storage container and said blender, removing a substantial portion of said proppant dust from said proppant dust cloud, with said arrangement for sucking away a substantial portion of said proppant dust cloud, and filtering the proppant dust sucked away;
continuing moving said proppant to said blender; and
blending said proppant with fluid materials to form a mixture comprising about 95-99% water and about 1-5% proppant and other chemicals, which chemicals comprise at least one of: hydrochloric acid, methanol propargyl, polyacrylamide, glutaraldehyde, ethanol, ethylene glycol, alcohol, and sodium hydroxide.

19. The method of handling pneumoconiosis-causing proppant according to claim 18, wherein:

said step of disturbing said proppant and forcing proppant dust into the air comprises venting air and proppant dust through outlets in said storage container; and
said step of removing a substantial portion of said proppant dust from said at least one proppant dust cloud comprises sucking air and proppant dust through a plurality of intakes, wherein one of said intakes is formed into a side wall of each of said outlets.

20. The method of handling pneumoconiosis-causing proppant according to claim 19, wherein said step of removing a substantial portion of said proppant dust from said at least one proppant dust cloud comprises conducting air and proppant dust from said plurality of intakes through a plurality of intake air ducts disposed beneath a roof of said storage container, wherein each of said intake air ducts is connected to a corresponding intake, and then out through an exhaust arrangement.

Patent History
Publication number: 20130186510
Type: Application
Filed: Sep 7, 2012
Publication Date: Jul 25, 2013
Inventors: Scott S. STUTZMAN (Indiana, PA), Robert Sean REININGER (Nolensville, TN), David S. BALTHASER (Indiana, PA)
Application Number: 13/606,913
Classifications
Current U.S. Class: Processes (141/1); Fluent Charge Impelled Or Fluid Current Conveyed Into Receiver (141/67)
International Classification: B65B 1/16 (20060101);