FLUIDICS PUMPING DEVICE

A fluidics pumping device including a body and a driving assembly is provided. The body has a chamber, a channel, an inlet and an outlet. The channel goes through the chamber and connects with the inlet and the outlet. The driving assembly is disposed in the chamber, and the driving assembly has a contact surface exposed in the channel. The contact surface is suitable for moving along an extension direction of the channel, for driving a fluid in the channel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of Taiwan application serial no. 101103395, filed on Feb. 2, 2012. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.

TECHNICAL FIELD

The disclosure generally relates to a fluidics pumping device.

BACKGROUND

Recently, fluidics pumping devices, for instance water pumps, liquid-circulating systems, cooling systems or the like, are extensively applied in our daily lives. Ordinary water pumps with different functional requirements are respectively applied in high buildings and bungalows. Even though designs capable of operating and withstanding higher fluid pressure are needed in a higher number of floors, a variation in a certain range of flow rate, fluid pressure and flow velocity is still acceptable; however, in the application of chemical analysis and inspection, a small and stable flow rate is required instead.

In the application of cell or tissue culture of biomedical field, the survival rate of cells can just be greatly increased in bionic growing environments. For example, rather than an ordinary two-dimensional culture environment of a culture dish, growing multilayer hepatocytes in a flowing culture solution provides a bionic growing environment, wherein the cultivated cells react as living hepatocytes. However, hepatocytes are fragile and hard to cultivate, therefore a stable bionic growing environment under low fluid pressure (less than 15 psi) and low flow rate (10 to 150 uL/min) is required. A great change of fluid pressure or flow rate in the circulation of culture solution may lead to a fluid shear stress which damages or even kills the cultivated cells.

A conventional compression-type fluidics pumping device is provided with an axle and plural rollers in a channel, wherein the rollers surrounds the axle. The liquid in the channel can be compressed and propelled by the rollers as rotating the axle. However, though a continuous flow can be obtained by the above compression-type fluidics pumping device, high fluid pressure and the variation of flow rate and fluid pressure are still unavoidable and may result in an undesirable flow impulse.

SUMMARY

The disclosure provides a fluidics pumping device including a body and a driving assembly. The body has a chamber, a channel, an inlet and an outlet. The channel passes through the chamber and connects the inlet and the outlet. The driving assembly is disposed in the chamber and has a contact surface exposed in the channel. The contact surface is adapted to move along an extension direction of the channel to drive a fluid in the channel.

In order to make the aforementioned and other features and advantages of the disclosure more comprehensible, embodiments accompanying figures are described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings constituting a part of this specification are incorporated herein to provide a further understanding of the disclosure. Here, the drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the disclosure.

FIG. 1 and FIG. 2 are a schematic perspective view and a schematic top view of a fluidics pumping device according to one embodiment of the disclosure.

FIG. 3 and FIG. 4 are a schematic perspective view and a schematic top view of a fluidics pumping device according to one embodiment of the disclosure.

FIG. 5 and FIG. 6 are a schematic perspective view and a schematic top view of a fluidics pumping device according to one embodiment of the disclosure.

FIG. 7 and FIG. 8 are a schematic perspective view and a schematic top view of a fluidics pumping device according to one embodiment of the disclosure.

FIG. 9 and FIG. 10 are a schematic perspective view and a schematic top view of a fluidics pumping device according to one embodiment of the disclosure.

FIG. 11A to FIG. 11C show the spiral trench of FIG. 10 in different types.

FIG. 12A to FIG. 12D respectively show schematic views of micro-structures of the channel surface.

FIG. 13 illustrates a cell culture system using a fluidics pumping device of the disclosure.

DETAILED DESCRIPTION OF THE EMBODIMENTS

In the fluidics pumping device of the disclosure, the fluid in the channel can be stably and continuously driven via the contact surface of the driving assembly from the inlet to the outlet. Specifically, the fluidics pumping device of the disclosure can be used in chemical analysis and inspection, or in cell or tissue culture of biomedical field, to provide a continuous micro-fluidics driving effect without flow impulse.

FIG. 1 is a schematic perspective view of a fluidics pumping device according to one embodiment of the disclosure. FIG. 2 is a schematic top view of a fluidics pumping device according to one embodiment of the disclosure. Referring to FIG. 1 and FIG. 2, a fluidics pumping device 10 of an embodiment of the disclosure includes a body 100 and a driving assembly 200. The body 100 has a chamber 110, a channel 120, an inlet 130 and an outlet 140. The channel 120 passes through the chamber 110 and connects the inlet 130 and the outlet 140. The driving assembly 200 is disposed in the chamber 110 and has a contact surface 210 exposed in the channel 120. The contact surface 210 is adapted to move along an extension direction of the channel 120 to drive a fluid in the channel 120. In order to clearly illustrate the location of the driving assembly in the body, a portion of the body located above the driving assembly is indicated in dotted lines in schematic perspective views of the exemplary embodiments described below.

In the embodiment of the disclosure, the width of the channel 120 is larger than or equal to 0.1 mm, and smaller than or equal to 3 mm, and thus the present embodiment is adapted to the micro-channel application. For a better fluid driving performance of the contact surface 210 of the driving assembly 200, the inner surface 112 of the chamber 110 can be hydrophobic or smooth to reduce the drag force to the fluid. On the contrary, the contact surface 210 of the driving assembly 200 can be hydrophilic or rough or being provided with a plurality of micro-structures, to increase the driving force to the fluid.

In the embodiment of the disclosure, the driving assembly 200 includes a rotor 220. An outer surface 222 of the rotor 220 serving as the contact surface 210 is spaced from the inner surface 112 of the chamber 110 in a distance to form the channel 120. The rotor 220 is a cylinder, for example, and a shaft 224 of the rotor 220 passes through the centers of two end surfaces of the cylinder. The shaft 224 substantially penetrates the chamber 110 of the body 100, and the top terminal of the shaft 224 props against the body 100. In order to prevent liquid leakage, the position of the body 100 where the shaft 224 passes for entering the chamber 110 is sealed by an O-ring or an oil-seal. The connection manner between the shaft and the body is not limited herein, and the O-ring or the oil-seal can further be replaced by any other elements having similar functions. A portion of the lateral surface (the peripheral surface) of the cylinder is exposed in the channel 120 to serve as the contact surface 210. Besides the rotor 220, the fluidics pumping device 10 further includes a driving motor 230 located outside the body 100, and the driving motor 230 is connected to the rotor 220 to drive the rotor 220. Herein, the chamber 110 is a circular chamber.

In the embodiment of the disclosure, the capillary action occurs in the channel 120 due to the surface tension of the fluid and thus the fluid automatically flows into the channel 120. When the fluid flows in the channel 120 and passes the rotor 220, a viscosity force is generated between the fluid and the contact surface. Therefore, when the driving motor 230 drives the rotor 220 to rotate, the fluid is driven by the driving assembly 200 to move to the outlet 140 via the viscosity force between the contact surface 210 and the fluid and the cohesive force among fluid molecules.

In addition, since the rotor 220 of the embodiment is a cylinder and the centers of two end surfaces (top and bottom surfaces) of the cylinder are located at the shaft 224 of the rotor 220, the rotation of the rotor 220 is substantially a circular motion, and the fluid can be smoothly and uninterruptedly driven, so as to flow with a stable flow rate without flow impulse.

FIG. 3 is a schematic perspective view of a fluidics pumping device according to one embodiment of the disclosure. FIG. 4 is a schematic top view of a fluidics pumping device. Referring to FIG. 3 and FIG. 4, in the embodiment, the driving assembly 400 of the fluidics pumping device 30 includes a first rotor 420 and a second rotor 440. The first rotor 420 and the second rotor 440 rotate in opposite directions. A first outer surface 422 of the first rotor 420 and a second outer surface 442 of the second rotor 440 mutually serve as the contact surface 410 and are spaced from each other in a distance to form the channel 320. More specifically, the first rotor 420 and the second rotor 440 are respectively located at two opposite sides of the channel 320. In the embodiment, the two rotors 420 and 440 disposed at two opposites of the channel 320 rotate in opposite directions to achieve the effect of driving fluid.

In the embodiment of the disclosure, the first rotor 420 and the second rotor 440 are cylinders. A first shaft 424 of the first rotor 420 passes through the centers of two end surfaces of the first rotor 420. A second shaft 444 of the second rotor 440 passes through the centers of two end surfaces of the second rotor 440. The first shaft 424 and the second shaft 444 respectively penetrate the chamber 310 of the body 300, and the top terminals of the first shaft 424 and the second shaft 444 respectively prop against the body 300. In order to prevent leakage, the positions of the body 300 where the first shaft 424 and the second shaft 444 pass for entering the chamber 310 is sealed by an O-ring or an oil-seal, respectively. The connection manner between the shaft and the body is not limited herein, and the O-ring or the oil-seal can be replaced by any other elements having similar functions. The first shaft 424 and the second shaft 444 are substantially parallel to each other. A portion of the peripheral surface of the first rotor 420 and a portion of the peripheral surface of the second rotor 440 are respectively exposed at two opposite sides of the channel 320 in order to mutually serve as the contact surface 410. Herein, the chamber 310 comprises two circular chambers adjacent and linked to each other.

In addition, the driving assembly 400 further includes a driving motor 430 and a gear set 450. The driving motor 430 is located outside the body 300 and connected to the first rotor 420 in order to drive the first rotor 420 to rotate. The first rotor 420 and the second rotor 440 are connected via the gear set 450 for driving the second rotor 440 by the first rotor 420. The gear set 450 includes a first gear 451 and a second gear 453. The first gear 451 is fixed on the first shaft 424, and the second gear 453 is fixed on the second shaft 444. The first gear 451 and the second gear 453 are engaged with each other.

As shown in FIG. 3, when the first rotor 420 rotates in a first direction 426 via the driven motor 430, the second rotor 440 rotates in a second direction 446 via the gear set 450. Since the first direction 426 is opposite to the second direction 446 and the first rotor 420 and the second rotor 440 are disposed at the opposite sides of the channel 320, the fluid can enter the inlet 330 and flow through the channel 320 formed by the first rotor 420 and the second rotor 440, wherein the fluid can be driven by the contact surface 410 of the first rotor 420 and the second rotor 440 and move toward the outlet 340. In the embodiment, the surface of the inner surface 312 of the chamber 310 can be hydrophobic or smooth to reduce the drag force to the fluid. Furthermore, the contact surface 410 of the rotors 420, 440 can be hydrophilic or rough or being provided with a plurality of micro-structures, to increase the driving force to the fluid.

FIG. 5 is a schematic perspective view of a fluidics pumping device according to one embodiment of the disclosure. FIG. 6 is a schematic top view of the fluidics pumping device of FIG. 5. Referring to FIG. 5 and FIG. 6, in the embodiment, the driving assembly 600 of the fluidics pumping device 50 includes a first rotor 620, a second rotor 640 and a conveyor belt 660. The conveyor belt 660 connects the first rotor 620 and the second rotor 640, wherein a surface 662 of the conveyor belt 660 serves as the contact surface 610, and the surface 662 is spaced from an inner surface 512 of the chamber 510 a distance to form the channel 520. More specifically, the first rotor 620 and the second rotor 640 are located at a same side of the channel 520 and rotate in a same direction. The surface of the inner surface 512 of the chamber 510 can be hydrophobic or smooth to reduce the drag force to the fluid. Furthermore, the contact surface 610 can be hydrophilic or rough or being provided with a plurality of micro-structures to increase the driving force to the fluid. Herein, the chamber 510 is a rectangular long cavity with two rounded ends.

In the embodiment of the disclosure, the first rotor 620 and the second rotor 640 are respectively cylinders. A first shaft 624 of the first rotor 620 passes through the centers of two end surfaces of the first rotor 620. A second shaft 644 of the second rotor 620 passes through the centers of two end surfaces of the second rotor 640. The first shaft 624 and the second shaft 644 are substantially parallel to each other. The first shaft 624 and the second shaft 644 respectively penetrate the chamber 510 of the body 500, and the top terminal of the first shaft 624 and the top terminal and the bottom terminal of the second shaft 644 respectively prop against the body 500. In order to prevent liquid leakage, the position of the body 500 where the first shaft 624 pass for entering the chamber 510 is sealed by an O-ring or an oil-seal. The connection manner between the shaft and the body is not limited herein, and the O-ring or the oil-seal can be replaced by any other elements having similar functions. Moreover, the driving assembly 600 further includes a driving motor 630 located outside the body 500. The driving motor 630 is connected to the first rotor 620 via the first shaft 624 to drive the first rotor 620, and the second rotor 640 is driven by the first rotor 620 via the conveyor belt 660.

When the first rotor 620 is driven by the driving motor 630 and rotates in a direction 626, the second rotor 640 also rotates in the same direction 626 due to the driving of the conveyor belt 660. The conveyor belt 660 moves along an extension direction of the channel 520 and drives the fluid to flow. As shown in FIG. 6, the fluid enters the inlet 530 and passes the channel 520 formed by the conveyor belt 660 and the inner surface 512, and the fluid is driven by the contact surface 610 of the conveyor belt 660 and moves toward the outlet 540.

FIG. 7 is a schematic perspective view of a fluidics pumping device according to one embodiment of the disclosure. FIG. 8 is a schematic top view of the fluidics pumping device of FIG. 7. Referring to FIG. 7 and FIG. 8, in the embodiment, the driving assembly 800 of the fluidics pumping device 70 includes a first rotor 820, a second rotor 840, a first conveyor belt 860, a third rotor 920, a fourth rotor 940 and a second conveyor belt 960. The first conveyor belt 860 connects the first rotor 820 and the second rotor 840, and the second conveyor belt 960 connects the third rotor 920 and the fourth rotor 940. A surface 862 of the first conveyor belt 860 and a surface 962 of the second conveyor belt 960 mutually serve as the contact surface 810 and are spaced from each other to form the channel 720.

More specifically, the first rotor 820 and the second rotor 840 are located at a first side 722 of the channel 720 and rotate in a first direction 826. The third rotor 920 and the fourth rotor 940 are at a second side 724 of the channel 720 and rotate in a second direction 926. The first side 722 and the second side 724 are the two opposite sides of the channel 720, respectively and the first direction 826 is opposite to the second direction 926. In the embodiment, the surface of the inner surface 712 of the chamber 710 can be hydrophobic or smooth to reduce the drag force to the fluid. Furthermore, both the surface 862 of the first conveyor belt 860 and the surface 962 of the second conveyor belt 960 can be hydrophilic or rough or being provided with a plurality of micro-structures to increase the driving force to the fluid. Herein, the chamber 710 comprises two rectangular long cavities with two rounded ends, and the two cavities are adjacent and linked with each other.

In the embodiment, the first rotor 820, the second rotor 840, the third rotor 920 and the fourth rotor 940 are cylinders. A first shaft 824 of the first rotor 820 passes through centers of two end surfaces of the first rotor 820. A second shaft 844 of the second rotor 840 passes through centers of two end surfaces of the second rotor 840. A third shaft 924 of the third rotor 920 passes through centers of two end surfaces of the third rotor 920. A fourth shaft 944 of the fourth rotor 940 passes through centers of two end surfaces of the fourth rotor 940. The first shaft 824, the second shaft 844, the third shaft 924 and the fourth shaft 944 are substantially parallel to each other.

The first shaft 824, the second shaft 844, the third shaft 924 and the fourth shaft 944 respectively penetrate the chamber 710 of the body 700. At the first side 722 of the channel 720, the top terminal of the first shaft 824 and the top terminal and the bottom terminal of the second shaft 844 respectively prop against the body 700. And at the second side 724 of the channel 720, the top terminal of the third shaft 924 and the top terminal and the bottom terminal of the fourth shaft 944 prop against the body 700 respectively. In order to prevent liquid leakage, the positions of the body 700 where the first shaft 824 and the third shaft 924 pass for entering the chamber 710 are sealed by O-rings or oil-seals, respectively. The connection manner between the shafts 824, 844, 924, 944 and the body 700 is not limited herein, and the O-rings or the oil-seals can be replaced by any other elements having similar functions.

In addition, the driving assembly 800 further includes a driving motor 830 and a gear set 850. The driving motor 830 is located outside the body 700 and connected to the first rotor 820 to drive the first rotor 820 to rotate, and the second rotor 840 is driven by the first rotor 820 via the first conveyor belt 860. The gear set 850 connects the first rotor 820 and the third rotor 920 for driving the third rotor 920 by the first rotor 820, and the fourth rotor 940 is driven by the third rotor 920 via the second conveyor belt 960. The gear set 850 includes a first gear 851 and a second gear 853. The first gear 851 is fixed on the first shaft 824, and the second gear 853 is fixed on the second shaft 924. The first gear 851 and the second gear 853 are engaged with each other.

When the first rotor 820 is driven by the motor 830 to rotate in a first direction 826, and the second rotor 840 is driven by the first rotor 820 to rotate in the first direction 826 via the first conveyor belt 860. The first conveyor belt 860 moves along an extension direction of the channel 720. When the first rotor 820 is driven by the driving motor 830 and rotates in the first direction 826, the third rotor 920 may rotate in a second direction 926 via the gear set 850, the fourth rotor 940 may rotate in the second direction 926 via the second conveyor belt 960, and the second conveyor belt 960 moves along the extension direction of the channel 720. The gear set 850 is similar to the gear set of FIG. 3 and FIG. 4, and thus the mechanism thereof is not repeated herein.

Since the first direction 826 is opposite to the second direction 926 and the first conveyor belt 860 and the second conveyor belt 960 are disposed at two opposite sides of the channel 720, the fluid entering the inlet 730 and passing the channel 720 formed by the first conveyor belt 860 and the second conveyor belt 960 can be driven by the first conveyor belt 860 and the second conveyor belt 960 along the extension direction of the channel 720 and move toward the outlet 740.

Manners of driving the fluid by rotors or conveyor belts are proposed in the aforementioned embodiments. Another embodiment is further provided in the following to illustrate a manner of continuously driving the fluid in a vertical direction by a rotor. FIG. 9 is a schematic front view of a fluidics pumping device according to one embodiment of the disclosure. FIG. 10 is a schematic top view of the fluidics pumping device of FIG. 9. Referring to FIG. 9 and FIG. 10, in the embodiment, the driving assembly 1100 of the fluidics pumping device 90 is disposed in the chamber 1010 of the body 1000, and the driving assembly 1100 is a rotor 1120 including a first section 1122, a second section 1124 and a third section 1126. The first section 1122 adjoins the inlet 1030, wherein a first outer surface 1122a of the first section 1122 is spaced from the inner surface 1012 of the chamber 1010 in a first distance 1122b to form a temporary liquid storing space 1123, and the temporary liquid storing space belongs to a portion of the channel 1020. The second section 1124 adjoins the outlet 1040, wherein a second outer surface 1124a of the second section 1124 is spaced from the inner surface 1012 of the chamber 1010 in a second distance 1124b to form a liquid output space 1125, and the liquid output space belongs to another portion of the channel 1020. The third section 1126 is connected between the first section 1122 and the second section 1124, wherein a third outer surface 1126a of the third section 1126 is provided with a spiral trench 1127 connecting the temporary liquid storing space 1123 and the liquid output space 1125. A bottom surface 1127a and two side surfaces 1127b of the spiral trench 1127 serve as the contact surface 1110, and the bottom surface 1127a of the spiral trench 1127 is spaced from an inner surface 1012 of the chamber 1010 in a third distance 1126b to form the remaining portion of the channel 1020. Herein, the chamber 1010 is a circular chamber.

In the embodiment, the first section 1122, the second section 1124 and the third section 1126 are cylinders, wherein a shaft 1128 of the rotor 1120 passes through each center of end surface of the first section 1122, the second section 1124 and the third section 1126. Additionally, the driving assembly 1100 further includes a driving motor 1130 located outside the body 1000, and the driving motor 1130 is connected to the rotor 1120 and used to drive the rotor 1120.

In the embodiment of the disclosure, the temporary liquid storing space 1123 is larger than the liquid output space 1125. The first outer surface 1122a of the temporary liquid storing space 1123 is hydrophobic or smooth to reduce the drag force to the fluid. The second outer surface 1124a of the liquid output space 1125 and the bottom surface 1127a and two side surfaces 1127b of the spiral trench 1127 can be hydrophilic or rough or being provided with a plurality of micro-structures to increase the driving force to the fluid.

When the rotor 1120 is driven by the driving motor 1130 to rotate along a shaft 1128, the fluid moves from the inlet 1030 to the temporary liquid space 1123 due to the capillary action and then flows into the spiral trench 1127 of the third section 1126. Then, the fluid in the spiral trench 1127 is driven to the liquid output space 1125 due to the rotation of the rotor 1120 and flows out from the outlet 1040.

In the embodiment of the disclosure, the spiral trench 1127 can be but not limited to a single spiral trench. FIG. 11A to FIG. 11C respectively show some possible types of the spiral trench 1127 of the fluidics pumping device of the disclosure. For example, FIG. 11A shows the rotor 1200 having a single-spiral trench 1210; FIG. 11B shows the rotor 1300 having a double-spiral trench 1310; FIG. 11C shows the rotor 1400 having a multi-spiral (more than three spirals) trench 1410.

To the aforementioned embodiments, the surface of the channel is hydrophilic or rough and may further be provided with a plurality of micro-structures. The rough surface and the surface with micro-structures are illustrated in the following. FIG. 12A to FIG. 12D respectively show various possible designs of the channel surface. FIG. 12A is a photograph of a channel having a rough surface. FIG. 12B is a picture of the channel surface in FIG. 12A taken by using an atomic force microscope (AFM). As shown in FIG. 12A and FIG. 12B, the channel surface 1510 may be provided with an abrasive paper having a rough surface, wherein plural micro-structures 1510a are irregularly arranged on the rough surface. FIG. 12C and FIG. 12D are enlarged views of micro-structures which are regularly arranged. In FIG. 12C, the micro-structures on the channel surface 1610 are circular holes 1610a regularly arranged. In addition, in FIG. 12D, the micro-structures on the channel surface 1710 are triangular cones 1710a regularly arranged. However, the disclosure does not restrict the profile of micro-structures to the aforementioned shapes. Any other micro-structures with applicable profile and regularly arranged can be the micro-structures of the channel surface of the disclosure.

The aforementioned fluidics pumping devices are adapted to the cell culture applications for providing a stable fluid with a low fluid pressure and flow rate. FIG. 13 shows a cell culture system using the aforementioned fluidics pumping device. As shown in FIG. 13, a piping 1 connects the outlet 6b of the culture solution storing element 6 and the inlet 7a of the fluidics pumping device 7. A piping 2 connects the outlet 7b of the fluidics pumping device 7 and the inlet 8a of the cell culture device 8. A piping 3 connects the outlet 8b of the cell culture device 8 and the inlet 6a of the culture solution storing element 6. The culture solution is pumped out from the culture solution storing element 6 via the fluidics pumping device 7 and moves toward the cell culture device 8. The culture solution of the cell culture device 8 passes cells and provides nutrients to the cells, and then passes through the piping 3 and finally flows back to the culture solution storing element 6, and thus a circulation of a perfusion system is accomplished. Through the fluidics pumping device of the disclosure, the whole cell culture system is maintained in stable with low fluid pressure and low flow rate, so that the cells can be grown in an environment with a stable fluid pressure and flow rate.

In light of the foregoing, a driving assembly composed of rotors or conveyor belts is used in the fluidics pumping device of the disclosure. The fluid in the channel is stably and continuously driven from the inlet to the outlet by the viscosity force between the contact surface and the fluid and the cohesive forces among fluid molecules. Since the fluid is driven without being compressed, the fluid can be transported under a stable fluid pressure and flow rate. Thus, the fluidics pumping device of the disclosure can be used in the application of chemical analysis and inspection, or in cell or tissue culture of biomedical field, in order to provide a continuous micro-fluidics driving effect without flow impulse.

Although the disclosure has been described with reference to the above embodiments, it will be apparent to one of the ordinary skill in the art that modifications to the described embodiment may be made without departing from the spirit of the disclosure. Accordingly, the scope of the disclosure will be defined by the attached claims not by the above detailed descriptions.

Claims

1. A fluidics pumping device, comprising:

a body having a chamber, a channel, an inlet and an outlet, wherein the channel goes through the chamber and connects the inlet and the outlet; and
a driving assembly disposed in the chamber and having a contact surface exposed in the channel, wherein the contact surface is adapted to move along an extension direction of the channel to drive a fluid in the channel.

2. The fluidics pumping device as claimed in claim 1, wherein an inner surface of the chamber is hydrophobic or smooth.

3. The fluidics pumping device as claimed in claim 1, wherein the contact surface is hydrophilic or rough or is provided with a plurality of microstructures.

4. The fluidics pumping device as claimed in claim 1, wherein a width of the channel is greater than or equal to 0.1 mm and is smaller than or equal to 3 mm.

5. The fluidics pumping device as claimed in claim 1, wherein the driving assembly comprises a rotor having an outer surface serving as the contact surface, and the outer wall is spaced from an inner wall of the chamber to form the channel.

6. The fluidics pumping device as claimed in claim 5, wherein the rotor is a cylinder provided with two end surfaces each having a center through which a shaft of the rotor passes, and a portion of a lateral surface of the cylinder is exposed in the channel to serve as the contact surface.

7. The fluidics pumping device as claimed in claim 5, further comprising a driving motor located outside the body and connected to the rotor to drive the rotor.

8. The fluidics pumping device as claimed in claim 1, wherein the driving assembly comprises:

a first rotor; and
a second rotor, wherein the first rotor and the second rotor are respectively located at two opposite sides of the channel and adapted to rotate in opposite directions, a first outer surface of the first rotor and a second outer surface of the second rotor mutually serve as the contact surface and are spaced from each other to form the channel.

9. The fluidics pumping device as claimed in claim 8, wherein the first rotor is a cylinder provided with two end surfaces each having a center through which a first shaft of the first rotor passes, the second rotor is a cylinder provided with two end surfaces each having a center through which a second shaft of the second rotor passes, the first shaft and the second shaft are substantially parallel to each other, and a portion of a lateral surface of the first rotor and a portion of a lateral surface of the second rotor are respectively exposed at two opposite sides of the channel to mutually serve as the contact surface.

10. The fluidics pumping device as claimed in claim 9, further comprising:

a driving motor located outside the body and connected to the first rotor to drive the first rotor; and
a gear set connecting the first rotor and the second rotor for driving the second rotor by the first rotor.

11. The fluidics pumping device as claimed in claim 1, wherein the driving assembly comprises:

a first rotor;
a second rotor, wherein the first rotor and the second rotor are located at a same side of the channel and adapted to rotate in a same direction; and
a conveyor belt connecting the first rotor and the second rotor, wherein a surface of the conveyor belt serves as the contact surface, and the surface is spaced from an inner wall of the chamber to form the channel.

12. The fluidics pumping device as claimed in claim 11, wherein the first rotor is a cylinder provided with two end surfaces each having a center through which a first shaft of the first rotor passes, the second rotor is a cylinder provided with two end surfaces each having a center through which a second shaft of the second rotor passes, and the first shaft and the second shaft are substantially parallel to each other.

13. The fluidics pumping device as claimed in claim 11, further comprising a driving motor located outside the body and connected to the first rotor to drive the first rotor, and the second rotor is adapted to be driven by the first rotor via the conveyor belt.

14. The fluidics pumping device as claimed in claim 1, wherein the driving assembly comprises:

a first rotor;
a second rotor, wherein the first rotor and the second rotor are located at a first side of the channel and rotating in a first direction;
a first conveyor belt connecting the first rotor and the second rotor;
a third rotor;
a fourth rotor, wherein the third rotor and the fourth rotor are at a second side of the channel and rotating in a second direction, the first side and the second side are the two opposite sides of the channel respectively and the first direction is opposite to the second direction; and
a second conveyor belt connecting the third rotor and the fourth rotor, wherein a first surface of the first conveyor belt and a second surface of the second conveyor belt mutually serve as the contact surface and are spaced from each other to form the channel.

15. The fluidics pumping device as claimed in claim 14, wherein the first rotor is a cylinder provided with two end surfaces each having a center through which a first shaft of the first rotor passes, the second rotor is a cylinder provided with two end surfaces each having a center through which a second shaft of the second rotor passes, the third rotor is a cylinder provided with two end surfaces each having a center through which a third shaft of the third rotor passes, the fourth rotor is a cylinder provided with two end surfaces each having a center through which a fourth shaft of the fourth rotor passes, and the first shaft, the second shaft, the third shaft and the fourth shaft are substantially parallel to each other.

16. The fluidics pumping device as claimed in claim 14, further comprising:

a driving motor located outside the body and connected to the first rotor to drive the first rotor, and the second rotor is adapted to be driven by the first rotor via the first conveyor belt; and
a gear set connecting the first rotor and the third rotor for driving the third rotor by the first rotor, and the fourth rotor is adapted to be driven by the third rotor via the second conveyor belt.

17. The fluidics pumping device as claimed in claim 1, wherein the driving assembly is a rotor comprising:

a first section adjoining the inlet, wherein a first outer surface of the first section is spaced from an inner surface of the chamber in a first distance to form a temporary liquid storing space;
a second section adjoining the outlet, wherein a second outer surface of the second section severs as the contact surface and is spaced from an inner surface of the chamber in a second distance to form a liquid output space; and
a third section connected between the first section and the second section, wherein a third outer surface of the third section has a spiral trench connecting the temporary liquid storing space and the liquid output space, a bottom surface and two side surfaces of the spiral trench together serve as the contact surface, and the bottom surface is spaced from an inner surface of the chamber in a third distance to form the channel.

18. The fluidics pumping device as claimed in claim 17, wherein the first section, the second section and the third section are cylinders, a shaft of the rotor passes through a center of each end surface of the first section, the second section and the third section.

19. The fluidics pumping device as claimed in claim 17, further comprising a driving motor located outside the body and connected to the rotor to drive the rotor.

20. The fluidics pumping device as claimed in claim 17, wherein the temporary liquid storing space is larger than the liquid output space.

21. The fluidics pumping device as claimed in claim 17, wherein the spiral trench comprises a single-spiral trench or a multi-spiral trench.

22. The fluidics pumping device as claimed in claim 17, wherein a first outer surface is hydrophobic or smooth.

23. The fluidics pumping device as claimed in claim 17, wherein a second outer surface is hydrophilic or rough or is provided with a plurality of microstructures.

24. The fluidics pumping device as claimed in claim 17, wherein a bottom surface and two side surfaces of the spiral trench are hydrophilic or rough or are provided with a plurality of microstructures.

25. The fluidics pumping device as claimed in claim 17, wherein the inner surface of the chamber is hydrophobic or smooth.

Patent History
Publication number: 20130202460
Type: Application
Filed: Mar 14, 2012
Publication Date: Aug 8, 2013
Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE (Hsinchu)
Inventors: Sheng-Li Chang (Hsinchu County), Chu-Yu Huang (Taichung City), Kuo-Chi Chiu (Hsinchu County), Yu-Shih Weng (Hsinchu City)
Application Number: 13/420,578
Classifications
Current U.S. Class: Fluid Motor (417/375)
International Classification: F04B 47/08 (20060101);