Optimization of Evaporator Core Temperature Control Using Active Thermocouple Array Sensor

- Ford

A method for generating a temperature map of the vehicle evaporator core is provided using an active thermocouple array sensor. The active thermocouple array sensor is attached to the HVAC enclosure and is positioned to read the temperature at multiple locations across the evaporator core. A controller generates a temperature map using data collected from the evaporator core by the active thermocouple array sensor. The temperature map facilitates optimization of the evaporator core temperature by the controller.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to a method for optimizing evaporator core temperature control using an active thermocouple array sensor.

BACKGROUND

One process for measuring evaporator core temperature is to use a single point contact temperature sensor. The single point contact temperature sensor is placed at one point on the evaporator core, measuring the temperature only at that point. A single point contact sensor does not give an accurate representation of the temperature distribution on the evaporator core.

While additional thermistors could be added, this would raise the cost and only provide information in incremental discrete locations. Using multiple thermistors requires a more sophisticated control algorithm encompassing a larger memory cache allotment. Each thermistor measures the temperature at one location and does not give an accurate representation of temperature distribution across the evaporator core.

Another process of measuring evaporator core temperature is to use non-contacting thermistors. Placing the thermistors in the airflow path measures the temperature of the air as it passes the thermistor. This process also fails to provide a representation of temperature distribution across the evaporator core.

Active thermocouple array sensors have been proposed for use in certain limited applications in a vehicle. Vehicle applications for active thermocouple array sensors include automotive blind spot detection, tire temperature monitoring, battery charging, passenger classification, and detecting passenger compartment thermal comfort. Active thermocouple array sensors have been proposed for use in an automotive air conditioning system to measure temperature in a thermal array inside the passenger compartment of the vehicle. The use of an active thermocouple array sensor in the passenger compartment does not provide any indication of temperature distribution across the evaporator core.

An accurate representation of the temperature distribution is required for optimization of the evaporator performance because temperature may vary at different points on the evaporator core. The coldest evaporator core temperature location may change based on differing operating conditions such as mode, blower speed, and ambient conditions. These changing variables make it difficult to optimize the performance of the evaporator core without the risk of freezing the core condensate on the surface of the evaporator core. The risk of freezing the core condensate leads to compromising evaporator core efficiency as a result of setting the compressor off set-point higher than the optimal minimum threshold. Setting the compressor off set-point higher than the optimal minimal threshold may increase the temperature of the air flow from the registers and reduce the comfort of the vehicle occupants.

This disclosure is directed to the above problems and other problems as summarized below.

SUMMARY

According to one aspect of the disclosure, an apparatus is disclosed for optimizing the evaporator core performance. A multipoint thermal active thermocouple array sensor is attached to the HVAC casing of a vehicle to detect thermal radiation and measure temperatures without making contact with the evaporator core. The active thermocouple array sensor measures the temperature in an array across the surface of the evaporator core. Positioning the active thermocouple array sensor facing an airflow outlet face allows the active thermocouple array sensor to accurately measure temperature distribution across the area of the evaporator core. Ambient air enters the HVAC casing and enters the evaporator core through an airflow inlet face of the evaporator core. The air exits the evaporator core through the airflow outlet face where the temperature of the evaporator core is measured by the active thermocouple array sensor. The active thermocouple array sensor is positioned to have a line-of-sight at the air outlet face.

The array may be read as a temperature map to allow the vehicle climate control system to adjust evaporator core temperature with a finer level of granularity. Knowing the thermal properties of the evaporator core allows the vehicle to compensate for cold spot migration and optimize the energy transfer by the evaporator core.

According to another aspect of the disclosure, a method is provided for using the active thermocouple array sensor to optimize evaporator core performance. The active thermocouple array sensor is assembled to a feature inside of the HVAC casing and positioned to have a line-of-sight on an air outlet face of the evaporator core. The HVAC casing directs air into an air inlet face of the evaporator core and through an air outlet face of the evaporator core. As the air flows through the outlet face, the active thermocouple array sensor measures the temperature of the core. This gives an accurate representation of the temperature across the air outlet face of the evaporator core. Once a plurality of points is measured, the active thermocouple array sensor generates temperature distribution data based on the measurement data. The active thermocouple array sensor arranges the temperature distribution in an array, or in a temperature map. After creating a temperature distribution, the vehicle temperature control system analyzes the temperature distribution and adjusts evaporator core temperature control. The vehicle temperature control system uses a minimum temperature threshold to adjust the temperature of the evaporator core. For example, the evaporator core temperature may change to minimize the risk of icing or freeze up occurring on the evaporator core. The minimum temperature threshold varies by vehicle and ranges from approximately 32° F. to 38.5° F.

According to a further aspect of this disclosure, a vehicle temperature control system is provided that includes a heater core and an evaporator core enclosed within a HVAC casing of the vehicle, an active thermocouple array sensor, and a vehicle climate control system including a compressor. The active thermocouple array sensor is disposed within an HVAC casing of the vehicle temperature control system. Air flows through the front end of the vehicle and enters the HVAC casing. The air flow is directed by the HVAC casing into the evaporator core through an air inlet face and exits the evaporator core through an air outlet face. The active thermocouple array sensor detects and measures the temperature of the core as the air flows through the air outlet face of the evaporator core. The active thermocouple array sensor is attached to a support structure within the HVAC casing and is positioned with a line-of-sight to the airflow output face. The active thermocouple array sensor collects temperature distribution data from a plurality of temperature data measurements of the evaporator core. The temperature distribution data may be in the form of an array that is organized to provide a temperature map of the evaporator core. The vehicle climate control system analyzes the temperature distribution data from the active thermocouple array sensor to optimize performance of the evaporator core. The vehicle climate control system uses the temperature distribution data to operate the evaporator core at its minimum threshold temperature.

The vehicle climate control system analyzes the measurement data from the thermocouple array sensor to control the compressor. The minimum temperature threshold varies between vehicle styles and may range from approximately 32° F. to approximately 38.5° F. For example, when the vehicle climate control system receives a signal indicating the evaporator core temperature is below 38.5° F., the compressor turns off. Likewise, when the vehicle climate control system receives a signal that the evaporator core temperature is above 38.5° F. the compressor may be turned on. The use of the active thermocouple array sensor in the vehicle temperature control system allows for a finer granularity of the evaporator core temperature control enabling the core temperature to be controlled closer to its minimum temperature threshold. Operating the evaporator core at the minimum threshold temperature enables optimized cooling performance within the refrigerant system while preventing unwanted evaporator icing or freeze up.

The above aspects of the disclosure and other aspects will be better understood in view of the attached drawings and the following detailed description of the illustrated embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of the location of the evaporator core in a vehicle.

FIG. 2 is a cross-sectional view of the HVAC casing.

FIG. 3 is a perspective view of the thermocouple array sensor measuring the air outlet surface of the evaporator core.

FIG. 4 is a diagrammatical view of how the thermocouple array sensor interacts with the vehicle control system to optimize evaporator core temperature.

DETAILED DESCRIPTION

The illustrated embodiments are disclosed with reference to the drawings. It should be understood that the disclosed embodiments are intended to be merely examples that may be embodied in various and alternative forms. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. The specific structural and functional details disclosed are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art how to practice the disclosed concepts.

Referring to FIG. 1, a vehicle 10 is provided with an HVAC casing 12 that houses an evaporator core 14. The casing 12 is disposed at the front end of a passenger compartment 32. Air enters the casing 12 through the front end of the vehicle 10 and passes through the evaporator core 14 into the passenger compartment 32. Refrigerant (not shown) flows through the evaporator core 14 at a controlled rate of flow.

FIG. 2 is a cross sectional side view of the casing 12. Air flows into the evaporator core 14 through an air inlet face 16 and exits the evaporator core 14 through an air outlet face 18. After the air passes through the evaporator core 14 it is directed by the casing 12 into the vehicle 10. The temperature of the air is measured by a thermocouple array sensor 20. The thermocouple array sensor 20 is located on a sensor support 22 with a line-of-sight to a plurality of measurements at spaced points 24 on the air outlet face 18 of the evaporator core 14. The thermocouple array sensor 20 provides temperature distribution data 26 of the core as air passes through the air outlet face 18 of the evaporator core 14. The vehicle temperature control system 28 controls the flow of refrigerant through the evaporator core 14 based upon the temperature distribution data 26 at a minimum temperature threshold 30 to avoid freezing the condensate on the air outlet face 18 of the evaporator core 14.

Referring to FIG. 3, a temperature map 34 may be generated based upon the temperature distribution data 26. The thermocouple array sensor 20 collects temperature measurements 36 of the core as air passes through the air outlet face 18 of the evaporator core 14. The temperature measurements 36 are saved as temperature distribution data 26. The temperature map 34 accurately depicts the temperature on the air outlet face 18. The temperature map 34 allows a controller 38 to efficiently account for cold spot migration across the evaporator core 14. The controller 38 efficiently operates the evaporator core 14 at the minimum temperature threshold 30. Evaporator core 14 performance is optimized by adjusting for cold spot migration.

Referring to FIG. 4, a flow chart is provided to illustrate the method of using the thermocouple array sensor 20. The thermocouple array sensor 20 gathers data at 40 comprising a plurality of temperature measurements 24 of the core as air passes through the air outlet face 18 of the evaporator core 14. The thermocouple array sensor 20 develops at 42 temperature distribution data 26 across the evaporator core 14 air outlet face 18 at the plurality of temperature measurement points. The temperature map 34 is generated at 44 based on the temperature distribution 26 that is indicative of the temperature across the evaporator core 14 air outlet face 18. The vehicle temperature control system 28 analyzes the temperature map 34 at 46 to optimize performance of the evaporator core 14. The vehicle temperature control system 28 uses the temperature distribution data 26 to operate the evaporator core 14 at a temperature as close as possible to the minimum temperature threshold 30. This allows the evaporator core 14 to operate efficiently while avoiding freezing the condensate that may form as air passes through the air outlet face 18 of the evaporator core 14.

While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims

1. A vehicle air conditioning apparatus comprising:

a casing;
an evaporator core enclosed within the casing, the evaporator core having an air inlet face and an air outlet face, wherein the air inlet face is disposed opposite the air outlet face; and
an active thermocouple array sensor measures temperature at a plurality of
measurement points on the evaporator core to provide a plurality of temperature data points.

2. The vehicle air conditioning apparatus of claim 1 further comprising a sensor support disposed within the casing to position the thermocouple array sensor with a line-of-sight of the air outlet face to measure temperatures in an array on the air outlet face of the evaporator core.

3. The vehicle air conditioning apparatus of claim 1 wherein the plurality of measurement points is read as a temperature map.

4. The vehicle air conditioning apparatus of claim 3 wherein the temperature map allows the vehicle air conditioning apparatus to compensate for cold spot migration.

5. A method of optimizing evaporator core temperature control comprising:

assembling an active thermocouple array sensor within a vehicle HVAC casing;
positioning the active thermocouple array sensor to measure an airflow outlet face of an evaporator core;
gathering measurement data from the airflow outlet face of the evaporator core to develop a temperature distribution array data set;
analyzing the temperature distribution array data with a vehicle temperature control system; and programming the vehicle control system to maintain a minimum temperature
threshold on the airflow outlet face of the evaporator core based on the temperature distribution array data set.

6. The method of optimizing evaporator core temperature of claim 5 further comprising generating a temperature map from the temperature distribution array data set.

7. The method of optimizing evaporator core temperature of claim 6 further comprising analyzing the temperature map using a vehicle temperature control system.

8. The method of claim 5 wherein the minimum temperature threshold is in a range from 32° F. up to 38.5° F.

9. An evaporator core temperature control system comprising:

a vehicle HVAC system having a casing that directs a fluid through an evaporator core disposed within the casing, the evaporator core having an airflow inlet face and an airflow outlet face;
a thermocouple array sensor disposed within the casing in a line-of-sight relative to the evaporator core to measure a plurality of temperatures at a plurality of points on the evaporator core to generate a temperature map; and
a controller analyzes the temperature map of the outlet face to maintain the temperature across the evaporator core at a temperature above a minimum temperature threshold.

10. The system of claim 9, wherein the controller analyzes the temperature map from the thermocouple array sensor to control the flow of a refrigerant in the evaporator core.

11. The system of claim 9 wherein the minimum temperature threshold is at least 32° F.

Patent History
Publication number: 20140102117
Type: Application
Filed: Oct 12, 2012
Publication Date: Apr 17, 2014
Applicant: FORD GLOBAL TECHNOLOGIES, LLC (Dearborn, MI)
Inventors: Edmund Wayne (Dearborn, MI), Kevin Swenskowski (Dearborn Heights, MI)
Application Number: 13/650,643
Classifications
Current U.S. Class: Processes (62/56); Condition Sensing (62/129)
International Classification: F25B 39/02 (20060101); F25B 49/00 (20060101);