VACCINES FOR PREVENTION AND TREATMENT OF TUBERCULOSIS

- ALARUM DEVELOPMENT LTD.

The present invention provides new immunological compositions and vaccines comprising selected M. tuberculosis antigens and antigenic peptides as well as nucleic acids encoding said antigens for use in the prevention, prophylaxis and treatment of mycobacterial infection, especially tuberculosis. In particular the invention provides recombinant BCG based vaccines in which one or more of the selected M. tuberculosis antigens are over expressed. The invention further provides isolated peptides for use in methods for diagnosing, characterizing, or classifying mycobacterial infections.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF INVENTION

The present invention relates to new immunological compositions and vaccines comprising selected M. tuberculosis antigens and antigenic peptides as well as nucleic acids encoding said antigens for use in the prevention, prophylaxis and treatment of tuberculosis. In particular the invention provides recombinant BCG based vaccines in which one or more M tuberculosis antigens are overexpressed.

BACKGROUND

Tuberculosis (TB) is one of the major global health issue, and a serious health concern in many countries, especially in countries where the prevalence and spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug resistant TB (XDR-TB) has increased during the last few years. Early diagnosis of the disease and the rapid identification of resistance to primary anti-TB drugs are essential for efficient treatment, prevention and control of TB.

The diagnosis of tuberculosis in many countries still relies on tuberculin skin test (TST) and direct sputum examination by light microscopy. TST has low specificity due to cross-reactivity to protein purified derivative (PPD) antigens shared by environmental mycobacteria species, and may give false positive responses in Bacillus Calmette-Guerin (BCG) vaccinated individuals, particularly those who received multiple BCG vaccinations. BCG policies vary considerably between countries, primarily depending on the current epidemiological situation

Interferon-γ release assays (IGRA) have been designed to overcome the problem of cross-reactive T cell immune responses by measuring immune responses to antigens specific for M. tuberculosis. Neither the TST nor the IGRA however is able to discriminate between active TB-disease, latent TB infection and previous TB-infection. Exposure to Mycobacteria other than tuberculosis may lead to false-positive results, and poor specificity of the tests may lead to unnecessary prophylactic treatment with anti-tuberculosis drugs. Thus, the ideal diagnostic test should not only discriminate latent TB infection from active TB, but also discriminate between TB, exposure to other Mycobacteria and previous BCG vaccination. Although latent TB is clinically silent and not contagious, it can reactivate to cause contagious pulmonary TB (Flynn and Chan, Tuberculosis: latency and reactivation. Infect Immun, 2001. 69(7): p. 4195-201). Tubercle bacilli are generally considered to be non-replicating in latent TB, yet it may slowly grow and replicate (Munoz-Elias et al., Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun, 2005. 73(1): p. 546-51). Latent TB is characterized by highly reduced metabolism and a significantly altered gene expression (Voskuil et al., Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med, 2003. 198(5): p. 705-13) associated with the different stages of infection (Lin, M. Y. and T. H. Ottenhoff, Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection. Biol Chem, 2008. 389(5): p. 497-511). Since most cases of active TB arise in people with latent TB, there is an urgent need to identify new potential targets for TB diagnosis and for development of new and better TB vaccines. Different vaccine targets may be useful for countries with high versus countries with low M. tuberculosis burden; or for individuals who have not yet been exposed versus exposed individuals. Thus, a possible solution is the provision of different M. tuberculosis vaccines developed, depending on natural M. tuberculosis exposures of the target population.

One of the strategies in developing new diagnostic methods and in improving the TB vaccine involves the identification of epitopes in antigens that induce T cell responses. In, addition a strategic choice of the vaccine candidate may be as important, i.e. to choose i) M. tuberculosis antigens which are rather not secreted (these may rather serve as ‘decoy antigens which prevents the immune system to focus on the biologically and clinically relevant targets), ii) antigens that play a role in M. tuberculosis pathogenicity and iii) antigens that are expressed at different points of the M. tuberculosis infection and the M. tuberculosis life cycle. The antigens according to the present invention fulfill these criteria.

CD4+ T cells play a central role in M. tuberculosis-directed cellular immune responses (Endsley et al. Mycobacterium bovis BCG vaccination induces memory CD4 T cells characterized by effector biomarker expression and antimycobacterial activity. Vaccine 2007. 25:8384-8394.). It is most likely that an effective tuberculosis (TB) vaccine would target the expansion of CD8+ and CD4+ T cells, which recognize M. tuberculosis peptides presented by major histocompatibility complex (MHC) class I and class II molecules. The MHC locus is the most variable gene locus in the human genome, and the variability of MHC class II alleles in different populations is well documented Certain MHC class II alleles have been shown to be associated with M. tuberculosis infection (Kettaneh et al. Human leukocyte antigens and susceptibility to tuberculosis: a metaanalysis of case-control studies. Int. J. Tuberc. Lung Dis. 2006. 10:717-725). DRB1*0803 and DQB1*0601 were found to be associated with TB disease progression, development of drug resistance, and disease severity in Koreans (Kim et al. Association of HLA-DR and HLA-DQ genes with susceptibility to pulmonary tuberculosis in Koreans: preliminary evidence of associations with drug resistance, disease severity, and disease recurrence. Hum. Immunol. 2005.66:1074-1081). In South Africa, DRB1*1302 and DQB1*0301 to −0304 were apparently associated with active TB compared to control individuals lacking these alleles (Lombard et al. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum. Immunol. 2006. 67:643-654). The prevalence of HLA DRB1* 0401 and HLA-DRB1*0801 was significantly decreased in Mexican patients with pulmonary TB compared to their prevalence in healthy controls (Teran-Escandon et al. Human leukocyte antigen-associated susceptibility to pulmonary tuberculosis: molecular analysis of class II alleles by DNA amplification and oligonucleotide hybridization in Mexican patients. Chest 1999. 115:428-433). The association of some MHC class II alleles with “better disease outcome” could be due to the fact that these alleles are “better” at binding and presenting a certain repertoire of peptide epitopes to CD4+ T cells than other alleles Not mutually exclusive, the quality (i.e. differential cytokine production, cytotoxic responses, of a cellular immune response) and the quantity of a cellular response is also biologically and clinically relevant. In addition, it will be of great value where M. tuberculosis antigen-specific T-cells reside, i.e. in terminally different effector T-cells (they may produce potent anti-M. tuberculosis directed activities, yet they may be short-lived), in memory immune cells or in precursor T-cells which will be able to replenish the T-cell pool once immune memory T-cells and terminally differentiated effector T-cells are not available anymore, e.g. they have succumbed to activation-induced cell death after repetitive antigen-exposure. The preferential expansion of anti-M. tuberculosis directed immune responses in different immune T-cell subsets, particularly in precursor T-cells, will therefore be advantageous.

It is not only important where M. tuberculosis specific T-cells reside (precursor, immune memory of terminally differentiated T-cells), yet also the nature of the target antigens. The identification of peptides binding to molecularly defined MHC class II alleles could therefore represent an important first step in identifying potential targets for TB vaccine design and the development of new diagnostic assays. More recently, De Groot and colleagues used a bioinformatics approach, followed by validation with functional assays to identify CD4+ T-cell epitopes that were used to construct an epitope-based M. tuberculosis vaccine (Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 2005. 23:2121-2131). Only a few M. tuberculosis MHC class II binding peptides have been identified so far, and 7% of the M. tuberculosis open reading frames have been explored for both B-cell and T-cell epitopes (Blythe et al. An analysis of the epitope knowledge related to mycobacteria. Immunome Res. 2007. 3:10). Peptide microarray assay has the major advantage that a high number of candidate peptides can be screened within a short time frame. Gaseitsiwe et al. (Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501 and DRB1*0401. Clin Vacc Immunol 2010, 17:168-175) describe M. tuberculosis peptide binding to the three most frequently encountered MHC class II alleles in different populations; DRB1*0101, DRB1*1501, and DRB1*0401. DRB1*0101, DRB1*1501, and DRB1*0401 exhibit population frequencies of 15.4%, 32.9%, and 20.9% among Caucasians. In the Botswana population, HLA-DRB1*01, -DRB1*02, and -DRB1*04 show population frequencies of 21.7%, 21.3%, and 14.4%, respectively. 7,446 unique peptides derived from 61 M. tuberculosis proteins were tested. In addition, M. tuberculosis targets can be recognized by serum antibodies. This is not only relevant concerning immunoglobulin-mediated recognition, it is also an indirect measurement of T-cell activation and recognition, since strong IgG-responses require strong CD4+ T-cell help (Gaseitsiwe et al. supra; Gaseitsiwe et al. Pattern recognition in pulmonary tuberculosis defined by high content peptide microarray chip analysis representing 61 proteins from M. tuberculosis. PLoS ONE. 2008; 3(12):e3840. Epub 2008 Dec. 9).

DESCRIPTION OF THE INVENTION

The present inventors have identified three antigens from Mycobacterium tuberculosis,

    • a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) encoded by locus Rv0447c as shown in SEQ ID NO:1,
    • b) Possible glycosyltransferase (GenBank Accession No. CAB05418) encoded by locus Rv2958c as shown in SEQ ID NO:2, and
    • c) Possible glycosyltransferase (GenBank Accession No. CAB05419) encoded by locus Rv2957 as shown in SEQ ID NO:3
      as being specifically important for the immunological response to i) infections by M. tuberculosis ii) infection with mycobacterial species and iii) vaccination targeting M. tuberculosis and/or other mycobacterial species.

Accordingly, in one aspect the present invention provides vaccines and immunological compositions comprising one or more polypeptides selected from

    • i) the polypeptide SEQ ID NO:1,
    • ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:1,
    • iii) the polypeptide SEQ ID NO:2,
    • iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
    • v) the polypeptide SEQ ID NO:3,
    • vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
    • vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope, of said polypeptide.

Preferably the vaccine or immunological composition comprises two or more polypeptides selected from the polypeptides (i)-(vii), such as three or more, such as 4, 5, 6, 7, 8, 9, 10 or more polypeptides selected from the polypeptides (i)-(vii).

The polypeptide vii) can comprise 2 or more functional fragments, such as 3, 4, 5, 6, 7, 8, 9, or more functional fragments of any one of the polypeptides (i)-(vi).

The functional fragment(s) of any one of the polypeptides (i)-(vi) can comprise a peptide sequence selected from the sequences SEQ ID NO: 4-118.

The functional fragment(s) preferably comprise(s) a peptide sequence selected from the sequences SEQ ID NO: 4-17.

The functional fragment(s) can consist of a peptide sequence selected from the sequences SEQ ID NO: 4-17.

In another aspect the present invention provides vaccines and immunological compositions comprising one or more nucleic acid sequences selected from nucleic acids encoding one or more polypeptides selected from

    • i) the polypeptide SEQ ID NO:1,
    • ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:1,
    • iii) the polypeptide SEQ ID NO:2,
    • iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
    • v) the polypeptide SEQ ID NO:3,
    • vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
    • vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope of said polypeptide.

Preferably the vaccine or immunological composition comprises two or more nucleic acid sequences selected from nucleic acids encoding polypeptides selected from the polypeptides (i)-(vii), such as three or more, such as 4, 5, 6, 7, 8, 9, 10 or more nucleic acid sequences encoding polypeptides selected from the polypeptides (i)-(vii).

The polypeptide vii) can comprise two or more functional fragments, such as 3, 4, 5, 6, 7, 8, 9, 10 or more functional fragments of any one of the polypeptides (i)-(vi).

The functional fragment(s) of any one of the polypeptides (i)-(vi) can comprise a peptide sequence selected from the sequences SEQ ID NO: 4-118.

The functional fragment preferably comprises a peptide sequence selected from the sequences SEQ ID NO: 4-17.

The functional fragment can consist of a peptide sequence selected from the sequences SEQ ID NO: 4-17.

The nucleic acid can be a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Said nucleic acid can be delivered by a viral, bacterial, or plant cell vector. Preferably the viral vector is an adenoviral vector. Preferably the bacterial vector is mycobacterial vector.

In another aspect the present invention provides recombinant Bacille Calmette-Guerin (BCG) comprising one or more nucleic acid sequence selected from nucleic acids encoding one or more polypeptides selected from

    • i) the polypeptide SEQ ID NO:1,
    • ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:1,
    • iii) the polypeptide SEQ ID NO:2,
    • iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
    • v) the polypeptide SEQ ID NO:3,
    • vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
    • vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope, of said polypeptide.
      wherein said nucleic acid sequences are overexpressed.

Preferably the vaccine or immunological composition comprises two or more nucleic acid sequences selected from nucleic acids encoding polypeptides selected from the polypeptides (i)-(vii), such as three or more, such as 4, 5, 6, 7, 8, 9, 10 or more nucleic acid sequences encoding polypeptides selected from the polypeptides (i)-(vii).

The polypeptide vii) can comprise two or more functional fragments, such as 3, 4, 5, 6, 7, 8, 9, 10 or more functional fragments of any one of the polypeptides (i)-(vi).

The functional fragment(s) of any one of the polypeptides (i)-(vi) can comprise a peptide sequence selected from the sequences SEQ ID NO: 1-118.

The functional fragment preferably comprises a peptide sequence selected from the sequences SEQ ID NO: 4-17.

The functional fragment can consist of a peptide sequence selected from the sequences SEQ ID NO: 4-17.

The recombinant BCG can further comprise a nucleic acid encoding a perfringolysin wherein said nucleic acid sequence is expressed by the BCG.

In another aspect the present invention provides an immunological composition comprising a recombinant BCG according to the invention.

In another aspect the present invention provides a vaccine composition comprising a recombinant BCG according to the invention.

The present inventors have further identified peptides derived from the three M. tuberculosis antigens

    • a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1,
    • b) Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and
    • c) Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3,
      peptides which are demonstrated to bind to the common MHC class I alleles HLA-A*0201, HLA-A*2402, HLA-A*3001, HLA-A*3002, HLA-A*6801, HLA-B*5801, and HLA-C*0701.

Accordingly, in one aspect the present invention provides isolated peptides of between 7 and 20 amino acids in length comprising a sequence of at least 7 consecutive amino acids, preferably at least 8 consecutive amino acids, more preferably at least 9 consecutive amino acids derived from the sequence of a polypeptide selected from the polypeptides

    • a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1,
    • b) Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and
    • c) Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3.
    • The peptides can be of between 7 and 20, such as between 8 and 20, or between 9 and 20 amino acids in length.

Preferably, the peptides according to the invention are selected from the group of peptides consisting of the peptides SEQ ID NOs: 4-118.

More preferably, the peptides according to the invention are selected from the group of peptides consisting of the peptides

VLAGSVDEL, SEQ ID NO: 4 KYIFPGGLL, SEQ ID NO: 5 RMWELYLAY, SEQ ID NO: 6 AASAAIANR, SEQ ID NO: 7 ALADLPVTV, SEQ ID NO: 8 KYIAADRKI, SEQ ID NO: 9 SARLAGIPY, SEQ ID NO: 10 AAPEPVARR, SEQ ID NO: 11 ATLGSSGGK, SEQ ID NO: 12 ATAGRNHLK, SEQ ID NO: 13 SIIIPTLNV, SEQ ID NO: 14 PYNLRYRVL, SEQ ID NO: 15 IVLVRRWPK, SEQ ID NO: 16 and LVYGDVIMR. SEQ ID NO: 17

The peptides SEQ ID NOs. 4-7 being derived from Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1, and the peptides SEQ ID NOs: 8-13 being derived from Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and the peptides SEQ NOs: 14-17 being derived from Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3.

In another aspect the present invention provides vaccines and immunological compositions comprising one or more peptides according to the invention.

In another aspect the present invention provides vaccines and immunological compositions comprising one or more nucleic acid sequences selected from nucleic acids encoding one or more peptides according to the invention.

The nucleic acid can be a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Said nucleic acid can be delivered by a viral, bacterial, or plant cell vector. Preferably the viral vector is an adenoviral vector. Preferably the bacterial vector is mycobacterial vector.

In one embodiment the vaccines according to the invention can be used for naivê vaccination of a subject not earlier exposed to a mycobacterial infection or vaccination, including M. tuberculosis and BCG and/or any other mycobacterial species, exemplified, but not limited to, M. africanum and M. bovis (M. tuberculosis complex), and MOTT (mycobacterium other than tuberculosis), i.e. M. avium intracellulare, M. avium, M. avium intracellular complex, M. ulcerans, M. fortuitum, M. xenopi, M. marinum, M. hemophilum, M. abscessus, M. szulgai, M. kansasii, M. chelonae, as well as M. leprae.

In another embodiment the vaccines according to the invention is for therapeutic vaccination of a subject already exposed to a mycobacterial infection. The mycobacterial infection to be treated is exemplified, but not limited to, M. tuberculosis infection, BCG infection, and infections caused by M. africanum and M. bovis (M. tuberculosis complex), yet also MOTT (mycobacterium other than tuberculosis), i.e. M. avium intracellulare, M. avium, M. avium intracellular complex, M. ulcerans, M. fortuitum, M. xenopi, M. marinum, M. hemophilum, M. abscessus, M. szulgai, M. kansasii, M. chelonae, as well as M. leprae.

The individual to be vaccinated can be suffering from active M. tuberculosis infection, or the individual to be vaccinated can be suffering from latent M. tuberculosis infection.

The vaccines and immunological compositions according to the invention can further comprise additional mycobacterial or other antigens, which can be in the form of DNA, RNA, peptides and/or polypeptides.

The vaccines and immunological compositions according to the invention can further comprise an adjuvant and/or one or more pharmaceutical acceptable excipient or carrier. The vaccines and immunological compositions according to the invention can be formulated for different routes of administration, such as oral administration, nasal administration, intra muscular administration, subcutaneous administration, intracutaneous, intradermal, subdermal or as an antigen preparation exposed to skin or any inner- or outer body surface alone or along with a carrier.

In another aspect the present invention provides methods for immunizing a subject against infection caused by a mycobacterial species or for eliciting an immune response to a mycobacterial species in said subject, comprising the step of administering to said subject a vaccine composition or an immunological composition according to the invention. The mycobacterial species is exemplified, but not limited to, M. tuberculosis, BCG, M. africanum and M. bovis (M. tuberculosis complex), yet also MOTT (mycobacterium other than tuberculosis), i.e. M. avium intracellulare, M. avium, M. avium intracellular complex, M. ulcerans, M. fortuitum, M. xenopi, M. marinum, M. hemophilum, M. abscessus, M. szulgai, M. kansasii, M. chelonae, as well as M. leprae.

In another aspect the present invention provides methods for treating a subject having an infection caused by a mycobacterial species comprising the step of administering to said subject a vaccine composition or an immunological composition according to the invention. The mycobacterial species is exemplified, but not limited to, M. tuberculosis, BCG, M. africanum and M. bovis (M. tuberculosis complex), yet also MOTT (mycobacterium other than tuberculosis), i.e. M. avium intracellulare, M. avium, M. avium intracellular complex, M. ulcerans, M. fortuitum, M. xenopi, M. marinum, M. hemophilum, M. abscessus, M. szulgai, M. kansasii, M. chelonae, as well as M. leprae.

The subject to be treated can be suffering from active M. tuberculosis infection, or the subject to be treated can be suffering from latent M. tuberculosis infection. Similarly, the subject may also suffer from any other infection associated with a mycobacterial species.

In another aspect the present invention provides methods for prevention and/or prophylaxis of recurrence of symptoms of tuberculosis in a subject with a latent mycobacterial infection, comprising the step of administering to said patient a vaccine composition or an immunological composition according to the invention. The mycobacterial infection is exemplified, but not limited to M. tuberculosis infections, BCG infections, and infections caused by M. africanum and M. bovis (M. tuberculosis complex), yet also MOTT (mycobacterium other than tuberculosis), i.e. M. avium intracellulare, M. avium, M. avium intracellular complex, M. ulcerans, M. fortuitum, M. xenopi, M. marinum, M. hemophilum, M. abscessus, M. szulgai, M. kansasii, M. chelonae, as well as M. leprae

The subject can be any mammal, such as a cow, the subject is preferably a human.

In another aspect the present invention provides methods for determining the immune response in an individual following vaccination or immunization, the method comprising the use of one or more peptides and/or one or more polypeptides according to the invention.

The method can preferably be an in vitro method.

The peptide to be used can be any peptide of between 7 to 20 amino acids in length comprising a sequence of at least 7 consecutive amino acids, preferably at least 8 consecutive amino acids, more preferably at least 9 consecutive amino acids derived from the sequence of a polypeptide selected from the polypeptides

    • a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1,
    • b) Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and
    • c) Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3.

The peptides can be of between 7 and 20, such as between 8 and 20, or between 9 and 20 amino acids in length.

Preferably the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-118.

More preferably the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-17.

The polypeptides to be used can be any polypeptide selected from

    • i) the polypeptide SEQ ID NO:1,
    • ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:1,
    • iii) the polypeptide SEQ ID NO:2,
    • iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
    • v) the polypeptide SEQ ID NO:3,
    • vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
    • vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope of said polypeptide.

The method can comprise the determination of T-cell binding and/or reactivity to one or more of said peptides and/or one or more of said polypeptides.

T-cell reactivity can be measured in different ways. Objective enumeration of antigen-specific T-cells can be carried out using soluble MHC Class I or—class I molecules loaded with the nominal target peptides. The MHC/peptide complex is usually coupled to a fluorescent dye and the MHC/peptide complexes are presented as multimers to enable interaction with the T-cell receptor. Enumeration of antigen-specific T-cells can be carried out using flow cytometry in combination with T-cell markers. The addition of T-cell activation markers, e.g. CD38, CD25, CD69, HLA-DR will also help to differentiate between non-stimulated and stimulated T-cells.

Alternate ways to detect T-cell function are: specific intracellular events associated with recognition of the nominal target structure, e.g. reflected by phosphorylation of cellular proteins. T-cell effector functions are also used to gauge T-cell reactivity, e.g. production of cytokines, cytotoxicity either measured by killing of target cells, or detection of alterations associated with cytotoxicity, i.e. membrane trafficking, CD107a expression and perforin, granzyme detection. A biologically important T-cell function is also T-cell proliferation. Cytokine production can be measured in several ways, e.g. in determining cytokine production in cell culture supernants after exposure to the nominal target protein, partial protein stretches or peptides. The detection of intracellular cytokine production requires the use of peptides since this assay is usually performed within a 6 hour time frame—which does not allow take up, process and present complex antigens. Therefore, peptides, presenting the nominal target are being used in this assay. They are able to bind to different MHC class I and—class II molecules—and, in some cases, also to non-classical MHC molecules and to CD1 antigens. The assay requires that the entire protein sequence is used as the peptide sources since we have no detailed information concerning the genetic background of the patients and which peptide species is exactly presented from a particular MHC class I or—class II molecules to antigen-specific T-cells. This is hard to predict since some peptide binding motifs are still ill-defined. Upon recognition, cytokines are produced and can be visualized using specific monoclonal antibodies by flow cytometry.

In another aspect the present invention provides methods for diagnosing, characterizing, or classifying a mycobacterial infection the method comprising the use of one or more peptides and/or one or more polypeptides according to the invention.

The method can preferably be an in vitro method.

The peptide to be used can be any peptide of between 7 to 20 amino acids in length comprising a sequence of at least 7 consecutive amino acids, preferably at least 8 consecutive amino acids, more preferably at least 9 consecutive amino acids derived from the sequence of a polypeptide selected from the polypeptides

    • a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1,
    • b) Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and
    • c) Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3.

The peptides can be of between 7 and 20, such as between 8 and 20, or between 9 and 20 amino acids in length.

Preferably the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-118.

More preferably the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-17.

The polypeptides to be used can be any polypeptide selected from

    • i) the polypeptide SEQ ID NO:1,
    • ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:1,
    • iii) the polypeptide SEQ ID NO:2,
    • iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
    • v) the polypeptide SEQ ID NO:3,
    • vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
    • vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope of said polypeptide.

The mycobacterial infection is exemplified by, but not limited to, M. tuberculosis infection, BCG infection, and infections caused by M. africanum and M. bovis (M. tuberculosis complex), yet also MOTT (mycobacterium other than tuberculosis), i.e. M. avium intracellulare, M. avium, M. avium intracellular complex, M. ulcerans, M. fortuitum, M. xenopi, M. marinum, M. hemophilum, M. abscessus, M. szulgai, M. kansasii, M. chelonae, as well as M. leprae.

In another aspect the present invention provides methods for diagnosing, characterizing, or classifying exposure to M. tuberculosis, vaccination with BCG, vaccination with the said protein or exposure to any other mycobacterial species. The method comprising the use of one or more peptides and/or one or more polypeptides according to the invention.

The method can preferably be an in vitro method.

The peptide to be used can be any peptide of between 7 to 20 amino acids in length comprising a sequence of at least 7 consecutive amino acids, preferably at least 8 consecutive amino acids, more preferably at least 9 consecutive amino acids derived from the sequence of a polypeptide selected from the polypeptides

    • a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1,
    • b) Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and
    • c) Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3.

The peptides can be of between 7 and 20, such as between 8 and 20, or between 9 and 20 amino acids in length.

Preferably the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-118.

More preferably the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-17.

The polypeptides to be used can be any polypeptide selected from

    • i) the polypeptide SEQ ID NO:1,
    • ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:1,
    • iii) the polypeptide SEQ ID NO:2,
    • iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
    • v) the polypeptide SEQ ID NO:3,
    • vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
    • vii) a polypeptide comprising one or more immunogenic portion, e.g. a T-cell epitope, of any one of the polypeptides (i)-(vi)

The method can comprise the determination of T-cell binding and/or reactivity to one or more of said peptides and/or one or more of said polypeptides.

It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein. Similarly, any embodiment discussed with respect to one aspect of the invention may be used in the context of any other aspect of the invention.

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

LEGENDS TO THE FIGURES

FIG. 1 shows detection of MHC class I M. tuberculosis antigen specific recognition by CD3+CD8+ T-cells measured by flow cytometry.

FIG. 2 shows detection of polyfunctional T-cell simultaneously producing IL-2, IFN-γ and TNFα directed to Cyclopropane-fatty-acyl-phospholipid synthase CAA17404.

FIG. 3 shows detection of intracellular IL-2, in PBMCs from a monkey vaccinated with BCG.

FIG. 4 shows antibody recognition of glycosyltransferase in individuals with TB

FIG. 5 shows detection of IFNγ production in freshly harvested Heparin-blood from individuals cured from MDR or XDR TB by infusion of autologous mesenchymal stem cells (MSCs). The patients regained reactivity to the antigens, defined by IFNγ production.

FIG. 6 shows detection of COX-2 and SOCS-3 protein expression by Western Blot analysis in mouse peritoneal macrophages stimulated with the CAB05419/Rv2957; CAB05418/Rv2958c and CAA17404/Rv0477c antigens.

FIG. 7 shows detection of COX-2 and SOCS-3 protein expression by Western Blot analysis in mouse peritoneal macrophages obtained from TLR knock-out mice stimulated with the CAB05419/Rv2957; CAB05418/Rv2958c and CAA17404/Rv0477c antigens

FIG. 8 shows the effect of MAP kinase inhibitors on COX-2 and SOCS-3 protein expression in mouse peritoneal macrophages stimulated with the CAB05419/Rv2957; CAB05418/Rv2958c and CAA17404/Rv0477c antigens.

FIG. 9 shows the effect of PI3 kinase and mTOR inhibitors on COX-2 and SOCS-3 protein expression in mouse peritoneal macrophages stimulated with the CAB05419/Rv2957; CAB05418/Rv2958c and CAA17404/Rv0477c antigens.

FIG. 10 shows the induction of TGF-β, IL-10, IL-12 and TNF-α in peritoneal macrophages stimulated by the CAB05419/Rv2957; CAB05418/Rv2958 and CAA17404/Rv0477c antigens. (order of bars: control, -CAA17404/Rv0477c, -CAB05418/Rv2958c, -CAB05419/Rv2957.

FIG. 11 shows detection of COX-2 and SOCS-3 protein expression by Western Blot analysis in the human monocyte cell line (THP1) stimulated with the CAB05419/Rv2957; CAB05418/Rv2958 and CAA17404/Rv0477c antigens.

FIG. 12 shows the effect of MAP kinase inhibitors on COX-2 and SOCS-3 protein expression in human monocyte cell line (THP1) stimulated with the CAB05419/Rv2957; CAB05418/Rv2958c and CAA17404/Rv0477c antigens.

FIG. 13 shows the effect of PI3 kinase and mTOR inhibitors on COX-2 and SOCS-3 protein expression in human monocyte cell line (THP1) stimulated with the CAB05419/Rv2957; CAB05418/Rv2958c and CAA17404/Rv0477c antigens.

FIG. 14 shows the IFNγ production in whole blood samples obtained from patients with active TB in response to different M. tuberculosis antigens. Fresh heparin blood was obtained from patients with active TB (n=50) and tested for IFNγ production using a whole-blood assay. Note a strong IFNγ production directed against the CAB05418/Rv2958c antigen. (m) male patient, (f) female patients.

FIG. 15 shows the percentage of tetramer-reactive CD8+ CD45RA+ CCR7+ CD117+ CD95+ T-cells recognizing specific peptides from different M. tuberculosis antigens.

DETAILED DESCRIPTION

Specifically, the peptides listed in Table 1 are good binders to the most frequent MHC class I alleles in Caucasians and individuals with Asian descent. Listed are peptides binding to HLA-A*0201, HLA-A*2402 and HLA-A*6801.

TABLE 1 MHC class 1 binding to HLA-A*0201, HLA-A*2402 and HLA-A*6801 CAA17404 CAB05418 CAB05419 SEQ SEQ SEQ ID ID ID Seq NO score Seq NO score Seq NO score A*0201 VLAGSVDEL 4 31 ALADLPVTV  8 30 SIIIPTLNV 14 26 A*2402 KYIFPGGLL 5 25 KYIAADRKI  9 25 PYNLRYRVL 15 21 A*6801 AASAAIANR 7 24 AAPEPVARR 11 24 LVYGDVIMR 17 26

The peptides were derived from the proteins Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) SEQ ID NO:1, Possible glycosyltransferase (GenBank Accession No. CAB05418) SEQ ID NO:2, and Possible glycosyltransferase (GenBank Accession No. CAB05419) SEQ ID NO:3, respectively.

Peptides derived from these proteins were also used to identify peptides binding to the most frequent African alleles, i.e. HLA-A*3001 and HLA-A*3002. The peptides tested are listed in Table 2.

TABLE 2 Candidate peptides for testing on HLA-A3001/3002. SEQ Peptide ID ID Sequence Protein NO  1 SDRWPAVAK CAA17404 18  2 THLPLRLVY CAA17404 19  3 GLIGFGESY CAA17404 20  4 YMAGEWSSK CAA17404 21  5 ARRNIAVHY CAA17404 22  6 AFLDETMTY CAA17404 23  7 ELAAAQRRK CAA17404 24  8 RVEIDLCDY CAA17404 25  9 DYRDVDGQY CAA17404 26 10 VEMIEAVGY CAA17404 27 11 VGYRSWPRY CAA17404 28 12 RHTQTWIQK CAA17404 29 13 HTQTWIQKY CAA17404 30 14 DAASLRPHY CAA17404 31 15 VFARMWELY CAA17404 32 16 RMWELYLAY CAA17404 33 17 SEAGFRSGY CAA17404 34 18 FRSGYLDVY CAA17404 35 19 ARSLDPSRY CAB05418 36 20 FACDPRFNK CAB05418 37 21 VPSEEVLLK CAB05418 38 22 KIAQGRLFY CAB05418 39 23 FYNTRTLRK CAB05418 40 24 YNTRTLRKY CAB05418 41 25 RKYIAADRK CAB05418 42 26 SARLAGIPY CAB05418 43 27 PYIAIANAY CAB05418 44 29 PVSILYRLY CAB05418 45 30 YRPLIFALY CAB05418 46 31 LPLNWLRRK CAB05418 47 32 CRIFTDGDY CAB05418 48 33 FTDGDYTLY CAB05418 49 34 DVPELVPTY CAB05418 50 35 YNLPANHRY CAB05418 51 36 PVLWSPDVK CAB05418 52 37 LPTDRPIIY CAB05418 53 38 ATLGSSGGK CAB05418 54 39 ATAGRNHLK CAB05418 55 40 PANAFVADY CAB05418 56 41 TEGVAAAVK CAB05418 57 42 AGLTAANTK CAB05419 58 43 GLTAANTKK CAB05419 59 44 HRDTDQGVY CAB05419 60 45 FLGADDSLY CAB05419 61 46 EHEPSDLVY CAB05419 62 47 FDLDRLLFK CAB05419 63 48 NICHQAIFY CAB05419 64 49 GLFGTIGPY CAB05419 65 50 TIGPYNLRY CAB05419 66 51 SNPALVTRY CAB05419 67 52 YMHVVVASY CAB05419 68 53 GLSNTIVDK CAB05419 69 54 TIVDKEFLK CAB05419 70 55 IVLVRRWPK CAB05419 71

We have also identified MHC class I binding peptides from the antigens binding to the most frequent African alleles, i.e. HLA-A*3001 and HLA-A*3002 displayed in Table 2.

HLA-A*3002 binds much more MHC class I peptides as compared to HLA-A*3001, which is very selective in the choice of peptide ligands. Table 3 and Table 4 below.

TABLE 3 Peptides binding to HLA-A*3002. Peptide ID Sequence Binding %  1 SDRWPAVAK 0  2 THLPLRLVY 46.7  3 GLIGFGESY 30.1  4 YMAGEWSSK 87.5  5 ARRNIAVHY 74.5  6 AFLDETMTY 63.2  7 ELAAAQRRK 53.3  8 RVEIDLCDY 98.5  9 DYRDVDGQY 36.2 10 VEMIEAVGY 58.5 11 VGYRSWPRY 94.1 12 RHTQTWIQK 81.8 13 HTQTWIQKY 90.8 14 DAASLRPHY 28.5 15 VFARMWELY 94.8 16 RMWELYLAY 98.3 17 SEAGFRSGY 80 18 FRSGYLDVY 102.9 19 ARSLDPSRY 97.8 20 FACDPRFNK 81.8 21 VPSEEVLLK 86.9 22 KIAQGRLFY 164.5 23 FYNTRTLRK 77.2 24 YNTRTLRKY 112.1 25 RKYIAADRK 88.7 26 SARLAGIPY 118.2 27 PYIAIANAY 83.5 28 GVRPVSILY 20.8 29 PVSILYRLY 113.7 30 YRPLIFALY 75.3 31 LPLNWLRRK 75.7 32 CRIFTDGDY 111.9 33 FTDGDYTLY 38.2 34 DVPELVPTY 23.7 35 YNLPANHRY 104.1 36 PVLWSPDVK 45.5 37 LPTDRPIIY 64.6 38 ATLGSSGGK 109.8 39 ATAGRNHLK 91 40 PANAFVADY 115.2 41 TEGVAAAVK 19 42 AGLTAANTK 35.7 43 GLTAANTKK 58.3 44 HRDTDQGVY 90.6 45 FLGADDSLY 113.8 46 EHEPSDLVY 97.2 47 FDLDRLLFK 39.1 48 NICHQAIFY 49.6 49 GLFGTIGPY 79.1 50 TIGPYNLRY 113 51 SNPALVTRY 57.1 52 YMHVVVASY 98.5 53 GLSNTIVDK 124.1 54 TIVDKEFLK 107 55 IVLVRRWPK 114.2

Table 3 shows that HLA-A*3002 binds a high number of candidate epitopes.

TABLE 4 Selective binding of HLA-A*3001 to candidate target peptides. Peptide Binding ID Sequence %  1 SDRWPAVAK 0  2 THLPLRLVY 0  3 GLIGFGESY 0  4 YMAGEWSSK 0  5 ARRNIAVHY 0  6 AFLDETMTY 0  7 ELAAAQRRK 1.3  8 RVEIDLCDY 7.7  9 DYRDVDGQY 4.2 10 VEMIEAVGY 0 11 VGYRSWPRY 4.4 12 RHTQTWIQK 5.5 13 HTQTWIQKY 0 14 DAASLRPHY 0 15 VFARMWELY 9.4 16 RMWELYLAY 15.9 17 SEAGFRSGY 12.1 18 FRSGYLDVY 9 19 ARSLDPSRY 22.1 20 FACDPRFNK 23.3 21 VPSEEVLLK 0 22 KIAQGRLFY 12.2 23 FYNTRTLRK 29.3 24 YNTRTLRKY 6.3 25 RKYIAADRK 8.7 26 SARLAGIPY 69.8 27 PYIAIANAY 5.8 28 GVRPVSILY 12 29 PVSILYRLY 6.1 30 YRPLIFALY 15.6 31 LPLNWLRRK 27.5 32 CRIFTDGDY 32.2 33 FTDGDYTLY 25.1 34 DVPELVPTY 22.7 35 YNLPANHRY 29.9 36 PVLWSPDVK 26.4 37 LPTDRPIIY 10.1 38 ATLGSSGGK 51.5 39 ATAGRNHLK 137.9 40 PANAFVADY 30.3 41 TEGVAAAVK 29 42 AGLTAANTK 28.5 43 GLTAANTKK 21.4 44 HRDTDQGVY 27.3 45 FLGADDSLY 13.8 46 EHEPSDLVY 13.5 47 FDLDRLLFK 10.3 48 NICHQAIFY 7.9 49 GLFGTIGPY 6.5 50 TIGPYNLRY 6.5 51 SNPALVTRY 5.6 52 YMHVVVASY 1.8 53 GLSNTIVDK 16.2 54 TIVDKEFLK 22.9 55 IVLVRRWPK 151.2

Table 4 shows that HLA-A*3001 is much more ‘selective’ concerning peptide binding than HLA-A*3002 selection, only peptides 26, 38, 39, and 55 show high binding.

Table 5 lists peptides which bind both HLA-A*3001 and HLA-*3002. Note the very high binding of individual peptides which is higher (therefore more than 100%) as compared to the placeholder control peptide.

TABLE 5 MHC class I binding peptides to HLA-A30. A*3001 A*3002 Peptide Binding Binding ID Sequence % % 26 SARLAGIPY 69.8 118.2 38 ATLGSSGGK 51.5 109.8 39 ATAGRNHLK 137.9 91 55 IVLVRRWPK 151.2 114.2

TABLE 6 Peptides binding to HLA-B*5801 and HLA-C*0701 SEQ ID B*5801 C*0701 Protein Peptide NO binding binding CAB05418 VARRQRILF  72 + + CAB05418 TLAHVVRPF  73 + CAB05418 DPSRYEVHF  74 + CAB05418 VHFACDPRF  75 + CAB05418 NKLLGPLPF  76 + CAB05418 LKIAQGRLF  77 + CAB05418 KIAQGRLFY  39 + CAB05418 YNTRTLRKY  41 + CAB05418 SARLAGIPY  43 + + CAB05418 PYIAIANAY  44 + CAB05418 WSPQARRRF  78 + + CAB05418 LPDVPWTRF  79 + CAB05418 PDVPWTRFF  80 + CAB05418 GVRPVSILY  81 + CAB05418 PVSILYRLY  45 + CAB05418 YRLYRPLIF  82 + CAB05418 YRPLIFALY  46 + CAB05418 LGWDLCRIF  83 + CAB05418 CRIFTDGDY  48 + CAB05418 FTDGDYTLY  49 + + CAB05418 DVPELVPTY  50 + CAB05418 YNLPANHRY  51 + CAB05418 LPTDRPIIY  53 + CAB05418 LKNVPANAF  84 + CAB05418 PANAFVADY  56 + + CAB05418 KQVLSGAEF  85 + CAB05418 AARRLAEAF  86 + + CAB05418 LAEAFGPDF  87 + + CAB05418 AFGPDFAGF  88 + CAB05419 HRDTDQGVY  60 + CAB05419 KVAMAAPMF  89 + CAB05419 IARQTCGDF  90 + + CAB05419 ETLDIANIF  91 + + CAB05419 LATGTWLLF  92 + + CAB05419 FLGADDSLY  61 + CAB05419 DTLARVAAF  93 + + CAB05419 EHEPSDLVY  62 + CAB05419 DVIMRSTNF  94 + CAB05419 TNFRWGGAF  95 + CAB05419 AFDLDRLLF  96 + CAB05419 RNICHQAIF  97 + CAB05419 NICHQAIFY  64 + CAB05419 AIFYRRGLF  98 + CAB05419 GLFGTIGPY  65 + CAB05419 TIGPYNLRY  66 + CAB05419 YRVLADWDF  99 + CAB05419 DWDFNIRCF 100 + CAB05419 SNPALVTRY  67 + CAB05419 YMHVVVASY  68 + CAB05419 VVVASYNEF 101 + CAB05419 SNTIVDKEF 102 + CAA17404 SAAIDSDRW 103 + CAA17404 THLPLRLVY  19 + CAA17404 ADPRAPSLF 104 + CAA17404 IGRHGLIGF 105 + + CAA17404 GLIGFGESY  20 + CAA17404 WLRPITPTF 106 + CAA17404 ARRNIAVHY  22 + CAA17404 HYDLSNDLF 107 + CAA17404 LSNDLFAAF 108 + + CAA17404 AFLDETMTY  23 + CAA17404 TMTYSCAMF 109 + CAA17404 RQRVAAAGF 110 + CAA17404 RVEIDLCDY  25 + CAA17404 DYRDVDGQY  26 + CAA17404 VEMIEAVGY  27 + CAA17404 VGYRSWPRY  28 + + CAA17404 GYRSWPRYF 111 + CAA17404 LATRHTQTW 112 + CAA17404 HTQTWIQKY  30 + + CAA17404 QTWIQKYIF 113 + + CAA17404 DAASLRPHY  31 + + CAA17404 TLRLWRERF 114 + CAA17404 RDGLAHLGF 115 + CAA17404 AHLGFDEVF 116 + CAA17404 VFARMWELY  32 + CAA17404 RMWELYLAY  33 + CAA17404 YLAYSEAGF 117 + CAA17404 SEAGFRSGY  34 + CAA17404 FRSGYLDVY  35 + CAA17404 SGYLDVYQW 118 + +

These data could have not been predicted using in silico methods. They could only be identified using recombinantly expressed MHC class I molecules used to measure objectively peptide binding.

These data demonstrate how peptides derived from the three polypeptides according to the invention can form stable MHC class I molecules—which can be used to target CD8+ T-cell responses, either in a vaccine, or in a diagnostic or prognostic setting.

TABLE 7 List of epitopes Amino SEQ acid ID Protein nos Peptide NO CAB05418 27-35 VARRQRILF  72 CAB05418 41-39 TLAHVVRPF  73 CAB05418 52-60 ARSLDPSRY  36 CAB05418 56-64 DPSRYEVHF  74 CAB05418 62-70 VHFACDPRF  75 CAB05418 64-72 FACDPRFNK  37 CAB05418 71-79 NKLLGPLPF  76 CAB05418 87-95 VPSEEVLLK  38 CAB05418 94-82 LKIAQGRLF  77 CAB05418  95-103 KIAQGRLFY  39 CAB05418 102-110 FYNTRTLRK  40 CAB05418 103-111 YNTRTLRKY  41 CAB05418 109-117 RKYIAADRK  42 CAB05418 138-146 SARLAGIPY  43 CAB05418 145-153 PYIAIANAY  44 CAB05418 154-162 WSPQARRRF  78 CAB05418 164-172 LPDVPWTRF  79 CAB05418 165-173 PDVPWTRFF  80 CAB05418 174-182 GVRPVSILY  81 CAB05418 177-185 PVSILYRLY  45 CAB05418 182-190 YRLYRPLIF  82 CAB05418 185-193 YRPLIFALY  46 CAB05418 195-203 LPLNWLRRK  47 CAB05418 209-317 LGWDLCRIF  83 CAB05418 214-222 CRIFTDGDY  48 CAB05418 217-225 FTDGDYTLY  49 CAB05418 227-235 DVPELVPTY  50 CAB05418 235-243 YNLPANHRY  51 CAB05418 246-254 PVLWSPDVK  52 CAB05418 262-270 LPTDRPIIY  53 CAB05418 271-279 ATLGSSGGK  54 CAB05418 299-307 ATAGRNHLK  55 CAB05418 306-314 LKNVPANAF  84 CAB05418 310-318 PANAFVADY  56 CAB05418 390-398 KQVLSGAEF  85 CAB05418 401-409 AARRLAEAF  85 CAB05418 405-413 LAEAFGPDF  87 CAB05418 408-416 AFGPDFAGF  88 CAB05419  9-17 GLTAANTKK  59 CAB05419 84-92 HRDTDQGVY  60 CAB05419 17-25 KVAMAAPMF  89 CAB05419 45-53 IARQTCGDF  90 CAB05419 65-73 ETLDIANIF  91 CAB05419 101-109 LATGTWLLF  92 CAB05419 109-117 FLGADDSLY  61 CAB05419 120-128 DTLARVAAF  93 CAB05419 131-139 EHEPSDLVY  62 CAB05419 141-149 DVIMRSTNF  94 CAB05419 147-155 TNFRWGGAF  95 CAB05419 154-162 AFDLDRLLF  96 CAB05419 164-172 RNICHQAIF  97 CAB05419 165-173 NICHQAIFY  64 CAB05419 170-178 AIFYRRGLF  98 CAB05419 176-184 GLFGTIGPY  65 CAB05419 180-188 TIGPYNLRY  66 CAB05419 188-196 YRVLADWDF  99 CAB05419 193-201 DWDFNIRCF 100 CAB05419 202-210 SNPALVTRY  67 CAB05419 210-218 YMHVVVASY  68 CAB05419 213-221 VVVASYNEF 101 CAB05419 223-231 GLSNTIVDK  69 CAB05419 225-233 SNTIVDKEF 102 CAB05419 227-235 TIVDKEFLK  70 CAB05419 249-257 IVLVRRWPK  71 CAA17404 10-18 SAAIDSDRW 103 CAA17404 46-54 THLPLRLVY  19 CAA17404 63-71 ADPRAPSLF 104 CAA17404 82-90 IGRHGLIGF 105 CAA17404 86-94 GLIGFGESY  20 CAA17404  94-102 YMAGEWSSK  21 CAA17404 125-133 WLRPITPTF 106 CAA17404 145-153 ARRNIAVHY  22 CAA17404 152-160 HYDLSNDLF 107 CAA17404 155-163 LSNDLFAAF 108 CAA17404 162-170 AFLDETMTY  23 CAA17404 167-175 TMTYSCAMF 109 CAA17404 188-196 ELAAAQRRK  24 CAA17404 247-255 RQRVAAAGF 110 CAA17404 258-266 RVEIDLCDY  25 CAA17404 265-273 DYRDVDGQY  26 CAA17404 279-287 VEMIEAVGY  27 CAA17404 285-293 VGYRSWPRY  28 CAA17404 286-294 GYRSWPRYF 111 CAA17404 320-328 LATRHTQTW 112 CAA17404 323-331 RHTQTWIQK  29 CAA17404 324-332 HTQTWIQKY  30 CAA17404 326-334 QTWIQKYIF 113 CAA17404 359-367 DAASLRPHY  31 CAA17404 370-378 TLRLWRERF 114 CAA17404 382-390 RDGLAHLGF 115 CAA17404 387-395 AHLGFDEVF 116 CAA17404 393-401 VFARMWELY  32 CAA17404 396-404 RMWELYLAY  33 CAA17404 401-409 YLAYSEAGF 117 CAA17404 405-413 SEAGFRSGY  34 CAA17404 409-417 FRSGYLDVY  35 CAA17404 411-419 SGYLDVYQW 118

EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1 Peptide Binding to HLA-A Alleles

Peptide binding analysis is performed in the following way: First, MHC class I antigens are cloned and expressed as recombinant proteins, along with the non-covalently bound beta-2 microglobulin. The MHC—class I peptide complex is folded with the addition of a place holder peptide which yields a trimolecular complex—associated with changes in the shape of the MHC class I heavy chain—this exposes an epitope which is recognized by a monoclonal antibody. The trimolecular complex (MHC class I heavy chain/beta-2 microglobulin/place holder peptide) is then dissociated and washed. Only the free-floating MHC class I heavy chain remains. Test peptides are added (one test peptide/readout) and excess beta-2 microglobulin). If the candidate peptide binds, then the trimolecular complex is reconstituted and this can be detected using a specific conformation-dependent antibody. Note that MHC class I binding of candidate peptides does not imply necessarily that T-cells are present directed against that complex in vivo in an organism. Therefore, multimer complexes have to be prepared, labeled with a fluorescent dye and implemented to gauge MHC class I peptide complex—specific T-cells from a clinically very well defined population. Such an example is shown in the FIG. 1 below.

Example 2 Tetramer Staining of Patient T-Cells Tetramer Construction.

MHC class I heavy chain molecules: Bacterial expression vectors (pET24d+ and pHN1), containing the nucleotide sequences for the soluble part of the heavy chain of the MHC class I alleles and the light chain β2m were used to produce the recombinant proteins. The gene for HLA-A*3001 was obtained by altering the HLA-A*3002 sequence by site-directed mutagenesis (kit from Stratagene, La Jolla, USA). The following mutations were made: c282g, a299t, a301g and c526t. Any other MHC class I molecules were cloned from 4-digit typed PBMC samples.

Recombinant Proteins

The recombinant MHC class I molecules (heavy and light chains) were as inclusion bodies in E. coli BI21 DE3 pLys (Invitrogen, Carlsbad, Calif.) and solubilized in urea buffer (all chemicals: Sigma-Aldrich Sweden AB, Stockholm, Sweden). The heavy and the light chains were folded with an allele-specific peptide (JPT Peptide Technologies GmbH, Berlin) during three days in a tris-arginine buffer. The folded monomers were concentrated and biotinylated using the enzyme BirA (Avidity, Aurora, USA). The biotinylated monomers were concentrated and affinity-purified using an avidin column (Thermo Fisher Scientific, Rockford, USA).

Binding Assay:

Nonamer peptides overlapping by 8aa covering the entire TB10.4 sequence, (total number of 88 peptides), were synthesized by JPT Peptide Technologies GmbH, Berlin, Germany.

Peptide-binding, affinity, and off-rate experiments were performed in duplicates in iTopia 96-well plates coated with different recombinant MHC class I molecules (human leukocyte antigen (HLA). Briefly, monomer-coated plates are stripped of the placeholder peptide leaving the heavy chain free to associate with a candidate peptide after addition of β-2 microglobulin. Peptide binding to MHC class molecules is detected after 18 h incubation at 21° C. with a fluorescent-labeled antibody (anti-HLA A, B, C-FITC), which binds only to the trimeric complex.

Each candidate peptide was tested against an appropriate control peptide, specific for each MHC class I molecule and results are reported in % binding as compared to the control peptide. A more detailed analysis of the binding characteristics of each individual peptide was performed using affinity and off-rate assays.

Off-Rate:

MHC class I-peptide complex stability was analyzed by incubating bound peptides at 37° C. for eight different time points. The off-rate is expressed as a t1/2 value, which is defined as the time point when 50% of the initial peptide concentration has dissociated from the MHC class I-peptide molecule complex.

Affinity Assay:

MHC class I allele-peptide affinity for individual peptide species was measured using different peptide concentrations (10-4 to 10-9 M) followed by calculating the peptide quantity needed to achieve 50% binding saturation (the ED50 value).

Calculations:

Values of peptide binding, affinity, and off-rate were calculated using the iTopia™ System Software. Sigmoidal dose response curves were generated using Prism® 4.0 (GraphPad).

Cellular Analysis:

Peripheral blood mononuclear cells (PBMCs) from patients with pulmonary tuberculosis were obtained by separation over a Ficoll gradient. Patients were diagnosed for pulmonary TB based on acid-fast staining and bacterial culture; they had given their consent to participate in this study. Ethical approval was documented. The patients were MHC class I typed at the Blood Bank, University of Mainz. Tetramers were prepared for the MHC class I alleles and labeled with strepavidin-phycoerytin (PE) or streptavidin-allophycocyanin (APC). Flow cytometric analysis was performed and positive events, i.e. antigen-specific T-cells, were identified as percent per CD3+CD8+ T-cells. At least 50000 events were obtained in the CD3+, CD8+, CD4-, CD13- and CD19-negative population. The following antibodies (Abs) obtained from Beckman Coulter were used: anti-CD3-ECD (clone CHT1), anti-CD8α-FITC (clone T8) (positive gating) and anti-CD4-PCy5 (clone 13B8.2), anti-CD13-Pcy5 (clone SJ1D1) and anti-CD19-Pcy5 (clone J4.119) for negative gating. Positive tetramer staining was compared to staining with the iTag negative control Tetramer. Flow cytometry analysis was performed using an FC500 flow cytometer from Beckman Coulter.

Detection of MHC class I M. tuberculosis antigen specific recognition using MHC class I multimers complexed with the nominal target peptides according to the invention are presented in FIG. 1. The allele here is for all three individuals HLA-A*2402

FIG. 1 describes identification of MHC class I binding epitopes to frequent MHC class I alleles and tetramer-guided ex vivo detection of CD8+ T-cells recognizing epitopes from the above listed M. tuberculosis target proteins.

Example 3 Intracellular Cytokine Staining (ICS)

Detection of polyfunctional T-cell producing simultaneously IL-2, IFNγ and TNFα directed to cyclopropane-fatty-acyl-phospholipid synthase CAA17404 in peripheral blood mononuclear cells (PBMCs) from a non-human primate protected from M. tuberculosis infection.

Results are presented in FIG. 2

Detection of intracellular cytokines, here represented by IL-2, in response to Possible glycosyltransferases CAB05419/CAB05418 and Cyclopropane-fatty-acyl-phospholipid synthase CAA17404 in PBMCs from a monkey vaccinated with BCG.

Results are presented in FIG. 3

Example 4 Antibody Recognition of Glycosyltransferase CAB05419 in Individuals with TB

Serum was obtained from patients with sarcoidosis (FIG. 4A) and from patients with TB (FIG. 4B). The number indicate the frequency of recognition, e.g. 1/9 individuals up to 9/9 individuals. The listed peptides are only listed if they are present in one group (sarcoidosis versus tuberculosis) and if the peptide is never recognized in any serum from the respective control group. Note that glycosyltransferase CAB05419 represents the top epitope which is most frequently recognized, with the highest intensity and never in the control (sarcoidosis group). Strong IgG response requires strong T-cell help which lends support that these antigens are also recognized by T-cells.

TABLE 8a Peptides present and recognized with the highest intensity by serum from the group sarcoidosis and never from the group TB Average N. of Peptide int. slide Proteins APALMDVEAAYEQMW 1.6787 9 CAE55281- PPE family protein_133 LSGDNQQGFNFAGGW 1.6435 9 CAE55276- PPE family protein_1117 NANFGGGNGSAFHGQ 1.4131 9 CAE55320- PPE family protein_205 SSGKPGRDPEAGRYG 1.3190 9 CAB02482- probable lipase lipe_385 GGGNTGSGNIGNGNK 1.2266 9 CAE55613- PPE family protein_193 VIGGIGPIHVQPIDI 0.7433 9 CAE55585- PPE family protein_865 GSSAMILAAYHPQQF 0.6077 9 CAB10044- secreted antigen 85-B FBPB (85B)A_169

TABLE 8b Peptides present and recognized with the highest intensity by serum from the group TB and never from the group sarcoidosis Average N. of Peptide int. slide Proteins TRLGIRLVIVLVRRW 0.92644 9 CAB05419- possible glycosyl transferase_241 MTAPVWLASPPEVHS 0.84613 8 CAE55538- PPE family protein_1 GLYQVVPGIYQVRGF 0.54323 8 CAA18084- possible hydrolase_85 NTGSYNMGDFNPGSS 0.94791 7 CAE55416- PPE family protein_385 AWVSRGAHKLVGALE 0.71754 7 CAB10951- cytotoxin haemolysin homologue  TLYA_61 AAGNNVTVFGYSQSA 0.45450 6 CAE55427- PPE family protein_289 QWILHMAKLSAAMAK 0.43328 6 CAA17973- conserved hypothetical alanine  and_193

Example 5 Detection of IFNγ in Response to Peptide Pools from Different M. Tuberculosis Target Antigens

Note that ‘healthy individuals’ have been exposed to M. tuberculosis, they are protected from TB. Note that the peptide pools do not cover the entire target proteins, the results are therefore underestimated.

TABLE 9 Detection of IFNγ in response to peptide pools from different M. tuberculosis target antigens Previous TB TB+ patients Peptide Healthy (n = 15) n = 15 n = 15 pools (%) (%) (%) Rv0447c 4 (27) 11 (73)  7 (47) Rv2957 7 (47) 9 (60) 4 (27) Rv1085c 5 (33) 7 (47) 5 (33) Rv0066c 8 (53) 6 (40) 4 (27) Rv2958c 8 (53) 4 (27) 3 (20) Rv2962 5 (33) 6 (40) 3 (20)

Example 6 Detection of IFNγ Production in Freshly Harvested Heparin-Blood from Individuals Cured from MDR or XDR TB by Autologous Mesenchymal Stem Cells (MSCs)

Results are presented in FIG. 5.

Note that reactivity to Rv2957 and Rv2958c occurs in individuals who were able to effectively fight off M. tuberculosis. Top panel; left. pos control; Individuals suffered from MDR (multidrug resistant) and XDR (extensive multidrug resistant) TB—and failed at least one treatment regimen. These individuals were enrolled in a new treatment protocol using autologous mesenchymal stem cells (MSCs). Note that antigen-specific T-cell responses are absent (defined by INFγ responses), yet Rv2957/Rv2958c specific T-cell responses can be detected approximately 60 days after MSC infusion and this correlated with response to therapy.

Example 7 IFNγ Production in Whole Blood Samples Obtained from Patients with Active TB in Response to Different M. Tuberculosis Antigens

Results are presented in FIG. 14.

Fresh heparin blood was obtained from patients with active TB (n=50) and tested for IFNγ production using a whole-blood assay. Note a strong IFNγ production directed against the CAB05418/Rv2958c antigen.

Example 8 Anti-CAB05418/Rv2958c Specific T-Cell Responses Reside in the Precursor Memory T-Cell Pool with Stem-Cell Like Features

Results are presented in FIG. 15.

Blood from patients with active TB was obtained and tested for target antigen-specific recognition using tetramer-based staining and immune marker analysis. CD45RA/CCR7 enables to define whether a T-cell reside in the precursor (CD45RA+CCR7+), in the memory (CD45RA-CCR7+ or CD45RA-CCR7−) or in the terminally differentiated effector T-cell pool (CD45RA+CCR7−). Staining with CD95 and CD117 (ckit) can identify T-cells with stem cell-like features. Note that T-cell reacting to a peptide, presented by HLA-A*2402, from CAB05418/Rv2958c showed the highest percentage in CD8+ T-cells exhibiting stem-cell like features.

Example 9 Biology of the M. Tuberculosis Vaccine Candidates-Rationally Based Design of New Vaccines

The three M. tuberculosis candidate vaccines according to the invention CAB05419/Rv2957; CAB05418/Rv2958 and CAA17404/Rv0477c were expressed as recombinant proteins in an E. coli expression system, followed by an LPS removal procedure. The final LPS content was below the EU Standard for clinical material.

Each protein was tested for immune-reactivity in murine models for M. tuberculosis antigen biology.

    • A. Mouse peritoneal macrophages were obtained and exposed to different concentrations of the test antigens, COX-2 and SOCS-3 protein expression was tested by Western Blot analysis. Beta-actin served as the positive control for equal amount of sample loading. Induction of COX-2 and SOCS-3 in a dose-dependent manner was observed (FIG. 6.).
    • B. The experiments were repeated using macrophages harvested from TLR2 knockout mice. Only cells from TLR2+ animals show induction of COX-2 and SOCS-3 mediated by the Test antigens, (FIG. 7) suggesting that signaling occurs via TLR2.
    • C. Different MAP kinase inhibitors (MEK1/2 inhibitor UO126, p38 inhibitor SB203580 and JNK inhibitor SP600125) were used to interfere with COX2 and SOCS-3 expression. (FIG. 8). At least CAB05418/Rv02958 and CAA17404/Rv0477c mediate COX2 expression and SOCS-3 via the MAP kinase pathway.
    • D. PI3 kinase (LY294002) and mTOR (rapamycin) inhibitors were tested. (FIG. 9). At least CAB05418/Rv02958 and CAA17404/Rv0477c mediate COX2 expression and SOCS-3 via PI3 kinase and the mTOR pathway.
    • E. Peritoneal macrophages were stimulated with the candidate antigens. Strong induction of TGF-β and IL-12 by CAB05419/Rv02957 and CAA17404/Rv0477c, yet little induction of IL-10 and TN-Fα, was observed (FIG. 10, order of bars—control, CAA17404/Rv0477c, -CAB05418/Rv2958, -CAB05419/Rv2957). This is a very interesting cytokine induction pattern; since both anti-inflammatory (TGF-β) and pro-inflammatory (IL-12) cytokines are produced. Note that, dependent on the presence of other cytokines, TGF-β can give rise to either regulatory T-cells (Treg) or to pro-inflammatory T-cells of the Th17 type (production of IL-17 attracting neutrophils to the site of inflammation).
    • F. The experiments performed under A) were repeated using the human monocyte cell line (THP1): Induction of COX2 and SOCS-3 by can be seen by all three antigens (FIG. 11).
    • G. Possible role of the MAP kinases was in THP1 cells using the same experimental setup as in experiment C) above. Results in FIG. 12.
    • H. The role of mTOR and PI3 in COX2 and SOCS-3 protein expression in the defined monocyte cell line THP1 induced by the candidate antigens was studied in accordance with experiment D) above. Results in FIG. 13.

CONCLUSIONS

    • The Mycobacterial antigens according to the invention CAA17404/Rv04417c, CAB05418/Rv2958c and CAB05419/Rv2957 induce expression of COX-2 and SOCS-3 in macrophages.
    • Induced expression of COX-2 and SOCS-3 by mycobacterial antigens is dependent on pattern recognition receptors like Toll Like receptor-2.
    • TLR-2 dependent expression of COX-2 and SOCS-3 by mycobacterial proteins is regulated by MAPkinases (ERK1/2, SAPK/JNK and p38) and PI3Kinase pathway in macrophages.
    • The Mycobacterial antigens according to the invention CAA17404/Rv04417c, CAB05418/Rv2958c and CAB05419/Rv2957 induced expression of anti-inflammatory cytokines and immune-regulatory cytokines like TGF-β (predominantly) over pro-inflammatory cytokine like IL-12 and TNF-α. TGFβ may not only induce immunoregulatory T-cells (Treg), yet also Th17 cells which may, depending on the stage of infection/exposure history), represent biologically and clinically relevant anti-M. tuberculosis directed T-cells. The induction of TGFβ along with the pro-inflammatory cytokine IL-12, in addition to other cytokines elaborated at the site of infection/vaccination may also drive the development of Th17 cells. Anti-CAB05418/Rv2958c directed T-cells reside in a precursor T-cell compartment with ‘stem-cell-like-features—(CD95+, CD117, c-kit+). These T-cells may be truly ‘naïve’ or they may present antigen-experienced T-cells which reside in a particular memory T-cell pool that is long-lived. A long-lived memory T-cell response is advantageous for long-term memory immune responses.

Claims

1. A vaccine or an immunological compositions comprising one or more polypeptides selected from

i) the polypeptide SEQ ID NO: 1,
ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO: 1,
iii) The polypeptide SEQ ID NO:2,
iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
v) the polypeptide SEQ ID NO:3,
vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope, of said polypeptide.

2. The vaccine or immunological composition according to claim 1 comprising two or more polypeptides selected from said polypeptides (i)-(vii).

3. A vaccine or an immunological compositions comprising one or more nucleic acid sequences selected from nucleic acids encoding one or more polypeptides selected from

i) the polypeptide SEQ ID NO: 1,
ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO: 1,
iii) the polypeptide SEQ ID NO:2,
iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
v) the polypeptide SEQ ID NO:3,
vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope of said polypeptide.

4. The vaccine or immunological composition according to claim 3 comprising two or more nucleic acid sequences selected from nucleic acids encoding polypeptides selected from said polypeptides (i)-(vii).

5. A recombinant Bacille Calmette-Guerin (BCG) comprising one or more nucleic acid sequence selected from nucleic acids encoding one or more polypeptides selected from

i) the polypeptide SEQ I D NO: 1,
ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO: 1,
iii) the polypeptide SEQ ID NO:2,
iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
v) the polypeptide SEQ ID NO:3,
vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope, of said polypeptide, wherein said nucleic acid sequences are overexpressed.

6. The recombinant Bacille Calmette-Guerin (BCG) according to claim 5 comprising two or more nucleic acid sequences selected from nucleic acids encoding polypeptides selected from said polypeptides (i)-(vii).

7. A vaccine or an immunological composition comprising a recombinant Bacille Calmette-Guerin (BCG) according to claim 5.

8. An isolated peptide of between 7 to 20 amino acids in length comprising a sequence of at least 7 consecutive amino acids derived from the sequence of a polypeptide selected from the polypeptides

a) Putative cyclopropane-fatty-acyl-phospholipid synthase (GenBank Accession No. CAA17404) as shown in SEQ ID NO:1,
b) Possible glycosyltransferase (GenBank Accession No. CAB05418) as shown in SEQ ID NO:2, and
c) Possible glycosyltransferase (GenBank Accession No. CAB05419) as shown in SEQ ID NO:3.

9. A peptide according to claim 8 selected from the group of peptides consisting of the peptides SEQ ID NO: 4 to 118.

10. A peptide according to claim 9 selected from the group of peptides consisting of the peptides VLAGSVDEL, SEQ ID NO: 4 KYIFPGGLL, SEQ ID NO: 5 RMWELYLAY, SEQ ID NO: 6 AASAAIANR, SEQ ID NO: 7 ALADLPVTV, SEQ ID NO: 8 KYIAADRKI, SEQ ID NO: 9 SARLAGIPY, SEQ ID NO: 10 AAPEPVARR, SEQ ID NO: 11 ATLGSSGGK, SEQ ID NO: 12 ATAGRNHLK, SEQ ID NO: 13 SIIIPTLNV, SEQ ID NO: 14 PYNLRYRVL, SEQ ID NO: 15 IVLVRRWPK, SEQ ID NO: 16 and LVYGDVIMR. SEQ ID NO: 17

11. A vaccine or immunological composition comprising one or more of the peptides according to claim 10.

12. A method for immunizing a subject against infection caused by a mycobacterial species or for eliciting an immune response to a mycobacterial species in said subject, comprising the step of administering to said subject a vaccine composition or an immunological composition according to claim 1.

13. A method for treating a subject having an infection caused by a mycobacterial species comprising the step of administering to said subject a vaccine composition or an immunological composition according to claim 1.

14. A method for diagnosing, characterizing, or classifying a mycobacterial infection the method comprising the use of one or more peptides according to claim 8.

15. The method according to claim 14, wherein the peptide is a peptide comprising a sequence corresponding to any of SEQ ID NOs 4-118.

16. A method for diagnosing, characterizing, or classifying a mycobacterial infection the method comprising the use of one or polypeptides polypeptide selected from

i) the polypeptide SEQ I D NO: 1,
ii) a polypeptide being a functional variant of the polypeptide i) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO: 1,
iii) the polypeptide SEQ ID NO:2,
iv) a polypeptide being a functional variant of the polypeptide iii) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:2,
v) the polypeptide SEQ ID NO:3,
vi) a polypeptide being a functional variant of the polypeptide v) which has an amino acid sequence which is more than 50%, more than 75%, such as more than 80%, more than 90%, or even more preferably more than 95% identical to the sequence SEQ ID NO:3, and
vii) a polypeptide comprising one or more functional fragment of any one of the polypeptides (i)-(vi), said fragment comprising an immunogenic portion, e.g. a T-cell epitope of said polypeptide.

17. The method according to claim 1 which is an in vitro method.

Patent History
Publication number: 20140127251
Type: Application
Filed: Apr 11, 2012
Publication Date: May 8, 2014
Applicant: ALARUM DEVELOPMENT LTD. (Limassol)
Inventor: Markus Maeurer (Akersberga)
Application Number: 14/009,931