Total Body Exercise Device

-

An exercise device having a hemispherical handle, an internal support, and a foot support for performing a variety of push-up type exercises. The hemispherical handle is designed to provide optimum support and comfort to the user. The internal support is attached to the handle in a way that permits the handle to move relative to the foot support, for example, by moving up and down, rotating, tilting from side to side, or revolving about a central axis. The foot support provides support for the handle. Pads may be removably attached to the foot support to provide the desired surface. A mat may be provided upon which the exercises may be performed.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This invention relates to exercise devices.

BACKGROUND

Several prior art push-up hand support devices have been developed, such as U.S. Pat. No. 7,468,025 (Hauser) and U.S. Pat. No. 7,377,888 (Godbold). These designs typically include a substantially horizontal cylindrical handle for the user to grip. There may be a bearing assembly that allows the push-up device to rotate about a vertical axis. The idea is to allow the user's hands to rotate while doing a push-up exercise, which can engage additional muscle groups during the exercise.

Comfort can be a significant drawback with these horizontal handle designs. Palm and wrist pain are common during repetitive exercise, especially during push-up exercise in certain positions. Due to the few available grip positions of the horizontal cylindrical handle, the user is left with limited ways to exercise comfortably. Furthermore, because these devices are fixed in a single location during the exercise, the versatility is limited.

For the foregoing reasons there is a need for an efficient exercise device that allows for a total upper body, core, and potentially lower body exercise while providing a comfortable grip.

SUMMARY

The present invention is directed to a comfortable, versatile, and compact exercise device that can be height adjustable, rotatable, and moveable during an exercise to increase the range of muscle groups that can be exercised. The present invention is a novel method of providing comfortable hand support for push-up exercises. The user has unlimited available hand positions for a given push-up exercise. Given the physiological variation in users, this can be a significant advantage.

The invention comprises two individual hand supports (one for each hand) that are intended to be placed on a floor or other substantially horizontal surface. The supports are adjustable in height and can provide rotation about a substantially vertical axis during exercise. In one aspect of the invention the interface with the user's hands is provided with a more ergonomic and comfortable grip. Instead of a horizontal cylindrical handle structure, the invention provides a substantially or generally hemispherical shape with a soft compliant surface for the user's hands to rest on. The hemispherical shape allows the user's hands an unlimited variety of placements for maximum comfort.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A shows an elevation view of an embodiment of the present invention in a first configuration.

FIG. 1B shows a cross-section of the embodiment shown in FIG. 1A along line 1B-1B.

FIG. 1C shows an elevation view of the embodiment shown in FIG. 1A in a second configuration.

FIG. 1D shows a cross-section of the embodiment shown in FIG. 1C along line ID-ID.

FIG. 1E shows an exploded view of the embodiment shown in FIG. 1A.

FIG. 2A shows an elevation view of another embodiment of the present invention.

FIG. 2B shows a cross-section of the embodiment shown in FIG. 2A along line 2B-2B.

FIG. 2C shows an exploded view of the embodiment shown in FIG. 2A.

FIG. 3A shows an elevation view of another embodiment of the present invention.

FIG. 3B shows a cross-section of the embodiment shown in FIG. 3A along line 3B-3B.

FIG. 3C shows the embodiment in FIG. 3A in a tilted configuration.

FIG. 3D is a cross-section of the embodiment shown in FIG. 3C along line 3D-3D.

FIG. 3E shows an exploded view of the embodiment shown in FIG. 3A.

FIG. 4A shows an elevation view of another embodiment of the present invention.

FIG. 4B shows a cross-section of the embodiment shown in FIG. 4A along line 4B-4B.

FIG. 4C shows an exploded view of the embodiment shown in FIG. 4A.

FIG. 5 shows the exercise device on a mat in use.

FIG. 6 shows another use of the exercise device with the mat.

FIG. 7 shows another use of the exercise device with the mat.

FIG. 8A shows an elevation view of another embodiment of the present invention.

FIG. 8B shows a cross-section taken through line 8B-8B in FIG. 8A.

FIG. 8C shows an exploded view of the embodiment shown in FIG. 8A.

FIG. 9A shows a perspective view of another embodiment of the present invention with an attachment.

FIG. 9B shows the embodiment in FIG. 9A with the attachment removed.

FIG. 9C shows an exploded view of the attachment shown in FIG. 9B.

FIG. 9D shows a cross-section taken through line 9D-9D shown in FIG. 9B.

FIG. 10A shows a perspective view of an embodiment of the present invention with another attachment.

FIG. 10B shows the embodiment in FIG. 10A with the attachment removed.

FIG. 10C shows an exploded view of the attachment shown in FIG. 10B.

FIG. 10D shows a cross-section taken through line 10D-10D shown in FIG. 10A.

FIG. 11A shows a perspective view of an embodiment of the footwear.

FIG. 11B shows a top view of the footwear shown in FIG. 11A with the cushion removed.

FIG. 11C shows a cross-section taken through line 11C-11C shown in FIG. 11A.

FIG. 12 shows a close-up view of a corner piece of an embodiment of the mat.

DETAILED DESCRIPTION OF THE INVENTION

The detailed description set forth below in connection with the appended drawings is intended as a description of presently-preferred embodiments of the invention and is not intended to represent the only forms in which the present invention may be constructed or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the invention in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.

The invention of the present application provides a comfortable, lightweight, compact, exercise device that permits a wide variety of exercises to target a wide range of muscle groups, particularly muscles involved in push-up type exercises. The exercise device comprises a generally hemispherical handle assembly, an internal support structure operatively connected to the handle assembly, and a foot support operatively connected to the internal support structure to support the internal support structure and hand support assembly. The internal support structure is configured to permit the handle assembly to move relative to the foot support. For example, the handle assembly may be able to move up and down relative to the foot support, rotate about a central axis, or swivel, tilt or revolve about a central axis. Note that the shape of the handle assembly may deviate from a hemispherical profile. For example, it could be a more ergonomic shape that could be determined by ergonomic studies. The generally hemispherical shape, however, provides an omnidirectional gripping surface. The term generally hemispherical means shapes that have a spherical or sphere-like appearance, even if the shape is not a perfect half-sphere. Therefore, generally hemispherical also encompasses deviations from a perfect sphere, such as shapes that have parabolic, elliptical, or like profiles when viewed in a vertical cross-section, as shown in FIGS. 1B, 1D, 2B, 3B, 3D, and 4B.

Due to the generally hemispherical shape, the user's hand can drape over a large area. The user's fingers may curl under the lower part of the handle assembly, or extend towards the floor for certain push-up exercises.

For the sake of convenience and ease of description only, since the exercise device is designed to have the foot support placed on the floor or flat surface with the user placing his hands on the handle assembly, the direction towards the foot support from the handle assembly will be referred to as the bottom and the direction towards the handle assembly from the foot support will be referred to as the top. A neutral position will be defined as when the centers of the handle assembly, the internal support, and the foot support align with each other so as to define a central axis 10 as shown in at least FIGS. 1B, 2B, 3B, and 4B.

Referring now to the figures, FIGS. 1A-1E show an embodiment of the exercise device 100 comprising a handle assembly 102, an internal support 104, and a foot support 106 each have a center 103, 107, 109, respectively. When in a neutral position, the centers 103, 107, 109 of the handle assembly 102, the internal support 104, and the foot support 106, respectively, are in alignment, and the handle assembly 102, the internal support 104, and the foot support 106 are arranged concentrically with each other, thereby defining a central axis 10 through each of the centers 103, 107, 109 as shown in FIG. 1E.

The handle assembly 102 is mounted to the internal support 104 in such a way as to provide a means for allowing the handle support 102 to move relative to the foot support 106. For example, the handle assembly 102 may be capable of moving up and down relative to the foot support 106, thereby adjusting the height of the exercise device 100 (compare FIGS. 1A and 1B with FIGS. 1C and 1D, respectively). In another example, the handle assembly 102 may be capable of tilting or swiveling from side to side relative to the foot support 106. In yet another example, the handle assembly 102 may be capable of rotating or revolving about the central axis 10. Movement of the handle assembly relative to the foot support may be any combination thereof. Adjusting the height of the handle assembly 102, can adjust the difficulty of the exercise. In any embodiment, permitting rotation, swiveling, or height adjustment of the handle assembly 102 increases the complexity, and variety, of the exercises and isolates specific muscle groups.

To provide a comfortable grip, the handle assembly 102 is generally hemispherical in shape. Other push-up devices are simple rod shapes. Given the size of a typical user, rod shapes tend to dig into the palm of the hand due to the small surface area rods provide. Using a generally hemispherical shape allows the exercise device 100 to conform more closely to the entire palm of the user's hand; thereby, distributing the user's weight across a larger surface area.

To further add to the comfort, the handle assembly 102 may comprise a gripping handle 110 made of pliable cushioning material. For example, the cushioning material may be made of foam, rubber, and the like. Consistent with a hemispherical shape, the gripping handle 110 may comprise a generally convex outer surface 112. In the preferred embodiment, the gripping handle 110 may have a generally concave inner surface 114.

In the preferred embodiment, since the gripping handle 110 is pliable, the handle assembly 102 may further comprise a handle support 120 to provide a rigid support for the gripping handle 110 for mounting the gripping handle 110 to the internal support 104. Preferably, the handle support 120 is moveably connected to the internal support 104 to permit the handle assembly 102 to move relative to the foot support 106. The handle support 120 may also comprise a generally convex outer surface 122 to mate with the generally concave inner surface 114 of the gripping handle 112. The inner surface 114 of the gripping handle 110 and the outer surface 122 of the handle support 120 may be any other shape so long as they are capable of being attached to each other. Similarly, the inner surface 124 of the handle support 120 may be any shape, but is preferably generally concave.

In some embodiments, the handle support 120 may comprise a central deviation in which the inner surface 124 of the handle support 120 deviates from its smooth normal curvature that gives the generally concave appearance. In some embodiments, the central deviation may be an abrupt downward protrusion, such as a peg or shaft 126 protruding downwardly away from the center 105 of the handle support 120 along the central axis 10 (when in the neutral position). The internal support 104 and the foot support 106 may have top openings to receive the shaft 126. Portions of the wall 137 defining the top opening of the internal support 104 and/or portions of the wall 147 defining the top opening of the foot support 106 may be parallel to and substantially the same dimensions as the shaft 126. This allows the shaft 126 to slide up and down through the openings or rotate about the central axis 10 while helping to minimize any lateral or side-to-side movement. The shaft 126 may comprise a central channel 128 into which is inserted a second peg or screw 129 having a flanged head that is wider than the shaft 126 and the top opening of the foot support 106. This prevents the handle assembly 102 from twisting off of the foot support 106 because as the shaft 126 rises up through the opening, eventually the flanged head will abut the inner wall 137 defining the top opening of the foot support 106 to prevent any further upward movement as shown in FIG. 1B.

The internal support 104 may comprise a generally cylindrical sleeve 130 operatively connected to the handle support 120, wherein the generally cylindrical sleeve 130 is defined by an outer wall 132 and an inner wall 134, wherein the inner wall 134 defines a central cavity 136. In the preferred embodiment, the inner wall 134 of the sleeve is threaded. The top and bottom of the internal support may be open to receive portions of the handle support 120 and foot support 106, respectively. In some embodiments, the bottom of the sleeve 130 may have a flanged lip 138 upon which the handle support 120 may be seated for support.

The foot support 106 comprises a foot stand 140. The foot stand 140 comprises a base 142 and a connector 144 protruding perpendicularly upwardly from the base 142. The base 142 provides a solid foundation to prevent the handle assembly 102 from tipping over while the user is performing an exercise routine. The connector 144 protruding upwardly from the base 142 connects with the sleeve 130. In the preferred embodiment, the connector 144 is cylindrical and comprises an outer wall 146. To facilitate the rotational and vertical movement of the handle assembly 102, the outer wall 146 of the connector 144 may comprise outer threads 149 so that the inner threads 139 of the sleeve 130 can be screwed onto the outer threads 149 of the connector 144. Although there is a slight vertical displacement with the rotation of the handle assembly 102, this will not affect the user during an exercise. As described above, the top of the connector 144 may have a ceiling 151 with a hole defined by the wall 137 of the ceiling 151 in the center area to receive the shaft 126 of the handle support 120. In some embodiments, the top of the connector 144 may be completely open.

Other means for vertical movement can be used, such as sliding mechanisms, rails, tracks, tongue and groove connections, and the like, with stops to stop the height adjustment at various levels.

In the preferred embodiment, the base 142 is circular in shape (circular horizontal section). A pad 170 may be affixed (by any known means, such as resistance fits, adhesion, screws, and the like) to the bottom of the base 142 to provide a desired interface between the foot support 106 and the floor. Therefore, the pad 170 may be made of material that may provide protection to the floors so that the foot support 106 does not scratch, scuff, or otherwise damage the floor. The pad 170 may provide a frictional bottom surface so that the exercise device 100 does not slip or slide during an exercise. In some embodiments, the pad 170 may provide a slick bottom surface so that the exercise device can slide along the floor. Other means for sliding along the floor may be used, such as bearings.

In the preferred embodiment, the base 142 may comprise a peripheral channel 153 into which the pad 170 can be seated. The pad 170 may be removably fastened in the channel 153 so as to be replaceable when damaged or when desiring to change the interface.

In some embodiments, the foot stand 140 defines a central void 150. This permits a pad 160 having a shape similar to the central void 150 to be inserted into the central void 150. To allow the bottom surface of the pad 160 to be used, the height of the pad 160 may be greater than the central void 150. This causes the pad 160 to protrude below the base 142 and raise the base 152 off the surface.

In some embodiments, the pad 160 may be adjustable within the central void 150 so as to adopt two configurations, wherein in a first configuration, the pad 160 protrudes out past the base 142 and the pad 160 contacts the floor, and wherein in a second configuration the pad 160 is housed completely inside the central void 150 so that the base 142 contacts the floor. For example, the pad 160 may screw or slide into the central void 150. Any other connection may be used to reversibly secure the pad 160 in the central void. In such an embodiment, the pad 160 and the base 142 may have opposite surface features so that the exercise device can adopt a sliding surface or a frictional surface. For example, in one embodiment, the base 142 may have a frictional surface while the pad 160 has a slick surface. If the user wants to conduct exercises in a fixed position, the user can either remove the pad 160 or have it inserted into the cavity 150. On the other hand, if the user wants a sliding surface, the user can insert the pad 160 or have the pad 160 protrude out past the base 142. Conversely, the base 142 may have the slick surface while the pad 160 has the frictional surface.

In some embodiments, two pads 160, 170 having opposite surface characteristics may be used. This allows the base 142 to be made of any type of rigid material, such as wood, metal, plastic, and the like, with the second pad 170 providing the dual purposes of providing a desired surface (frictional or slick) and protection against scuffing or damaging the floor with the base 142. Therefore, the user can remove the first pad 160 from the cavity 150, or move it completely into the cavity 150 to use the second pad 170 for its desired surface (frictional or slick), or insert the first pad 160 into the cavity 150, or have it descend from the cavity 150 to protrude past the second pad 170 to use the first pad 160 for its desired surface, which would be the opposite of the second pad 170.

In the embodiment shown in FIGS. 2A-2C, the exercise device 200 comprises very similar parts as the embodiment described above, except for modifications that permit the handle assembly 202 to rotate, swivel, tilt, or revolve about the central axis 20. Like the embodiment described above, the exercise device 200 comprises a generally hemispherical handle assembly 200 having a center 203, an internal support structure 204 operatively connected to the handle assembly 202, and a foot support 206 operatively connected to the internal support 204 to support the internal support structure 204 and handle assembly 202. The internal support 204 is configured to permit the handle assembly 202 to move relative to the foot support 206.

In the preferred embodiment, the handle assembly 202, the internal support 204 and the foot support 206 each have a center. When in a neutral position, the centers 203, 207, 209 of the handle assembly 202, the internal support 204, and the foot support 206, respectively, are aligned, and the handle assembly 202, the internal support 204, and the foot support 206 are arranged concentrically with each other, thereby defining the central axis 20 through each of the centers.

The handle assembly 202 is mounted to the internal support 204 in such a way as to provide a means for allowing the handle assembly 202 to move relative to the foot support 206. For example, like the embodiment shown in FIGS. 1A-1E, the handle assembly 202 may be capable of moving up and down relative to the foot support 206, thereby adjusting the height of the exercise device 200. In another example, the handle assembly 202 may be capable of tilting or swiveling from side to side relative to the foot support 206. In yet another example, the handle assembly 202 may be capable of rotating about the central axis 20. Movement of the handle assembly 202 relative to the foot support 206 may be any combination thereof.

To provide a comfortable grip, the handle assembly 202 is generally hemispherical in shape. To further add to the comfort, the handle assembly 202 may comprise a gripping handle 210 made of pliable cushioning material. For example, the cushioning material may be made of foam, rubber, and the like. Consistent with a hemispherical shape, the gripping handle 210 may comprise a generally convex outer surface 212. In the preferred embodiment, the gripping handle 210 may have a generally concave inner surface 214.

Since the gripping handle 210 is pliable, the handle assembly 202 may further comprise a handle support 220 to provide a rigid support for the gripping handle 210 for mounting the gripping handle 210 to the internal support 204. Preferably, the handle support 220 is moveably connected to the internal support 204 to permit the handle assembly 202 to move relative to the foot support 206.

The handle support 220 may also comprise a generally convex outer surface 222 to mate with the generally concave inner surface 214 of the gripping handle 210. The inner surface 214 of the gripping handle 210 and the outer surface 222 of the handle support 220 may be any other shape so long as they are capable of being attached to each other. Similarly, the inner surface 224 of the handle support 220 may be any shape, but is preferably generally concave.

In the preferred embodiment, the handle support 220 is moveably connected to the internal support 204. For example, the connection between the handle support 220 and the internal support 204 may permit swiveling, tilting, revolving, or rotating of the handle support 220 relative to the foot support 206 or the internal support 204 (or the central axis 20) by the use of a ball and socket joint 226, 236. In some embodiments, the connection between the handle support 220 and the internal support 204 may permit the handle support 220 to move longitudinally along the central axis 20 away from the internal support 204 or the foot support 206 with the use of threaded connections, tongue and groove connections, rails, tracks and the like, with stops to stop secure the handle assembly 202 at various heights. In other embodiments, vertical movement is achieved through the connection between the internal support 204 and the foot support 206.

In some embodiments, the handle support 220 may comprise a central deviation in which the inner surface 224 of the handle support 220 deviates from its smooth normal curvature that gives the generally concave appearance. In the preferred embodiment, the central deviation is a socket 226.

The internal support comprises a sleeve 230, preferably cylindrical in shape, operatively connected to the handle support 220, wherein the sleeve 230 is defined by an outer wall 232 and an inner wall 234, wherein the inner wall 234 defines a central cavity. In the preferred embodiment, the inner wall 234 of the sleeve 230 is threaded 235. The bottom of the sleeve 230 may be open to receive portions of the foot support 206.

The top of the internal support 204 may comprise an apical ball 236 or upward protrusion configured to mate with the socket 226 to form a ball and socket joint. This connection allows the handle support 220 to rotate or spin, swivel, and tilt about the ball 236.

The exercise device 200 may further comprise a resilient compliance ring 238 having an inner surface 237 and an outer surface 239, wherein the inner surface 237 of the compliance ring 238 is configured to mount on the sleeve 230, and wherein the outer surface 239 of the compliance ring 238 is configured to abut against the generally concave inner surface 224 of the handle support 220. The compliance ring 238 forces the handle assembly 202 to return to the neutral position when a force is removed from the handle assembly 202.

For example, a user may place his hands on the handle assembly 202 and shift his weight so as to cause the center 203 handle assembly 202 to tilt off the center axis 20 similar to what is shown in FIG. 3D. Due to the compressible nature of the compliance ring 238, the handle assembly 202 is able to compress the compliance ring 238 and tilt. If the user releases the handle assembly 202, the compliance ring returns to its natural shape and forces the handle assembly 202 back to its neutral position. This same action also facilitates the user bringing the handle assembly 202 back to the neutral position in the middle of the exercise.

The compliance ring 238 also permits the handle assembly 202 to rotate about the foot support 206 due to the connection to the internal support 204 so that the handle assembly 202 can be raised or lowered due to the threaded connection between the internal support 204 and the foot support 206. Rotation of the internal support 204 allows the internal support 204 to rise and lower along the threading 249 on the foot support 206. Other means for vertical movement can be used, such as sliding mechanisms, rails, tracks, tongue and groove connections, and the like, with stops to secure the handle assembly 202 at various heights.

Like the embodiment in FIGS. 1A-1E, the foot support 206 comprises a foot stand 240 having base 242 and a connector 244 protruding perpendicularly upwardly from the base 242. The base 242 provides a solid foundation to prevent the handle assembly 202 from tipping over while the user is performing an exercise routine. The connector 244 protruding upwardly from the base 242 connects with the internal support 204. In the preferred embodiment, the connector 244 is cylindrical and comprises an outer wall 246. To facilitate the rotational and vertical movement of the handle assembly 202, the outer wall 246 of the connector 244 may comprise outer threads 249 so that the inner threads 235 of the sleeve 230 can be screwed onto the outer threads 249 of the connector 244. Although there is a slight vertical displacement with the rotation of the hand support assembly, this will not affect the user during an exercise. Like the embodiments in FIGS. 1A-1E, the top of the connector 244 may have a ceiling 251 with a hole 255 in the center area 209 to receive a shaft with a flanged head from the handle support 220 or the sleeve 230 to serve as a stop. In some embodiments, the top of the connector 244 may be completely open.

In the preferred embodiment, the base 242 is circular in shape (circular horizontal section). A pad 270 may be affixed (by any known means, such as resistance fits, adhesion, screws, and the like) to the bottom of the base 242 to provide a desired interface between the foot support 206 and the floor. Therefore, the pad 270 may be made of material that may provide protection to the floors so that the foot support 206 does not scratch, scuff, or otherwise damage the floor. The pad 270 may provide a frictional surface so that the exercise device 200 does not slip or slide during an exercise. In some embodiments, the pad 270 may provide a slick surface so that the exercise device can slide along the floor.

In the preferred embodiment, the base 242 may comprise a peripheral channel 253 into which the pad can be seated. The pad 270 may be removably fastened in the channel 253 so as to be replaceable when damaged or when desiring to change the interface.

In some embodiments, the foot stand 240 defines a central void 250. This permits a pad 260 having a shape similar to the central void 250 to be inserted into the central void 250. To allow the surface of the pad 260 to be used, the height of the pad 260 may be greater than the central void 250. This causes the pad 260 to protrude below the base 242 and raise the base 242 off the floor.

In some embodiments, the pad 260 may be adjustable within the central void 250 so as to adopt two configurations, wherein in a first configuration, the pad 260 protrudes out past the base 242 and the pad 260 contacts the floor, and wherein in a second configuration the pad 260 is housed completely inside the central void 250 so that the base 242 contacts the floor. For example, the pad 160 may screw or slide into the central void 150. Any other connection may be used to reversibly secure the pad 160 in the central void. In such an embodiment, the pad 260 and the base 242 may have opposite surface features so that the exercise device can adopt a sliding surface or a frictional surface depending on which is touching the floor. For example, in one embodiment the base 242 may have a frictional surface while the pad 260 has a slick surface. If the user wants to conduct exercises in a fixed position, the user can either remove the pad 260 or have it inserted into the cavity 250. On the other hand, if the user wants a sliding surface, the user can insert the pad 260 or have the pad 260 protrude past the base 242, for example, with the use of threads. Conversely, the base 242 may have the slick surface while the pad 260 has the frictional surface.

In some embodiments, the base 242 may comprise a peripheral channel 253 into which a second pad 270 having opposite features compared to the first pad 260 can be inserted. This allows the base to made of any type of rigid material with the second pad 270 providing the dual purposes of providing a desired surface (frictional or slick) and protection against scuffing or damaging the floor by the base 242. Therefore, the user can remove the first pad 260 from the cavity 250, or move it completely into the cavity 250 to use the second pad 270 for its desired surface (frictional or slick), or insert the first pad 260 into the cavity, or have it descend from the cavity 250 to protrude past the second pad 270 to use the first pad 260 for its desired surface, which would be the opposite of the second pad 270.

The embodiment shown in FIGS. 3A-3E show another means to allow an exercise device to swivel about a foot support. The exercise device 300 comprises similar parts as the embodiments described above, except as described herein, particularly for modifications that permit the handle assembly 302 to not only rotate, but also swivel, tilt, or revolve about a central axis 30. Like the embodiments described above, the exercise device 300 comprises a generally hemispherical handle assembly 302 having a center, an internal support structure 304 operatively connected to the handle assembly 302, and a foot support 306 operatively connected to the internal support structure 304 to support the internal support 304 and handle assembly 302. The internal support 304 is configured to permit the handle assembly 302 to move relative to the foot support 306. For example, the handle assembly 302 may be able to move up and down relative to the foot support 306, rotate about the central axis 30, or swivel, tilt or revolve about the central axis 30.

In the preferred embodiment, the handle assembly 302, the internal support 304 and the foot support 306 each have a center 303, 307, 309, respectively. When in a neutral position, the centers 303, 307, 309 of the handle assembly 302, the internal support 304, and the foot support 306 are aligned, and the handle assembly 302, the internal support 304, and the foot support 306 are arranged concentrically with each other, thereby defining a central axis 30 through each of the centers 303, 307, 309.

The handle assembly 302 is mounted to the internal support 304 in such a way as to provide a means for allowing the handle support to move relative to the foot support 306. For example, like the previous embodiments, the handle assembly 302 may be capable of moving up and down relative to the foot support 306, thereby adjusting the height of the exercise device 300. In another example, the handle assembly 302 may be capable of tilting or swiveling from side to side relative to the foot support 306. In yet another example, the handle assembly 302 may be capable of rotating about the central axis 30. Movement of the handle assembly 302 relative to the foot support 306 may be any combination thereof.

To provide a comfortable grip, the handle assembly 302 is generally hemispherical in shape. To further add to the comfort, the handle assembly 302 may comprise a gripping handle 310 made of pliable cushioning material. For example, the cushioning material may be made of foam, rubber, and the like. Consistent with a hemispherical shape, the gripping handle 310 may comprise a generally convex outer surface 312. In the preferred embodiment, the gripping handle 310 may have a generally concave inner surface 314.

In the preferred embodiment, since the gripping handle 310 is pliable, the handle assembly 302 may further comprise a handle support 320 to provide a rigid support for the gripping handle 310 for mounting the gripping handle 310 to the internal support 304. Preferably, the handle support 320 is moveably connected to the internal support 304 to permit the handle assembly 302 to move relative to the foot support 306.

The handle support 320 may also comprise a generally convex outer surface 322 to mate with the generally concave inner surface 314 of the gripping handle 310. The inner surface 314 of the gripping handle 310 and the outer surface 322 of the handle support 320 may be any other shape so long as they are capable of being attached to each other. Similarly, the inner surface 324 of the handle support 320 may be any shape, but is preferably generally concave.

In the preferred embodiment, the handle support 320 is moveably connected to the internal support 304. For example, the connection between the handle support 320 and the internal support 304 may permit swiveling, tilting, revolving, or rotating of the handle support 320 relative to the foot support 306 or the internal support 304 (or the central axis 30) by the use of a ball and socket joint 330, 336. The connection between the handle support 320 and the internal support 304 may permit the handle support to move longitudinally along the central axis 30 away from the internal support 304 or the foot support 206 with the use of threaded connections, tongue and groove connections, rails, tracks, and the like, similar to previous embodiments.

In some embodiments, the handle support 320 may comprise a central deviation in which the inner surface of the handle support 320 deviates from its smooth normal curvature that gives the generally concave appearance. In some embodiments, the central deviation may be an abrupt downward protrusion, such as a peg or shaft 326 protruding downwardly away from the center 305 of the handle support 320 along the central axis 30 (when in the neutral position). The internal support 304 and the foot support 306 may have an opening to receive the shaft 326 to restrict the tilting action of the handle assembly 302 as described below.

The internal support 304 comprises a sleeve 330 that is preferably cylindrical in shape and operatively connected to the handle support 320. The sleeve 330 is defined by an outer wall 332 and an inner wall 334, wherein the inner wall 334 defines a central cavity 338. In the preferred embodiment, the inner wall 334 of the sleeve 330 is generally concave in shape. The top and bottom of the sleeve 330 may be open.

The internal support 304 further comprises a spherical bearing 336 having a convex curvature substantially similar to the concave curvature of the sleeve 330 so that the sleeve 330 can be mounted about the spherical bearing 336 to provide tilting and rotational movement of the handle assembly 302 about the foot support 306. The spherical bearing 336 is fixedly mounted on the foot support 306. For example, the spherical bearing 336 may have a central cavity with which the spherical bearing 336 can be mounted on the foot support 306.

Like the previous embodiments, the foot support 306 comprises a foot stand 340 having a base 342 and a connector 344 protruding perpendicularly upwardly from the base 342. The base 342 provides a solid foundation to prevent the handle assembly 302 from tipping over while the user is performing an exercise routine. The connector 344 protruding upwardly from the base 342 connects with the internal support 304. Preferably, the connector 344 connects with the spherical bearing 336. In the preferred embodiment, the connector 344 is cylindrical and comprises an outer wall 346. The dimensions of the outer wall 346 may be substantially similar to the dimensions of the inner wall 347 of the spherical ball 336 so that the spherical ball 336 can be mounted on the connector 344. In some embodiments, the outer wall 346 may be corrugated and the inner wall 347 of the spherical ball 336 defining the central cavity may have corrugations as well to fit with the connector 344 in a manner that prevents the spherical ball 336 from rotating about the connector 344.

The top of the connector 344 may be open to receive the shaft 326 of the handle support 320. The shaft 326 may restrict the tilting action of the handle support 320 by abutting against the inner wall 349 of the connector 344 when displaced from the neutral position. In some embodiments, an O-ring 380 may be placed inside the inner wall 349 of the connector 344 to provide cushioning for the shaft 326 as it abuts against the inner wall 347 of the connector 344.

In the preferred embodiment, the base 342 is circular in shape (circular horizontal section). A pad 370 may be affixed (by any known means, such as resistance fits, adhesion, screws, and the like) to the bottom of the base 342 to provide a desired interface between the foot support 306 and the floor. Therefore, the pad 370 may be made of material that may provide protection to the floors so that the foot support 306 does not scratch the floor. The pad 370 may provide a frictional surface so that the exercise device 300 does not slip or slide during an exercise. In this embodiment, although a pad 370 with a slick surface can be used, it is not preferable as the combination of the tilting and swiveling could prove to be difficult with sliding action. However, it is conceivable that highly advanced users could perform such an exercise.

Therefore, like the previous embodiments, the base 342 may comprise a peripheral channel 353 into which the pad 370 can be seated. The pad 370 may be removably fastened in the channel 353 so as to be replaceable when damaged or when desiring to change the interface with the floor.

In some embodiments, the foot stand 340 defines a central void 350 accessible through an open bottom of the base 342. This permits a pad (not shown, but like 160 and 260) having a shape similar to the central void 350 to be inserted into the central void 350. To allow the surface of the pad to be used, the height of the pad may be greater than the central void 350. This causes the pad to protrude below the opening of the base 342 and raise the base off the floor.

In some embodiments, the pad may be adjustable within the central void 350 so as to adopt two configurations, wherein in a first configuration, the pad protrudes out past the base 342 and the pad contacts the floor, and wherein in a second configuration the pad is housed completely inside the central void 350 so that the base 342 contacts the floor. For example, the pad may screw or slide into the central void 350. Any other connection may be used to reversibly secure the pad in the central void 350. In such an embodiment, the pad and the base 342 may have opposite surface features so that the exercise device 300 can adopt a sliding surface or a frictional surface. For example, in one embodiment the base 342 may have a frictional surface while the pad has a slick surface. If the user wants to conduct exercises in a fixed position, the user can either remove the pad or have it inserted into the cavity 350. On the other hand, if the user wants a sliding surface, the user can insert the pad or have the pad protrude out from the base 342. Conversely, the base 342 may have the slick surface while the pad has the frictional surface.

In some embodiments, the base 342 may comprise a peripheral channel 353 into which a second pad 370, having opposite features compared to the first pad, can be inserted. This allows the base 342 to made of any type of rigid material with the second pad 370 providing the dual purposes of providing a desired surface (frictional or slick) and protection against scuffing or damaging the floor by the base 342. Therefore, like the previous embodiments, the user can toggle between a first pad and a second pad, wherein the two pads have different surface characteristics.

The embodiment shown in FIGS. 4A-4C shows yet another means for allowing tilting and swiveling action of the handle assembly. Like the previous embodiments, the exercise device 400 comprises a generally hemispherical handle assembly 402 having a center 403, an internal support structure 404 operatively connected to the handle assembly 402, and a foot support 406 operatively connected to the internal support 404 to support the internal support 404 and handle support assembly 402. The internal support 404 is configured to permit the handle assembly 402 to move relative to the foot support 406. For example, the handle assembly 402 may be able to move up and down relative to the foot support 406, rotate about a central axis 40, or swivel, tilt or revolve about the central axis 40.

In the preferred embodiment, the handle assembly 402, the internal support 404 and the foot support 406 each have a center 403, 407, 409, respectively. When in a neutral position, the centers 403, 407, 409 of the handle assembly 402, the internal support 404, and the foot support 406 are aligned, and the handle assembly 402, the internal support 404, and the foot support 406 are arranged concentrically with each other, thereby defining the central axis 40 through each of the centers.

The handle assembly 402 is mounted to the internal support 404 in such a way as to provide a means for allowing the handle assembly 402 to move relative to the foot support 406. For example, the handle assembly 402 may be capable of tilting or swiveling from side to side relative to the foot support 406. In yet another example, the handle assembly 402 may be capable of rotating about or revolving about the central axis 40. Movement of the handle assembly 402 relative to the foot support 406 may be any combination thereof.

To provide a comfortable grip, the handle assembly 402 is generally hemispherical in shape. To further add to the comfort, the handle assembly 402 may comprise a gripping handle 410 made of pliable cushioning material. For example, the cushioning material may be made of foam, rubber, and the like. Consistent with a hemispherical shape, the gripping handle 410 may comprise a generally convex outer surface 412. In the preferred embodiment, the gripping handle 410 may have a generally concave inner surface 414.

In the preferred embodiment, since the gripping handle 410 is pliable, the handle assembly 402 may further comprise a handle support 420 to provide a rigid support for the gripping handle 410 for mounting on to the internal support 404. The handle support 420 may also comprise a generally convex outer surface 422 to mate with the generally concave inner surface 414 of the gripping handle 410. The inner surface 414 of the gripping handle 410 and the outer surface 422 of the handle support 420 may be any other shape so long as they are capable of being attached to each other.

The inner surface 424 of the handle support 420 is configured with channels 426, 428 and holes 429 for receiving and securing the internal support 404. In the preferred embodiment, the inner surface 424 comprises an outer channel 426 and an inner channel 428. More preferably, the channels 426, 428 are in the form of a ring. The inner channel 428 and the outer channel 426 may be concentrically arranged. The foot support 406 may have similar outer 443 and inner 445 channels formed into its top surface opposite, but facing the handle support 420.

The internal support 404 comprises a generally cylindrical sleeve 430 operatively connected to the handle support 420, wherein the generally cylindrical sleeve is defined by an outer wall 432 and an inner wall 434, wherein the inner wall 434 defines a central cavity 438. The top and bottom of the sleeve 430 may be open to allow the top portion of the sleeve 430 to be seated in the outer channel 426 of the handle support 420 and the lower portion of the sleeve 430 to be seated in the outer channel 443 of the foot support 406. The sleeve 430 can be made with any flexible material so as not to hinder the tilting or swiveling actions of the handle assembly 402.

The internal support 404 may further comprise a coil spring 436. The ends of the coil spring 436 may be seated inside the inner channel 428 of the handle support 420 and the inner channel 445 of the foot support 406. Since the inner and outer channels 426, 428 are concentrically arranged, this permits the sleeve 430 to surround the coil spring 436 to cover the coil spring 436. Spring clamps 435, 437 may be fastened to the handle support 420 and the foot support 406 to clamp the coil spring 436 in place. Flanged lips 433, 439 protruding from the outer wall of the spring clamps 435, 437 can be inserted in the space in between turns of the coil spring 436 to secure the coil spring 436 to the spring clamps 435, 437.

Due to the characteristics of a coil spring 436, the handle assembly 402 will be permitted to be displaced from the central axis 40. When displaced from the central axis 40, the coil spring 436 exerts a biasing force back towards the neutral position thereby assisting the user to bring the handle assembly 402 back to the neutral position. Due to the characteristics of a coil spring 436, the handle assembly 402 can be displaced in any direction. The extent of the displacement will depend on the coil spring 436. The sleeve 430 may be flexible to flex with the displacement of the coil spring 436.

The foot support 406 comprises foot stand 440 having a base 442 and a connector 444 protruding perpendicularly upwardly from the base 442. The base 442 provides a solid foundation to prevent the handle assembly 402 from tipping over while the user is performing an exercise routine. The connector 444 protruding upwardly from the base 442 connects with the internal support structure 404. In the preferred embodiment, the connector 444 is cylindrical and comprises an outer wall 446 and an inner wall 447 to define the outer channel 443 into which the sleeve 430 can be inserted at the bottom end.

In the preferred embodiment, the base 442 is circular in shape (circular horizontal section). Like the previous embodiments, a pad may be affixed (by any known means, such as resistance fits, adhesion, screws, and the like) to the bottom of the base 442 to provide a desired interface between the foot support 406 and the floor. Therefore, the pad may be made of material that may provide protection to the floors so that the foot support 406 does not scratch the floor. The pad may provide a frictional surface so that the exercise device 400 does not slip or slide during an exercise. In this embodiment, although a pad with a slick surface can be used, it is not preferable as the combination of the tilting and swiveling could prove to be difficult with sliding action. However, it is conceivable that highly advanced users could perform such an exercise.

In the preferred embodiment, the base 442 may comprise a peripheral channel 453 into which the pad can be seated. The pad may be removably fastened in the channel 453 so as to be replaceable when damaged or when desiring to change the interface, as well as providing protection against scuffing or damaging the floor by the base.

Although conceivable to utilize the dual pad configuration as described for the previous embodiments, it may be too dangerous with a tilting handle assembly.

Referring now to the figures, FIGS. 8A-8E show an embodiment of the exercise device 700 comprising a handle assembly 702 and a foot support 706, with each having a center 703, 709, respectively. The centers 703, 709 of the handle assembly 702 and the foot support 706, respectively, are in alignment, and the handle assembly 702 and the foot support 706 are arranged concentrically with each other, thereby defining a central axis 10 through each of the centers 703, 709.

The handle assembly 702 is mounted to the foot support 706 in such a way as to provide a means for allowing the handle support 702 to move vertically relative to the foot support 706. In other words, the handle assembly 702 may be capable of moving up and down relative to the foot support 706, thereby adjusting the height of the exercise device 700. In another example, the handle assembly 702 may be capable of rotating about the central axis 10. Movement of the handle assembly relative to the foot support 706 may be any combination thereof. Adjusting the height of the handle assembly 702, can adjust the difficulty of the exercise. In any embodiment, permitting rotation or height adjustment of the handle assembly 702 increases the complexity, and variety, of the exercises and isolates specific muscle groups. As discussed in more detail below, by attaching the proper attachment 760, 760a the exercise device 700 is also capable of swiveling, rocking, and sliding motions as well.

To provide a comfortable grip, the handle assembly 702 is generally hemispherical in shape. To further add to the comfort, the handle assembly 702 may comprise a gripping handle 710 made of pliable cushioning material. For example, the cushioning material may be made of foam, rubber, and the like. Consistent with a hemispherical shape, the gripping handle 710 may comprise a generally convex outer surface 712. In the preferred embodiment, the gripping handle 710 may have a generally concave inner surface 714.

In the preferred embodiment, since the gripping handle 710 is pliable, the handle assembly 702 may further comprise a handle support 720 to provide a rigid support for the gripping handle 710 for mounting the gripping handle 710 to the foot support 706. Preferably, the handle support 720 is moveably connected to the foot support 706. The handle support 720 may also comprise a generally convex outer surface 722 to mate with the generally concave inner surface 714 of the gripping handle 710. The inner surface 714 of the gripping handle 710 and the outer surface 722 of the handle support 720 may be any other shape so long as they are capable of being attached to each other. Similarly, the inner surface 724 of the handle support 720 may be any shape, but is preferably generally concave.

In some embodiments, the handle support 720 may comprise a central deviation in which the inner surface 724 of the handle support 720 deviates from its smooth normal curvature that gives the generally concave appearance. In some embodiments, the central deviation may be an abrupt protrusion 726, such as a peg or shaft, protruding downwardly away from the center 705 of the handle support 720 along the central axis 10. The foot support 706 may have a top opening 711 to receive the protrusion 726. At least a portion of the wall 747 defining the top opening 711 of the foot support 706 may be parallel to and substantially the same dimensions as the protrusion 726. This allows the protrusion 726 to slide up and down through the openings or rotate about the central axis 10 while helping to minimize any lateral or side-to-side movement. The protrusion 726 may comprise a central channel 728 into which is inserted a fastener 729, such as a peg or screw having a flanged head that is wider than the protrusion 726 and the top opening 711 of the foot support 706. This prevents the handle assembly 702 from twisting off of the foot support 706 because as the protrusion 726 rises up through the opening, eventually the flanged head will abut the inner wall 747 defining the top opening of the foot support 706 to prevent any further upward movement.

To facilitate the vertical movement of the handle assembly 702 relative to the foot support 706, the handle support 720 further comprises a generally cylindrical sleeve 730 protruding downwardly from the inner surface 724 of the handle support 720 parallel and coaxial with the protrusion 726. The generally cylindrical sleeve 730 may be defined by an an inner wall 734, wherein the inner wall 734 defines a central cavity 736 in which the protrusion 726 resides. In the preferred embodiment, the inner wall 734 of the sleeve 730 is threaded. In some embodiments, a flanged lip 738 may be attached to the base of the handle support 720 and the base of the sleeve 730.

The foot support 706 comprises a foot stand 740. The foot stand 740 comprises a base 742 and a connector 744 protruding perpendicularly upwardly from the base 742. The base 742 provides a solid foundation to prevent the handle assembly 702 from tipping over while the user is performing an exercise routine. The connector 744 protruding upwardly from the base 742 connects with the handle assembly 702. In the preferred embodiment, the connector 744 is cylindrical and comprises an outer wall 746. To facilitate the rotational and vertical movement of the handle assembly 702, the outer wall 746 of the connector 744 may comprise outer threads 749 so that the inner threads 739 of handle support 720 can be screwed onto the outer threads 749 of the connector 744. Although there is a slight vertical displacement with the rotation of the handle assembly 702, this will not affect the user during an exercise. The top of the connector 744 may have a ceiling 751 with an opening 711 defined by the wall 747 of the ceiling 751, preferably in the center area to receive the protrusion 726 of the handle support 720. In some embodiments, the top of the connector 744 may be completely open.

Other means for vertical movement can be used, such as sliding mechanisms, rails, tracks, tongue and groove connections, and the like, with stops to stop the height adjustment at various levels.

In the preferred embodiment, the base 742 is circular in shape (circular horizontal section). A pad 770 may be affixed (by any known means, such as resistance fits, adhesion, screws, and the like) to the bottom of the base 742 to provide a desired interface between the foot support 706 and the floor. Therefore, the pad 770 may be made of material that may provide protection to the floors so that the foot support 706 does not scratch, scuff, or otherwise damage the floor. The pad 770 may provide a frictional bottom surface so that the exercise device 700 does not slip or slide during an exercise. In some embodiments, the pad 770 may provide a slick bottom surface so that the exercise device can slide along the floor. Other means for sliding along the floor may be used, such as bearings.

In the preferred embodiment, the base 742 may comprise a peripheral channel 753 into which the pad 770 can be seated. The pad 770 may be removably fastened in the channel 753 so as to be replaceable when damaged or when desiring to change the interface.

In some embodiments, the foot stand 740 defines a central void 750. This permits an attachment 760 to be inserted into the central void 750. The attachment 760 and the central void 750 are configured so that when the attachment 760 is properly installed inside the central void 750, the attachment 760 interfaces the ground rather than the foot support 706.

In some embodiments, the attachment 760 may be adjustable within the central void 750 so as to adopt two configurations, wherein in a first configuration, the attachment 760 protrudes out past the base 742 and the attachment 760 contacts the floor, and wherein in a second configuration the attachment 760 is housed completely inside the central void 750 so that the base 742 or pad 770 contacts the floor. For example, the attachment 760 may screw or slide into the central void 750. Any other connection may be used to reversibly secure the attachment 760 in the central void. In such an embodiment, the attachment 760 and the base 742 may have opposite surface features so that the exercise device can adopt a sliding surface or a frictional surface. For example, in one embodiment, the base 742 may have a frictional surface while the attachment 760 has a slick surface. If the user wants to conduct exercises in a fixed position, the user can either remove the attachment 760 or have it inserted deeper into the cavity 750. On the other hand, if the user wants a sliding surface, the user can insert the attachment 760 or have the attachment 760 protrude out past the base 742. Conversely, the base 742 may have the slick surface while the attachment 760 has the frictional surface.

In some embodiments, the pad 770 and the attachment 760 having opposite surface characteristics may be used. This allows the base 742 to be made of any type of rigid material, such as wood, metal, plastic, and the like, with the pad 770 providing the dual purposes of providing a desired surface (frictional or slick) and protection against scuffing or damaging the floor with the base 742. For example, the pad 770 may have a frictional surface and be affixed to the base 742. The attachment 760 may have a slick surface and be removably attachable to the base 742, such that when the attachment 760 is attached to the base 742, the pad 770 does not make contact with the ground. For example, the attachment 760 may raise the pad 770 higher off the ground, or the attachment 760 may fully cover the pad 770.

With reference to FIGS. 9A-9D, in the preferred embodiment, the attachment 760 comprises a receiver 772 and an engagement surface 774. The receiver 772 is configured to receive the handle support 702, while the engagement surface 774 is configured to interface with the ground. In the preferred embodiment, the receiver 772 comprises a hollow post 776 and a retention clip 778 therein. Preferably, the hollow post 776 is cylindrical in shape defined by a cylindrical wall. The outer dimension of the cylindrical wall is substantially similar to the dimension of the central void 750 so that the hollow post 776 can fit inside the central void 750. Inside the hollow post 776 is the retention clip 778. The retention clip 778 may be affixed to the post 776 or the top surface 784 of the attachment 760 using a fastener 771, such as a self-tapping screw. The retention clip 778 may comprise a pair of arms 780a, 780b biased outwardly. The arms 780a, 780b of the retention clip 778 may protrude laterally outwardly from the post 776 so as to exert an outwardly biasing force against the inner wall 762 of the foot support 740 that defines the central void 750. This biasing force creates sufficient resistance to keep the attachment 760 inside the central void 750.

In some embodiments, the hollow post 776 may comprise a pair of notches 782a, 782b within its wall through which the arms 780a, 780b can protrude to make contact with the inner wall defining the central void 750. In some embodiments, the inner wall 762 of the foot stand 740 defining the central void 750 may comprise guide rails 764a, 764b protruding into the central void 750. The post 776 may be substantially similar in diameter as the central void 750. Therefore, with the guide rails 764a, 764b protruding into the central void 750, the post 776 abuts against the guide rails 764a, 764b when the attachment 760 is inserted into the central void 750. The attachment 760 and the foot stand 740 can be rotated relative to each other until the guide rails 764a, 764b fall into the notches 782a, 782b. The arms 780a, 780b of the retention clip 778 are then biased against the guide rails 764a, 764b to create the frictional holding force to keep the attachment 760 in the foot stand 740.

In some embodiments, the inner wall 762 defining the central void 750 may comprise a recessed portion to receive the arms 780a, 780b when the post 776 is fully inserted into the central void 750. The arms 780a, 780b may comprise ramped, outer surfaces that allow the post to slide into and out of the central void 750 easily for a quick and easy snap in connection and snap out detachment without the need for any tools or for pressing any release buttons. However, release buttons can be used to release the attachment 760 from the base 742.

The engagement surface 774 comprises a top side 784 and a bottom side 786. The post 776 extends upwardly from the top side 784 of the engagement surface 774. In some embodiments, the top side 784 may comprise a channel 788. The channel 788 is configured to receive the pad 770 when the attachment 760 is connected to the foot stand 740.

The bottom side 786 makes contact with the ground when the attachment 760 is installed. In some embodiments, the bottom side 786 may comprise a slick or slidable surface so that the exercise device 700 can slide along the floor or a mat. In such an embodiment, the bottom surface 786 may be flat.

In an alternate embodiment of the attachment 760a, as shown in FIGS. 10A-10D, rather than having a flat bottom surface 786, the alternate bottom surface 786a may be tapered. In other words, the surface is contoured or curved so as to meet at a central region 789. For example, the tapered bottom surface 786a may be conical, frustoconical, dome-shaped, parabolic, curved, and the like, in appearance, so as to converge at a central region 789. The central region 789 may be capped with a non-slip tip 790. Having a tapered bottom surface 786a creates instability for the user; thereby making the exercises more difficult to perform, which can increase overall core strength, balance, etc. for the user. The remaining features may be the same as the attachment 760 with the flat bottom surface.

Due to the instability, there is a danger for injury, for example, if the attachment rolls excessively onto its side. To reduce this danger, in the preferred embodiment, the attachment 760a comprises the tapered bottom surface 786a has a generally linear tapering portion. For example, between the base region 787 and the central region 789, the bottom surface may have a linear taper. At the base region 787, the bottom surface 786a merges into a vertical wall 785. Thus, in this embodiment, the attachment 760 has a substantially conical appearance with a tapered surface 786a merging with the vertical wall 785, with the vertical wall 785 defining the base region 787. In the preferred embodiment, the degree of tapering is such that when the tapered surface 786a is flat against the ground, the central axis 10 makes an angle with the ground that is large enough to prevent injury to the user if the attachment 760 rolled to that extreme. For example, the minimum angle between the central axis 10 and the ground when the tapered surface 786a is parallel to the ground may be 25 degrees or more. Preferably, the angle is 30 degrees or more. More preferably, the angle is 45 degrees or more. In some embodiments, the angle may be 60 degrees or more. Due to the sharp transition from the tapered surface 786a to the vertical wall 785, the vertical wall 785 functions as a stop to prevent over-rolling of the attachment 760. To accommodate this, the diameter of the base 785 of the attachment 760a may be greater than the diameter of the base 742 of the foot stand 740.

Other ways of creating an anti-roll stop can also be used. For example, other types of protrusions can project out from the base 785 or the tapered surface 786a to stop the rolling of the attachment 760.

The device 700 may be provided with one of each type of attachment 760, 760a. Since the receivers 772 and the top sides 784 are virtually identical, the attachments 760, 760a are interchangeable. Due to their quick and easy snap fit connection, one attachment 760 can be easily removed and the other attachment 760a easily snapped into place to perform different types of exercises.

In some embodiments, as shown in FIGS. 5-7, the exercise device may be provided as part of a kit with a slide mat 500 upon which the exercises can be performed. The slide mat 500 may have a top surface 504 that allows the exercise devices 100, 200, 300, 400, or 700 to slide across the top surface 504. Therefore, the material selected for the top surface 504 of the mat 500 and the bottom surface of the attachment will be complements so as to allow the attachment to slide smoothly across the surface of the mat. By way of example only, if the bottom surface of the attachment is plastic, then the top surface of the mat may be a type of fabric that allows plastic to slide thereupon.

The mat 500 may be thin and flexible so as to be rolled up for easy transportation and storage. In some embodiments, the mat 500 may be made out of plastic. In some embodiments, the mat 500 may comprise a foam bottom surface 502. A variety of foam material may be used, such as PVC, EVA, TPE, and the like. Preferably, the top surface 504 comprises a type of fabric, such as oxford, polyester, cordura, and the like. The top surface and the bottom surface can be fixed together so as not to move relative to each other.

The dimensions of the mat 500 should be large enough to accommodate a user performing the types of exercises described herein. As such, in the preferred embodiment, the mat 500 may be approximately at least 15 inches wide and 36 inches long. Preferably, the mat 500 is approximately 20 inches wide. Most preferably, the mat 500 is at least 24 inches wide. Preferably, the mat 500 is at least 48 inches long. More preferably, the mat 500 is at least 60 inches long. Most preferably, the mat 500 is at least 72 inches long.

A user can place a pair of exercise devices 100, 200, 300, 400, or 700 (one for each hand) on the slide mat 500 with the proper pad 160, 260, 360, 170, 270, 370, or attachment 760 in place to allow the user to slide back and forth on the slide mat 500 with his hands the way an ice skater may skate on ice with his feet. Various other exercises can be conducted on the slide mat 500 involving sliding action with the pair of exercise devices as shown by the arrows. Because each hand uses its own device, there is increased versatility in the types of movements that can be achieved by the exercise device of the present invention because the hands can move together or independently of the other.

For example, the user can assume the push-up position with his feet secured and the exercise devices on the mat 500. From the push-up position, the user can slowly abduct his arms laterally away from his body to lower his body to the floor, then slowly adduct his arms towards the center to raise his body up. This exercise can be repeated for specific number of repetitions. In another exercise, the hands can move laterally to the side one at a time in an alternating fashion.

In another exercise, the user can assume the push-up position with his hands on the exercise devices 100, 200, 300, 400, or 700 and extend his hands, simultaneously or alternatingly, anteriorly in front of his head and then back again.

In another exercise, the user can combine these movements, for example, by laterally abducting both arms to the side then pushing his arms anteriorly and medial in front of the head and adducting his arms back towards his core back to his starting position.

In another exercise, the user can place the exercise device 100, 200, 300, 400, or 700 on the floor or configure the exercise device with frictional pads and perform a wide variety of push-ups with his hands in various positions to change the intensity and difficulty of the exercise.

In another exercise, the user may have his feet on the mat 500 and the exercise device 100, 200, 300, 400, or 700 on the floor as shown in FIG. 6. This will allow the user to slide his feet along the mat 500 in various directions while supporting himself on the exercise device 100, 200, 300, 400, or 700. The user may use specific footwear 600 to provide the desired interface with the mat 500. For example, the footwear 600 may be socks or shoes with a slick surface to provide a sliding interface with the mat 500.

In the preferred embodiment, the footwear 600 comprise a slider 602 that can slide along a surface, and a cushion 604 upon which the user can place his or her feet or knees. The slider 602 has a top surface 606 and a bottom surface 608 opposite the top surface 606 bound by a perimeter edge 610. In the preferred embodiment, the top surface 606 may be recessed to receive the cushion 602. A pair of slots 612, 614 may be created on opposite sides of the perimeter edge 610 that goes through the top and bottom surfaces 606, 608. These slots may create a vertical wall perpendicular to the bottom surface 608 of the slider 608 so as to maintain a constant width from one slot 612 to the other slot 614 when measured at the top surface 606 and the bottom surface 608. Straps (not shown) may be inserted through the slots 612, 614 to create a fastener to secure the footwear 600 to the user's feet or legs. The bottom surface 608 may be flat. In some embodiments, approximately at a center region 616, the bottom surface 608 may be slightly concave; therefore, the bottom surface 608 may not be flat or planar, particularly at the center region 616.

The cushion 602 may be any type of durable material that provides comfort to the user when his weight is applied to the footwear 600. For example, the cushion 602 may be fabric, rubber, foam, and the like. Preferably, the cushion is an EVA foam pad. The footwear 600 is used with the exercise device 100, 200, 300, 400, or 700. Therefore, the user will generally be in the pronate position with his hands on the exercise device 100, 200, 300, 400, or 700 and his feet or knees on the footwear 600.

In another exercise, the user may have the exercise device 100, 200, 300, 400, or 700 and his feet on the mat 500 as shown in FIG. 7. The user can choose between a frictional surface or a slick surface for the exercise device to determine the type of exercises to perform. Footwear 600 may be worn to provide the proper interface between the mat 500 and the user's feet. In other words, the footwear 600 may provide a slick interface with the mat 500 so the feet can slide along the mat, or the footwear 600 may have a frictional interface to keep the feet fixed while the exercise device 100, 200, 300, 400, or 700 is permitted to slide along the mat 500. In addition, both the footwear 600 and the exercise device 100, 200, 300, 400, or 700 can both have frictional or slick contact with the mat 500 as well.

Many other exercises can be performed, alone or in combination, with any of the aforementioned exercises, whether it is with sliding hands and fixed feet, sliding feet and fixed hands, sliding hands and feet, or fixed hands and feet, with or without the mat 500. In combination with elevating, rotating, revolving, or tilting handle assemblies an endless combination of exercise movements can be performed for a total body workout.

The exercise device can also be used for yoga. Thus, the use may perform or hold yoga poses. These would be particularly useful when the exercise devices are configured not to slide. In addition, as yoga poses become easier to a user, the user may use the exercise device configured for instability.

The exercise device 100, 200, 300, 400, or 700 can also be used to strengthen the legs. Due to its hemispherical shape, a user can actually stand on the exercise device. Therefore, the handle assembly is not used only by the hands. Because the exercise device 100, 200, 300, 400, or 700 raises the user's feet off the ground, the user can perform calf exercises, squats, calf stretches, and the like. With one or two exercise devices 100, 200, 300, 400, or 700, the user can perform step exercises. The user can also stand on one exercise device 100, 200, 300, 400, or 700 with one leg to improve balance. One ore more exercise devices 100, 200, 300, 400, or 700 can be used in man different ways to improve balance.

The exercise device 100, 200, 300, 400, or 700 can be used as a training device. For example, for those starting to improve their finger strength by doing finger push-ups can raise or lower the exercise device so that their palms rest on the handle assembly while their fingers touch the ground. The user can adjust the amount of pressure applied to the palms versus the fingers as necessary so as to strengthen the fingers.

The exercise device 100, 200, 300, 400, or 700 can even be used therapeutically. Due to the hemispheric shape, the user can place any part of his or her body on the handle assembly for massage, trigger point therapy, accupressure, and the like.

The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention not be limited by this detailed description, but by the claims and the equivalents to the claims appended hereto.

Claims

1. An exercise device, comprising:

a. a generally hemispherical ergonomic handle assembly having a center, the ergonomic handle assembly, comprising: i. a gripping handle providing a cushioned support for a user's hands; and ii. a handle support connected to the gripping handle, wherein the gripping handle comprises a generally convex outer surface and a generally concave inner surface, wherein the handle support comprises a generally convex outer surface and a generally concave inner surface, and wherein the generally convex outer surface of the handle support has a curvature that is substantially equal to a curvature of the generally concave inner surface of the gripping handle so that the generally concave inner surface of the gripping handle can mate with the generally convex outer surface of the handle support, wherein the generally concave inner surface of the handle support comprises a shaft protruding away from the handle support along the central axis, the shaft comprising a central channel, wherein the generally concave inner surface of the handle support comprises a threaded sleeve coaxially aligned with and surrounding the shaft;
b. a foot support having a second center, the foot support operatively connected to the handle support, wherein the foot support comprises: i. a foot stand having a base and a connector, wherein the connector protrudes upwardly from the base to connect with the handle support, the connector comprising a receiving hole to receive the shaft, an exteriorly threaded outer wall to attach to the threaded sleeve, and a smooth inner wall defining a central void, wherein the base comprises a peripheral channel, and ii. a non-slip pad seated within the peripheral channel; and
c. an attachment removably attached to the foot support, wherein the attachment comprises: i. a receiver configured to receive the handle support; and ii. an engagement surface configured to interface with a ground, wherein the receiver comprises a hollow post and a retention clip therein, wherein the hollow post is cylindrical in shape defined by a cylindrical wall having an outer dimension substantially similar to the central void so that the hollow post can fit inside the central void, wherein the retention clip is affixed to the post, the retention clip comprising an arm biased outwardly and protruding laterally outwardly from the post so as to exert an outwardly biasing force against the inner wall of the foot connector, wherein the engagement surface comprises a top side and a bottom side, the post extending upwardly from the top side, the top side comprising a channel, the channel configured to receive the non-slip pad when the attachment is connected to the foot stand, the bottom side comprising a surface selected from the group consisting of a flat, slick surface and a tapered surface with a non-slip tip.

2. An exercise device, comprising:

a. a handle assembly having a center;
b. a foot support having a second center, the foot support operatively connected to the handle assembly, wherein the foot support comprises: i. a foot stand having a base and a connector, the connector protruding upwardly from the base to connect with the handle assembly, and ii. a pad attached to the base; and
c. an attachment removably attachable to the foot support.

3. The exercise device of claim 2, wherein the attachment comprises a bottom surface selected from the group consisting of a flat, slick surface and a tapered surface with a non-slip point.

4. The exercise device of claim 3, wherein the bottom surface is tapered.

5. The exercise device of claim 2, wherein the handle assembly, comprises:

a. a gripping handle providing a cushioned support for the user's hands, the gripping handle comprising an overall convex outer surface and an overall concave inner surface; and
b. a handle support to moveably connect the handle assembly to the foot support, the handle support comprising a convex outer surface and a concave inner surface, wherein the convex outer surface has a curvature that is substantially equal to a curvature of the concave inner surface of the gripping handle so that the concave inner surface of the gripping handle can mate with the convex outer surface of the handle support.

6. The exercise device of claim 5, wherein the concave inner surface of the handle support comprises a sleeve to receive the foot support and configured to move the foot support vertically within the sleeve.

7. The exercise device of claim 6, wherein the concave inner surface of the handle support comprises a shaft protruding away from the handle support along a central axis.

8. The exercise device of claim 7, wherein the foot support comprises a receiving hole to receive the shaft, and the shaft comprises a central channel.

9. The exercise device of claim 2, wherein the foot stand comprises a base and a connector, the connector protruding upwardly from the base to connect with the internal support structure, wherein the connector comprises an outer wall.

10. The exercise device of claim 9, wherein the outer wall of the connector comprises external threading and the handle support comprises a sleeve having internal threading, such that the connector can be threaded into the sleeve.

11. The exercise device of claim 9, wherein the base comprises a peripheral channel into which the pad can be seated.

12. The exercise device of claim 9, wherein the foot stand defines a central void into which the attachment is seated to be removably connected to the foot support.

13. An exercise kit, comprising:

a. a handle assembly having a center;
b. a foot support having a second center, the foot support operatively connected to the handle assembly, wherein the foot support comprises: i. a foot stand having a base and a connector, the connector protruding upwardly from the base to connect with the handle assembly, and ii. a pad attached to the base;
c. a first attachment removably attachable to the foot support; and
d. a second attachment removably attachable to the foot support.

14. The exercise kit of claim 13, wherein the first attachment comprises a flat, slick bottom surface

15. The exercise kit of claim 14, wherein the second attachment comprises a tapered bottom surface with a non-slip point.

16. The exercise kit of claim 15, further comprising an exercise mat having a top surface that allows the first attachment to slide smoothly along the top surface.

17. The exercise kit of claim 16, further comprising a foot slider, comprising a foam top surface, and a flat, slick bottom surface.

18. The exercise kit of claim 13, wherein the second attachment comprises a tapered bottom surface with a non-slip point.

19. The exercise kit of claim 13, further comprising an exercise mat having a top surface that allows the first attachment to slide smoothly along the top surface.

20. The exercise kit of claim 13, further comprising a foot slider, comprising a foam top surface, and a flat, slick bottom surface.

Patent History
Publication number: 20140329651
Type: Application
Filed: Jul 17, 2014
Publication Date: Nov 6, 2014
Applicant:
Inventors: Rodger D. Thomason (Santa Monica, CA), William P. Conley (Long Beach, CA), Julie Kang (North Hollywood, CA)
Application Number: 14/334,452
Classifications
Current U.S. Class: Push Up Device (482/141)
International Classification: A63B 23/12 (20060101);