System for a Virtual Multipoint Control Unit for Unified Communications

This disclosure describes a virtual multipoint control unit (112, 300) for unified communications. The virtual multipoint control unit (112, 300) communicates with multiple devices (102, 104) over a network (106). The control unit (112, 300) includes multiple unified communication (UC) applications (208, 314) being executed on the devices (102, 104). The UC applications (208, 314) decode received audio data stream and video data stream. A virtual imaging device (214) and a virtual audio device (216) are mapped to the UC applications (208, 314). A virtual video mixer (210) receives the decoded video data stream from the UC applications (208, 314) via the virtual imaging device (214). A virtual audio mixer (212) receives the decoded audio data stream from the UC applications (208, 314) via the virtual audio device (216).

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority and the benefits of the earlier filed Provisional U.S. Application No. 61/859,358, filed Jul. 29, 2013, which is incorporated by reference for all purposes into this specification.

TECHNICAL FIELD

This disclosure relates to unified communication systems. More specifically, this disclosure invention relates to a system for a virtual multipoint control unit for unified communications.

BACKGROUND ART

Several Unified Communications (UC) software applications have proliferated into the enterprise communications market. These applications allow end-users to communicate using voice, video, application and data sharing, instant messaging, etc. A few examples of these applications include Microsoft Lync, Skype, IBM Sametime, Cisco IP Communicator, etc.

Most of these applications use different call control protocols and media formats (i.e. video/audio encoding and decoding formats), making them incompatible with each other. For example, Microsoft Lync uses a proprietary implementation of the Session Initiation Protocol (SIP) that is different from that being implemented by Skype for call negotiation. In addition, various UC applications typically operate with different media formats, thereby causing these applications to become incompatible with each other for communicating audio, video, or data streams. As a result, the communication among these applications is facilitated by a multipoint control unit, which may be implemented as standalone hardware or a web-based service via a central host performing call signaling and media transcoding. The standalone hardware is extremely costly whereas the web-based central host does not support ad-hoc communication among the UC applications running on terminals that are not connected to the same central host.

Further, the multipoint control unit typically allows multiple UC applications to access local hardware devices in a mutually exclusive manner. For e.g., video data streams from one UC application are temporarily restricted from being played on a local hardware device such as a display device while the device is in use by another UC application. As a result, the multipoint control unit induces an unwanted delay during execution of simultaneously received data streams from different UC applications

Therefore, there exists a need for a system that allows multiple UC applications to access the local hardware devices simultaneously for ad-hoc unified communications.

SUMMARY OF INVENTION

This disclosure describes a system for a virtual multipoint control unit for unified communications.

In one embodiment, a virtual multipoint control unit is in communication with a plurality of devices over a network. The virtual multipoint control unit comprises a plurality of unified communication (UC) applications, at least one virtual imaging device, at least one virtual audio device, a virtual video mixer, and a virtual audio mixer. The plurality of unified communication (UC) applications is executed on at least one of the plurality of devices. Each of the plurality of UC applications receives an encoded audio data stream and an encoded video data stream. The plurality of UC applications decodes the received audio data and the video data streams. The at least one virtual imaging device is mapped to each of the plurality of UC applications. The at least one virtual audio device is mapped to each of the plurality of UC applications. The virtual video mixer is in communication with a physical imaging device. The virtual video mixer receives the decoded video data stream from each of the plurality of UC applications via the at least one virtual imaging device. The virtual audio mixer is in communication with a physical audio device. The virtual audio mixer receives the decoded audio data stream from each of the plurality of UC applications via the at least one virtual audio device.

In another embodiment, a system for managing communication among a plurality of devices is disclosed. The system is employed within a communication network. The system comprises a communication device and a virtual multipoint control unit. The communication device receives encoded audio and video data streams via a plurality of unified communication (UC) applications. The plurality of UC applications decodes the received encoded audio data stream and the received encoded video data stream. The virtual multipoint control unit is in communication with the communication device. The virtual multipoint control unit comprises at least one virtual imaging device, at least one virtual audio device, a virtual video mixer, and a virtual audio mixer. The at least one virtual imaging device is mapped to each of the plurality of UC applications. The at least one virtual audio device is mapped to each of the plurality of UC applications. The virtual video mixer is in communication with a physical imaging device. The virtual video mixer receives the decoded video data stream from each of the plurality of UC applications via the at least one virtual imaging device. The virtual audio mixer is in communication with a physical audio device. The virtual audio mixer receives the decoded audio data stream from each of the plurality of UC applications via the at least one virtual audio device.

In yet another embodiment, a non-transitory computer readable medium storing a program of instructions executable by the computing device to perform a method for employing a virtual multipoint control unit for unified communications is disclosed. The method comprises receiving, from a plurality of terminals, an encoded audio data stream and an encoded video data stream. The method also comprises decoding, using a plurality of unified communication (UC) applications, the received encoded audio data stream and the received encoded video data stream. The method further comprises mapping, using a virtual multipoint control unit, at least one virtual imaging device and at least one virtual audio device to each of the plurality of UC applications. The method also comprises communicating, using a virtual video mixer, the decoded video data stream to a physical imaging device via the at least one virtual imaging device. Furthermore, the method comprises communicating, using a virtual audio mixer, the decoded audio data stream to a physical audio device via the at least one virtual audio device.

In still another embodiment, a method for managing communication among a plurality of devices is disclosed. The method comprises receiving, from a plurality of terminals, an encoded audio data stream and an encoded video data stream. The method also comprises decoding, using a plurality of unified communication (UC) applications, the received encoded audio data stream and the received encoded video data stream. The method further comprises mapping, using a virtual multipoint control unit, at least one virtual imaging device and at least one virtual audio device to each of the plurality of UC applications. The method also comprises communicating, using a virtual video mixer, the decoded video data stream to a physical imaging device via the at least one virtual imaging device. Furthermore, the method comprises communicating, using a virtual audio mixer, the decoded audio data stream to a physical audio device via the at least one virtual audio device.

Other and further aspects and features of the disclosure will be evident from reading the following detailed description of the embodiments, which are intended to illustrate, and not limit, the present disclosure.

BRIEF DESCRIPTION OF DRAWINGS

To further aid in understanding the disclosure, the attached drawings help illustrate specific features of the disclosure and the following is a brief description of the attached drawings:

FIG. 1A is a schematic that illustrates a first environment for implementing an exemplary virtual multipoint control unit, according to an embodiment of the present disclosure.

FIG. 1B is a schematic that illustrates a second environment for implementing the exemplary virtual multipoint control unit of FIG. 1A, according to an embodiment of the present disclosure.

FIG. 2A is a schematic that illustrates the exemplary virtual multipoint control unit of FIG. 1A, according to an embodiment of the present disclosure.

FIG. 2B is a schematic that illustrates an exemplary unified communication application included in the virtual multipoint control unit of FIG. 1A, according to an embodiment of the present disclosure.

FIG. 3 is a schematic that illustrates a virtual multipoint control unit 300 managing a multipoint video conference, according to an embodiment of the present disclosure.

FIG. 4 is a schematic illustrating implementation of a device driver module of the virtual multipoint control unit for communicating with hardware devices for conducting a video conference, according to an embodiment of the present disclosure.

DISCLOSURE OF EMBODIMENTS

This disclosure describes a system for a virtual multipoint control unit for unified communications. This disclosure describes numerous specific details in order to provide a thorough understanding of the present invention. One skilled in the art will appreciate that one may practice the present invention without these specific details. Additionally, this disclosure does not describe some well known items in detail in order not to obscure the present invention.

In various embodiments of the present disclosure, definitions of one or more terms that will be used in the document are provided below.

An endpoint refers to one or more computing devices capable of establishing a communication channel for exchange of audio, video, textual, or symbolic data in a communication session. Examples of the computing devices may include, but are not limited to, a desktop PC, a personal digital assistant (PDA), a server, a mainframe computer, a mobile computing device (for e.g., mobile phones, laptops, tablets, etc.), an internet appliance, calling devices (for e.g., a telephone, an internet phone, video telephone, etc.).

The numerous references in the disclosure to a system for a virtual multipoint control unit are intended to cover any and/or all devices capable of performing respective operations on endpoints in a unified communication application-based conferencing environment relevant to the applicable context, regardless of whether or not the same are specifically provided.

FIG. 1A is a schematic that illustrates a first environment for implementing an exemplary virtual multipoint control unit, according to an embodiment of the present disclosure. Embodiments are disclosed in the context of environments that represent a multipoint video conference among multiple users via respective endpoints capable of executing one or more computer applications for unified communications in the same communication session. However, other embodiments may be applied in the context of other scenarios (e.g., an audio conference, a webinar, a multiplayer online game, etc.) involving at least one of audio, video, textual, or symbolic (e.g., emoticons, images, etc.) data being communicated among various endpoints in the same communication session. In some embodiments, at least one of the endpoints may execute a unified communication application (UC application) during the session.

The first network environment 100 may comprise multiple endpoints including a communication device 102 configured to communicate with terminals 104-1, 104-2, 104-3, 104-4, and 104-5 (collectively, terminals 104) via a network 106. The network 106 may comprise, for example, one or more of the Internet, Wide Area Networks (WANs), Local Area Networks (LANs), analog or digital wired and wireless telephone networks (e.g., a PSTN, Integrated Services Digital Network (ISDN), a cellular network, and Digital Subscriber Line (xDSL)), radio, television, cable, satellite, and/or any other delivery or tunneling mechanism for carrying data.

The network 106 may comprise multiple networks or sub-networks, each of which may comprise, for example, a wired or wireless data pathway. The network 106 may comprise a circuit-switched voice network, a packet-switched data network, or any other network that is able to carry electronic communications. For example, the network 106 may comprise networks based on the Internet protocol (IP) or asynchronous transfer mode (ATM), and may support voice using, for example, VoIP, Voice-over-ATM, or other comparable protocols used for voice data communications. In some embodiments, the network 106 may comprise a cellular telephone network configured to enable exchange of textual data, audio data, video data, or any combination thereof between the communication device 102 and at least one of the terminals 104.

The communication device 102 may comprise or be coupled with one or more hardware devices either wirelessly or in a wired fashion for enabling a user to dynamically interact with other users via the endpoints connected to the network 106. For example, the communication device 102 may be coupled with an imaging device 108 (including, but not limited to, a video camera, a webcam, a scanner, or any combination thereof) and an audio device 110 (including, but not limited to, a speaker, a microphone, or any combination thereof). The communication device 102 may be compatible with any other device (not shown) connected to the network 106 to exchange audio, video, textual or symbolic data streams with each other or any other compatible devices.

In one embodiment, the communication device 102 may comprise a virtual multipoint control unit 112 configured to, at least one of: (1) create a logical representation of one or more hardware devices in communication with the communication device 102; (2) establish a communication bridge or channel between the UC applications executed by the communication device 102, and the corresponding UC applications being executed by at least one of the terminals 104; (3) store, manage, and process the multimodal input data streams received from the endpoints and/or associated devices such as the imaging device 108 and the audio device 110 connected to the network 106; and (4) request services from or deliver services to, or both, various devices connected to the network 106.

In one embodiment, the virtual multipoint control unit 112 may facilitate integration of real-time and non-real-time communication services by bridging communication among various UC applications being simultaneously executed on various endpoints, such as the communication device 102 and the terminals 104. Examples of such real-time services may include, but are not limited to, instant messaging, internet protocol (IP) telephony, video conferencing, desktop sharing, data sharing, call control, and speech recognition. Examples of these non-real-time services may include, but are not limited to, voicemail, E-mail, SMS, and fax. Further, examples of UC applications may include, but are not limited to, Microsoft Lync, Skype, IBM Sametime, and Cisco IP Communicator. Each of the UC applications may operate with same or different communication protocols and media formats.

In another embodiment, the virtual multipoint control unit 112 may be implemented as a standalone and dedicated “black box” including hardware and installed software, where the hardware is closely matched to the requirements and/or functionality of the software. Alternatively, the virtual multipoint control unit 112 may be implemented as a software application or a device driver. The virtual multipoint control unit 112 may enhance or increase the functionality and/or capacity of the network 106 to which it is connected. The virtual multipoint control unit 112 may be further configured, for example, to perform e-mail tasks, security tasks, network management tasks including IP address management, and other tasks.

In yet another embodiment, the virtual multipoint control unit 112 may be configured to expose its computing environment or operating code to the user, and may comprise related art I/O devices, such as camera, speaker, scanner, keyboard or display. The virtual multipoint control unit 112 may, however, comprise software, firmware or other resources that support remote administration and/or maintenance of the virtual multipoint control unit.

In a further embodiment, the virtual multipoint control unit 112 may comprise at least one processor (not shown) executing machine readable program instructions for performing various operations, such as those discussed above, on the received multimodal input audio, video, textual, or symbolic data stream. The virtual multipoint control unit 112 may comprise, in whole or in part, a software application working alone or in conjunction with one or more hardware resources. Such software applications may be executed by the processor on different hardware platforms or emulated in a virtual environment, discussed below in greater detail. Aspects of the virtual multipoint control unit 112 may leverage known, related art, or later developed off-the-shelf software.

Now turning to FIG. 1B, a second network environment 150 is provided. In this embodiment, the virtual multipoint control unit 112 may be integrated with, or installed on, a network appliance 152 that is associated with or used to establish the network 106. The network appliance 152 may be capable of operating as an interface device to assist exchange of program instructions and data between the communication device 102 and the terminals 104. In some embodiments, the network appliance 152 may be preconfigured or dynamically configured to comprise the virtual multipoint control unit 112 integrated with other devices. For example, the virtual multipoint control unit 112 may be integrated with the communication device 102 or any other device, such as at least one of the terminals 104 connected to the network 106. The communication device 102 may comprise a module (not shown), which introduces the communication device 102 to the network appliance 152, thereby enabling the network appliance 152 to invoke the virtual multipoint control unit 112 as a service. Examples of the network appliance 152 may include, but are not limited to, a DSL modem, a wireless access point, a router, a base station, and a gateway having a predetermined computing power sufficient for implementing the virtual multipoint control unit 112.

The virtual multipoint control unit 112 and the communication device 102 may collectively constitute a unified communication system, which may reside in a single device or may be distributed across multiple devices. The unified communication system may be implemented in hardware or a suitable combination of hardware and software, and may comprise one or more software systems operating on a digital signal processing platform. The “hardware” may comprise a combination of discrete components, an integrated circuit, an application-specific integrated circuit, a field programmable gate array, a digital signal processor, or other suitable hardware. The “software” may comprise one or more objects, agents, threads, lines of code, subroutines, separate software applications, two or more lines of code or other suitable software structures operating in one or more software applications or on one or more processors. Embodiments may comprise the unified communication system operating as or in a mobile switching center, network gateway system, Internet access node, application server, IMS core, service node, or some other communication system, including any combination thereof.

Similar to the communication device 102, each of the terminals 104 may be associated with various devices which may include, but are not limited to, a camera, display device, microphone, speakers, and one or more codecs, or any other type of conferencing hardware, or in any combination thereof. The terminals 104 may comprise video, voice and data communications capabilities (for e.g., videoconferencing capabilities) by being coupled to or including, various audio devices (e.g., microphones, audio input devices, speakers, audio output devices, telephones, speaker telephones, etc.), various video devices (e.g., monitors, projectors, displays, televisions, video output devices, video input devices, cameras, etc.), various networks (IP, PSTN, etc.) or any combination thereof. Each of the terminals 104 may comprise or implement one or more real time protocols, e.g., session initiation protocol (SIP), H.261, H.263, H.264, H.323, among others.

FIG. 2A illustrates the exemplary virtual multipoint control unit of FIG. 1A, according to an embodiment of the present disclosure. The virtual multipoint control unit 112 may comprise one or more processor(s) 202, one or more interface(s) 204, and a memory module 206. The processor(s) 202 may execute a machine readable program comprising instructions for manipulating the received video signal. The processor(s) 202 may comprise, for example, microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, logic circuits, and/or any devices that manipulate signals based on operational instructions. The virtual multipoint control unit 112 may further comprise, in whole or in part, a software application working alone or in conjunction with one or more hardware resources. Such software applications may be executed by one or more processors on different hardware platforms or emulated in a virtual environment. Aspects of the virtual multipoint control unit 112 may leverage known, related art, or later developed off-the-shelf software. Among other capabilities, the processor(s) 202 may be configured to fetch and execute instructions in computer readable memory module 206.

The interface(s) 204 may coordinate interactions of the virtual multipoint control unit 112 with at least one of the communication device 102 and the terminals 104 over the network 106. The interface(s) 204 may comprise a variety of known, related art, or later developed interfaces, such as (1) software interfaces, for example, an application programming interface, a graphical user interface, etc.; (2) hardware interfaces, for example, cable connectors, keyboards, touchscreen, scanners, display screens, etc.; or both. The interface(s) 204 facilitate receiving of the audio, video, or data signals, and reliable broadcast or multicast transmissions of one or more encoded output signals.

The memory module 206 may comprise any computer-readable medium known in the art, comprising, for example, volatile memory (e.g., RAM) and/or non-volatile memory (e.g., flash, etc.). The memory module 206 may comprise UC applications 208-1, . . . , 208-N (collectively referred to as UC applications 208), a virtual video mixer 210, a virtual audio mixer 212, virtual imaging devices 214-1, . . . 214-N (collectively, virtual imaging devices 214), virtual audio devices 216-1, . . . , 216-N (collectively, virtual audio devices 216), and a device driver module 218.

The virtual multipoint control unit 112 may be configured to implement various real-time and non-real time communication protocols for rendering and transmitting various audio, video, textual, or symbolic communication signals from the UC applications 208. In some embodiments, the virtual multipoint control unit 112 may be configured to determine various characteristics of the endpoints such as the communication device 102 and the terminals 104 for handling the respective received signals. The characteristics may include, but are not limited to, type of endpoint (for e.g., a mobile phone, a laptop, an IP television, etc.), supported video resolution, supported codecs, network connection speed, and so on.

The virtual video mixer 210 may be configured to receive a decoded video stream from each of the UC applications 208 or a physical local imaging device such as the imaging device 108, which is associated with the communication device 102. The virtual video mixer 210 may be further configured to switch between various video streams received from different UC applications 208 to either continuously display a received video stream while operating in a continuous presence mode, or tile a video stream received from each of the UC applications 208 from which a respective audio stream is actively received while operating in a voice-switched mode.

The virtual audio mixer 212 may be configured to receive an input audio stream either from a physical local audio device such as the audio device 110 (for e.g., a microphone) or a virtual audio device 216 (for e.g., a virtual sound card) in communication with each of the UC applications 208. The virtual audio mixer may use the received audio streams to create a mixed and re-encoded audio stream for being played or transmitted to one or more UC applications 208 simultaneously. The re-encoded audio stream excludes the input audio stream received from its corresponding virtual source, discussed below in greater detail.

The virtual imaging devices 214 and the virtual audio devices 216 may be logical representations of an imaging device (for e.g., a camera) and an audio device (for e.g., a speaker, a microphone, etc.) with no physical counterparts. The virtual imaging device 214 may be an image derived from the virtual video mixer 210. The virtual imaging device 214 may provide either a tiled image of active participants, or an image of the active speaker, received from the respective UC applications, depending on whether the virtual video mixer 210 is operating in voice-switched or mixer (i.e., continuous presence) mode.

The virtual audio devices 216 may be virtual representations of an audio device, which may be emulated by each of the UC applications 208. Similar to the virtual imaging device 214, the virtual audio device 216 has no physical counterpart and derives its input audio stream from the virtual audio mixer 212 as well as outputs audio streams to the virtual audio mixer 212. Each of the virtual imaging devices 214 and the virtual audio devices 216 may be created for each of the UC applications 208 for independently supporting the audio and video data streams being received from or sent to the endpoints or any other unified communication system simultaneously.

The device driver module 218 may comprise device drivers, which are software programs that introduce hardware devices such as endpoints (e.g., the communication device 102 and the terminals 104) and associated devices (e.g., the imaging device 108 and the audio device 110) to the virtual multipoint control unit 112. The device drivers handle software instructions received from the UC applications 208 for accessing the hardware devices and associated resources (e.g., attached peripheral devices, hardware memory, etc.) without causing conflicts.

Further, as shown in FIG. 2B, at least one of the UC applications such as the UC application 208-1 may comprise an audio encoder/decoder 220, a video encoder/decoder 222, a display window 224, and a virtual source 226. The audio encoder/decoder 220 may be configured to decode and encode audio streams received from or sent to the virtual audio mixer 212 respectively using known, related art, or later developed encoding/decoding protocols and standards. Similarly, the video encoder/decoder 222 may be configured to decode and encode the video streams received from or sent to the virtual video mixer 210 respectively using known, related art, or later developed encoding/decoding protocols and standards. The display window 224 refers to an output software interface configured to display the video streams/signals. The virtual source 226 may be configured to provide decoded video data stream to the virtual video mixer 210 via the display window 224.

FIG. 3 is a schematic that illustrates a virtual multipoint control unit 300 managing a multipoint video conference, according to an embodiment of the present disclosure. In one embodiment, the virtual multipoint control unit 300 may comprise a virtual video mixer 302, a virtual audio mixer 304, and a device driver module 306. The virtual video mixer 302 may be in communication with one or more physical local imaging devices such as a camera 308 and the device driver module 306 may be in communication with one or more physical local audio devices such as a local speaker 310 and a local microphone 312. The device driver module 306 comprises device drivers for operating or managing the respective one or more physical hardware devices such as the camera 308, the local speaker 310, and the microphone 312.

The virtual multipoint control unit 300 may further comprise various videoconferencing software applications such as UC applications 314-1, 314-2, and 314-3 (collectively, UC applications 314) for conducting a video conference among multiple endpoints, for e.g., the communication device 102 and the terminals 104. The first UC application 314-1 comprises a first audio encoder/decoder 316-1, a first video encoder 318-1, a first video decoder 320-1, a first display window 322-1, and a first virtual source 324-1. Similarly, the second UC application 314-2 comprises a second audio encoder/decoder 316-2, a second video encoder 318-2, a second video decoder 320-2, a second display window 322-2, and a second virtual source 324-2. The third UC application 314-3 comprises a third audio encoder/decoder 316-3, a third video encoder 318-3, a third video decoder 320-3, a third display window 322-3, and a third virtual source 324-3.

The display windows 322-1, 322-2, 322-3 (collectively, display windows 322) may be configured to receive the decoded video streams from the respective video decoders 320-1, 320-2, 320-3 (collectively, video decoders 320) for displaying the video streams on a local display device such as an HDTV display.

The virtual sources 324-1, 324-2, 324-3 (collectively, virtual sources 324) may be configured to receive the decoded video data streams via the respective display windows 322 for being sent to the virtual video mixer 302, which combines the received video streams and renders a single video stream (e.g., to display images from each of the video streams in a tiled format) to reduce the required network bandwidth for display or recording.

Each of the UC applications 314 may communicate with a respective set of UC virtual devices to allow the UC applications 314 to access the physical hardware devices, which are in communication with the virtual multipoint control unit 300 simultaneously. For example, the UC application 314-1 may communicate with a first set of UC virtual devices including a first UC virtual camera 326-1 and a first UC virtual sound card 328-1, and the UC application 314-2 may communicate with a second set of UC virtual devices including a second UC virtual camera 326-2 and a second UC virtual sound card 328-2. Similarly, the UC application 314-3 may communicate with a third set of UC virtual devices including a third UC virtual camera 326-3 and a third UC virtual sound card 328-3.

Further, each set of the UC virtual devices may emulate a physical device by defining a software configuration and a related hardware configuration, both being compatible with the respective UC applications. Correspondingly, each of the UC virtual cameras 326-1, 326-2, 326-3 (collectively, UC virtual cameras 326) may be a logical representation or an image of an imaging device (e.g., a camera) without being mapped or corresponding to a physical camera. Similarly, each of the UC virtual sound cards 328-1, 328-2, 328-3 (collectively, UC virtual sound cards 328) may refer to a logical representation or an image of an audio device (e.g., a speaker or a microphone) without being mapped or corresponding to a physical audio device. The UC virtual cameras 326 may be derived from the virtual video mixer 302 and the UC virtual sound cards 328 may be derived from the virtual audio mixer 302 by the respective UC applications 314.

During a video conference, multiple endpoints such as the communication device 102 and the terminals 104 may execute various videoconferencing software applications similar to the UC applications 314 in the virtual multipoint control unit 300. Each of these videoconferencing software applications may interact with the corresponding UC applications 314 in the virtual multipoint control unit 300 during a single communication session to conduct the video conference, since the videoconferencing software applications may not be compatible with each other due to different control protocols and media formats being used. The virtual multipoint control unit 300 may operate in four distinct modes, namely, inbound audio mode, inbound video mode, outbound audio mode, and outbound video mode, to handle any audio, video, or data streams to and from these UC applications 314, while simultaneously providing one or more local hardware devices to each of the participating UC applications 314.

In the inbound audio mode, the endpoints such as the communication device 102 and the terminals 104 may capture local audio data stream and provide encoded audio streams via UC applications 314 (for e.g., Microsoft Lync, Skype, Cisco IP communicator, etc.) executing on each of these endpoints. The provided encoded audio streams may be received by the audio encoder/decoders 316-1, 316-2, 316-3 (collectively, audio encoders/decoders 316) of the same UC applications 314 running in the virtual multipoint control unit 300. The received audio streams may be encoded in any of the known, related art, or later developed real-time audio protocols such as RTP (real-time transport protocol). The audio encoder/decoders 316 may be configured to decode the received audio streams and send the decoded audio streams to the respective UC virtual sound cards 328, which may route the decoded audio streams to the virtual audio mixer 304 via the virtual video mixer 302. The UC virtual sound cards 328 facilitate to provide the decoded audio streams to the virtual audio mixer 304 from multiple UC applications 314 simultaneously.

The decoded audio streams may facilitate the operation of the virtual video mixer 302 being configured to operate in the voice-switched mode. The received audio streams may be summed at the virtual audio mixer 304 may be configured to perform a summation of the received audio streams to generate a single audio stream so as to minimize audio interferences or background noise as known in the art. The generated audio stream may be sent to one or more physical audio devices such the local speaker 310. When the generated audio stream is played by the local speaker 310, the virtual audio mixer 304 may send a notification to the virtual video mixer 302 to allow synchronization between the audio and the video streams. In some embodiments, the virtual video mixer 302 may add delay to a received video stream to synchronize it with the audio stream.

In the outbound audio mode, the local microphone 312 may capture audio data stream of the local participants and send the captured audio data stream to the virtual audio mixer 304. The virtual audio mixer 304 may send the captured audio stream to the audio encoder/decoders, such as the audio encoder/decoder 316-1, via the respective UC virtual sound card 328-1 of a selected UC application, such as the UC application 314-1, among the available UC applications 314. Such selection of the UC application may be performed on-the-fly by a user or may be preprogrammed. The audio encoder/decoder 316-1 may encode the received audio data stream using a predetermined real-time protocol known in the art, related art or later developed, and transmit the encoded audio data stream to a predetermined endpoint such as the communication device 102 or the terminals 104. The audio streams may be encoded using any of the known, related art, or later developed real-time audio protocols such as RTP (real-time transport protocol). The audio encoder/decoders 316-2 and 316-3 may also operate in a similar manner.

In the inbound video mode, the endpoints such as the communication device 102 and the terminals 104 may capture video data stream of participants local to the endpoints and provide encoded video streams via the videoconferencing software applications being executed on each of these endpoints. The provided encoded audio streams may be received by the video decoders 320-1, 320-2, 320-3 (collectively, video decoders 320) of the respective UC applications 314, which were used at the endpoints to send the video streams to the virtual multipoint control unit 300. The received video streams may be encoded in any of the known, related art, or later developed real-time video protocols such as H.264, H.261, Scalable video coding (SVC), of any other protocol known in the art, related art, or developed later. The video decoders 320 may be configured to decode the received video streams and send the decoded video streams to the respective UC virtual cameras 326-1, 326-2, 326-3 (collectively, UC virtual cameras 326), which may route the decoded video streams to the virtual video mixer 302.

The UC virtual cameras 326 facilitate to provide the decoded video streams for use from multiple UC applications 314 simultaneously. The virtual video mixer 302 may perform a summation of the received video streams to generate a single video stream for at least one of (1) minimizing video interferences or background noise; and (2) represent the video images from different decoded video streams as tiles for display. The decoded video streams may be displayed on a display device (not shown) (e.g., an interactive display, HDTV display, etc.) on the basis of the virtual video mixer 302 being preset to operate in continuous presence mode or the voice-switched mode.

In the outbound video mode, the local camera 308 may capture the video data stream of the local participants and send the captured video data stream to the virtual video mixer 302. The virtual video mixer 302 sends the captured video stream to a video encoder such as the video encoder 318-1 via the UC virtual camera 326-1 of a selected UC application, such as the UC application 314-1, among the available UC applications 314. Such selection of the UC application 314-1 may be performed on-the-fly by a user or may be preprogrammed. The video encoders 320 may encode the received video data stream using a predetermined real-time protocol known in the art, related art or later developed and transmit the encoded video data stream to a predetermined endpoint such as the communication device 102 or the terminals 104. The video streams may be encoded using any of the known in the art, related art, or later developed real time protocols, e.g., session initiation protocol (SIP), H.261, H.263, H.264, H.323, etc.

FIG. 4 is a schematic implementation of a device driver module of the virtual multipoint control unit for communicating with hardware devices, according to an embodiment of the present disclosure. Illustrated embodiments are disclosed in the context of a video conference environment 400 including (1) a videoconferencing system 402 (e.g., CLEARONE Collaborate Room) comprising a video encoder 404 and a video decoder 406; (2) a UC application 408 comprising a UC video encoder 410 and a UC decoder 412, (3) a physical camera 414, (4) a display device 416, and (5) the device driver module 306 of the virtual multipoint control unit 300. The device driver module 306 comprises a video mixer driver 418 and a video display mixer driver 420. The physical camera 414 may be in communication with the video conferencing system 402 and the UC application 408 via the video display mixer driver 418. The display device 416 may be in communication with the videoconferencing system 402 and the UC application 408 via the video display mixer driver 420.

The operation of the virtual multipoint control unit 300 may be described in four different modes. In the first mode, the physical camera 414 may capture a local image of the participants and provide a video stream for transmission. The video mixer driver 418 may be configured to transmit the captured video stream to a physical hardware such as the video conferencing system 402 or to the UC application 408 based on a transmission mode selected by a user. When the transmission mode indicates for a hardware to be used for transmission, the video mixer driver 418 guides the captured video stream to the video encoder 404, which may encode the video stream using any of the known in the art, related art, or later developed encoding algorithms for real-time network transmission using a predetermined network protocol such as H.263, SIP, etc.

When the transmission mode indicates for the UC application 408 to be used for transmission, the video mixer driver 418 guides the captured video stream to the UC video encoder 410, which may encode the video stream using any of the known in the art, related art, or later developed encoding algorithms for real-time network transmission using a predetermined network protocol such as H.263, SIP, etc. In some embodiments, the captured video stream may be simultaneously sent to the video encoder 404 and the UC video encoder 410 for encoding and network transmission.

Similarly, the video display mixer driver 420 may be configured to manage an encoded video stream received from a network such as the network 106 via the videoconferencing system 402. The received video stream may be encoded using any of the known in the art, related art, or later developed algorithms according to predetermined network protocols. The video decoder 406 may receive and decode the encoded video stream to generate a decoded video stream, which may be sent to the video mixer driver 418. The video mixer driver 418 may be configured to guide the decoded video stream to the video display mixer driver 420, which may transmit the decoded video stream to the display device 416 for display. Alternatively, the encoded video stream may be received by the UC video decoder 412, which may be configured to decode the encoded video stream and send a generated decoded video stream to the display device 416 via the video display mixer driver 420 for display.

In one embodiment, a virtual multipoint control unit 112, 300 is in communication with a plurality of devices over a network 106. The virtual multipoint control unit 112, 300 comprises a plurality of UC applications 208, 314, at least one virtual imaging device 214, at least one virtual audio device 216, a virtual video mixer 210, and a virtual audio mixer 212. The plurality of UC applications 208, 314 is executed on at least one of the plurality of devices 102, 104. Each of the plurality of UC applications 208, 314 receives an encoded audio data stream and an encoded video data stream. The plurality of UC applications 208, 314 decodes the received audio data and the video data streams. The at least one virtual imaging device 214 is mapped to each of the plurality of UC applications 208, 314. The at least one virtual audio device 216 is mapped to each of the plurality of UC applications 208, 314. The virtual video mixer 210 is in communication with a physical imaging device 108. The virtual video mixer 210 receives the decoded video data stream from each of the plurality of UC applications 208, 314 via the at least one virtual imaging device 214. The virtual audio mixer 212 is in communication with a physical audio device 110. The virtual audio mixer 212 receives the decoded audio data stream from each of the plurality of UC applications 208, 314 via the at least one virtual audio device 216.

In another embodiment, a system for managing communication among a plurality of devices is disclosed. The system is employed within a communication network 106. The system comprises a communication device 102 and a virtual multipoint control unit 112, 300. The communication device 102 receives encoded audio and video data streams via a plurality of UC applications 208, 314. The plurality of UC applications 208, 314 decodes the received encoded audio data stream and the received encoded video data stream. The virtual multipoint control unit 112, 300 is in communication with the communication device 102. The virtual multipoint control unit 112, 300 comprises at least one virtual imaging device 214, at least one virtual audio device 216, a virtual video mixer 210, and a virtual audio mixer 212. The at least one virtual imaging device 214 is mapped to each of the plurality of UC applications 208, 314. The at least one virtual audio device 216 is mapped to each of the plurality of UC applications 208, 314. The virtual video mixer 210 is in communication with a physical imaging device 108. The virtual video mixer 210 receives the decoded video data stream from each of the plurality of UC applications 208, 314 via the at least one virtual imaging device 214. The virtual audio mixer 212 is in communication with a physical audio device 110. The virtual audio mixer 212 receives the decoded audio data stream from each of the plurality of UC applications 208, 314 via the at least one virtual audio device 216.

In yet another embodiment, a non-transitory computer readable medium storing a program of instructions executable by the computing device to perform a method for employing a virtual multipoint control unit 112, 300 for unified communications is disclosed. The method comprises receiving, from a plurality of terminals 104, an encoded audio data stream and an encoded video data stream. The method also comprises decoding, using a plurality of UC applications 208, 314, the received encoded audio data stream and the received encoded video data stream. The method further comprises mapping, using a virtual multipoint control unit 112, 300, at least one virtual imaging device 214 and at least one virtual audio device 216 to each of the plurality of UC applications 208, 314. The method also comprises communicating, using a virtual video mixer 210, the decoded video data stream to a physical imaging device 108 via the at least one virtual imaging device 214. Furthermore, the method comprises communicating, using a virtual audio mixer 212, the decoded audio data stream to a physical audio device 110 via the at least one virtual audio device 216.

In still another embodiment, a method for managing communication among a plurality of devices is disclosed. The method comprises receiving, from a plurality of terminals 104, an encoded audio data stream and an encoded video data stream. The method also comprises decoding, using a plurality of UC applications 208, 314, the received encoded audio data stream and the received encoded video data stream. The method further comprises mapping, using a virtual multipoint control unit 112, 300, at least one virtual imaging device 214 and at least one virtual audio device 216 to each of the plurality of UC applications 208, 314. The method also comprises communicating, using a virtual video mixer 210, the decoded video data stream to a physical imaging device 108 via the at least one virtual imaging device 214. Furthermore, the method comprises communicating, using a virtual audio mixer 212, the decoded audio data stream to a physical audio device 110 via the at least one virtual audio device 216.

Other embodiments of the present invention will be apparent to those skilled in the art after considering this disclosure or practicing the disclosed invention. The specification and examples above are exemplary only, with the true scope of the present invention being determined by the following claims.

Claims

1. A virtual multipoint control unit in communication with a plurality of devices over a network, comprising:

a plurality of unified communication (UC) applications being executed on at least one of the plurality of devices, each of the plurality of UC applications receiving an encoded audio data stream and an encoded video data stream, wherein the plurality of UC applications decode the received audio and the video data streams;
at least one virtual imaging device mapped to each of the plurality of UC applications;
at least one virtual audio device mapped to each of the plurality of UC applications;
a virtual video mixer in communication with a physical imaging device, wherein the virtual video mixer receives the decoded video data stream from each of the plurality of UC applications via the at least one virtual imaging device; and
a virtual audio mixer in communication with a physical audio device, wherein the virtual audio mixer receives the decoded audio data stream from each of the plurality of UC applications via the at least one virtual audio device.

2. The claim according to claim 1, wherein the plurality of UC applications comprises at least one of Microsoft Lync, IBM Sametime, Cisco IP Communicator, and Skype.

3. A system for managing communication among a plurality of devices, the system being employed within a communication network, comprising:

a communication device receiving encoded audio and video data streams via a plurality of unified communication (UC) applications, wherein the plurality of UC applications decode the received encoded audio data stream and the received encoded video data stream; and
a virtual multipoint control unit in communication with the communication device, wherein the virtual multipoint control unit comprises: at least one virtual imaging device mapped to each of the plurality of UC applications; at least one virtual audio device mapped to each of the plurality of UC applications; a virtual video mixer in communication with a physical imaging device, wherein the virtual video mixer receives the decoded video data stream from each of the plurality of UC applications via the at least one virtual imaging device; and a virtual audio mixer in communication with a physical audio device, wherein the virtual audio mixer receives the decoded audio data stream from each of the plurality of UC applications via the at least one virtual audio device.

4. The claim according to claim 3, wherein the plurality of UC applications comprises at least one of Microsoft Lync, IBM Sametime, Cisco IP Communicator, and Skype.

5. A non-transitory computer readable medium storing a program of instructions executable by a computing device to perform a method for employing a virtual multipoint control unit for unified communications, comprising:

receiving, from a plurality of terminals, an encoded audio data stream and an encoded video data stream;
decoding, using a plurality of unified communication (UC) applications, the received encoded audio data stream and the received encoded video data stream;
mapping, using a virtual multipoint control unit, at least one virtual imaging device and at least one virtual audio device to each of the plurality of UC applications;
communicating, using a virtual video mixer, the decoded video data stream to a physical imaging device via the at least one virtual imaging device; and
communicating, using a virtual audio mixer, the decoded audio data stream to a physical audio device via the at least one virtual audio device.

6. The claim according to claim 5, wherein the plurality of UC applications comprise at least one of Microsoft Lync, IBM Sametime, Cisco IP Communicator, and Skype.

7. A method for managing communication among a plurality of devices, the method comprising:

receiving, from a plurality of terminals, an encoded audio data stream and an encoded video data stream;
decoding, using a plurality of unified communication (UC) applications, the received encoded audio data stream and the received encoded video data stream;
mapping, using a virtual multipoint control unit, at least one virtual imaging device and at least one virtual audio device to each of the plurality of UC applications;
communicating, using a virtual video mixer, the decoded video data stream to a physical imaging device via the at least one virtual imaging device; and
communicating, using a virtual audio mixer, the decoded audio data stream to a physical audio device via the at least one virtual audio device.

8. The claim according to claim 8, wherein the plurality of UC applications comprises at least one of Microsoft Lync, IBM Sametime, Cisco IP Communicator, and Skype.

9. A method for manufacturing a system for managing communication among a plurality of devices, the system being employed within a communication network, comprising:

providing a communication device receiving encoded audio and video data streams via a plurality of unified communication (UC) applications, wherein the plurality of UC applications decode the received encoded audio data stream and the received encoded video data stream; and
providing a virtual multipoint control unit in communication with the communication device, wherein the virtual multipoint control unit comprises: at least one virtual imaging device mapped to each of the plurality of UC applications; at least one virtual audio device mapped to each of the plurality of UC applications; a virtual video mixer in communication with a physical imaging device, wherein the virtual video mixer receives the decoded video data stream from each of the plurality of UC applications via the at least one virtual imaging device; and a virtual audio mixer in communication with a physical audio device, wherein the virtual audio mixer receives the decoded audio data stream from each of the plurality of UC applications via the at least one virtual audio device.

10. The claim according to claim 9, wherein the plurality of UC applications comprises at least one of Microsoft Lync, IBM Sametime, Cisco IP Communicator, and Skype.

Patent History
Publication number: 20150077509
Type: Application
Filed: Jul 27, 2014
Publication Date: Mar 19, 2015
Inventors: Avishay Ben Natan (Hod Hasharon), Derek Graham (Salt Lake City, UT)
Application Number: 14/341,818
Classifications
Current U.S. Class: Conferencing With Multipoint Control Unit (348/14.09)
International Classification: H04N 7/15 (20060101);