CUSTOM TITANIUM ALLOY FOR 3-D PRINTING AND METHOD OF MAKING SAME

A Ti-6Al-4V titanium powder alloy composition having enhanced strength resulting from the addition of one or more of the following elements without requiring an increase in oxygen content: Aluminum Iron Nitrogen Carbon The composition may also be used for Ti-6Al-4V titanium alloy starting bar stock.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the priority of Provisional Application No. 62/338,018 filed on May 18, 2016 and entitled “CUSTOM TITANIUM ALLOY FOR 3-D PRINTING”.

BACKGROUND OF THE INVENTION I. Field of the Invention

3-D printing technology has advanced into mainstream manufacturing for polymer based material systems and has caused a revolution in computer based manufacturing. Polymers based 3-D manufacturing maturation started with basic printing technology and existing polymer formulations. As it matured, the technology and polymer formulations evolved synergistically to deliver desired performance. Metals based 3-D printing is less mature but is beginning to follow a rapid growth curve. The metals printing technologies have narrowed primarily to powder-bed printing systems based on electron-beam, and laser direct melt and binder-jet technologies. Due to being in the early stages of maturation, little has been done to customize alloy composition to optimize overall 3-D manufactured part performance. Of the alloys being applied, refractory alloys such as titanium are among the least mature in this respect.

II. Description of the Prior Art Problem

The primary cost driver for all three primary 3-D manufacturing methods for titanium parts is the cost of titanium powder. As a result, the efficient use of the titanium powder is essential to successful market expansion of that product. The powder bed printing methods utilize a build box in which the component is built up layer by layer from powder. At completion the build box is full of powder and the component produced is within the box filled with the powder. After printing, the loose powder is removed from around the part and finishing operations are performed on the part. Since only a small fraction of the powder in the build box is incorporated into the part, there is a significant incentive to reuse the excess high cost powder.

Of the three primary 3-D printing methods applied to titanium alloys, the direct melt technologies based on electron-beam and laser melting represent the majority of titanium part manufacture but the excess titanium powder suffers from oxygen pickup each cycle through the process. The most common alloy for titanium parts is Ti-6Al-4V, grade 5 with a maximum allowable oxygen content of 0.2 wt %. Consequently the manufacturers want to start with as low an oxygen content in the powder as possible to enable the maximum number of re-use cycles for the powder before the oxygen content exceeds the specification limit.

At the same time, the customers for the 3-D printed Ti-6Al-4V parts want maximum mechanical tensile strength. The typical approach to achieve high strength Ti-6Al-4V parts is to increase oxygen content close to the upper limit of the Ti-6Al-4V grade 5 specification. This of course results in the minimum number of re-use cycles since the oxygen content would quickly exceed that allowed in the specification. This creates a need for a custom Ti-6Al-4V powder alloy composition to compete with the Ti-6Al-4V grade 5 composition and achieve high strength while having an initial low oxygen content to allow the maximum number of re-use cycles.

BRIEF SUMMARY OF THE INVENTION Solution

Reviewing the ASTM B348 Grade 5 specification for Ti-6Al-4V grade 5 alloy reveals other strength enhancing elements in the alloy specification that can be used to enhance strength independently of oxygen.

Table 1 illustrates the standard composition specification for Ti-6Al-4V Grade 5 alloy. Oxygen is typically used to enhance strength because it is easy and as a single element it typically has the most effect on strength. Other elements which affect strength include: aluminum, iron, nitrogen, and carbon, each with a positive effect on strength. These elements are not significantly affected by the 3-D printing process, and a combination of these elements can achieve the same strength enhancing results as oxygen enhancement.

DETAILED DESCRIPTION OF THE INVENTION

Table 2 illustrates the specification for Ti-6Al-4V titanium powder alloy with aluminum, iron, nitrogen and carbon composition ranges that, when combined, provide the desired strength enhancement in the alloy without high initial oxygen content. Therefore the baseline strength of 3-D printed Ti-6Al-4V parts produced with this Ti-6Al-4V composition would be similar to higher oxygen Ti-6Al-4V and the Grade 5 parts but would have the low oxygen desired for maximum re-use of the powder. The strength would further increase as the powder picked up oxygen as a result of re-use resulting in an overall higher strength curve and a significantly lower cost of production.

TABLE 1 Composition of Ti—6Al—4V alloy as defined in the ASTM B348 Grade 5 specification Ti—6Al—4V ASTM B348 Grade 5 Min Max Element wt % wt % Aluminum 5.5 6.75 Vanadium 3.5 4.5 Iron 0.4 Oxygen 0.2 Nitrogen 0.05 Carbon 0.08 Hydrogen 0.015 Other Elements, each 0.1 Other Elements, total 0.4 Titanium Balance

TABLE 2 Composition of Ti—6Al—4V enhanced strength titanium alloy. Enhanced Strength Ti—6Al—4V Min Max Element wt % wt % Aluminum 6.3 6.7 Vanadium 4.2 4.5 Iron 0.25 0.4 Oxygen 0.1 0.13 Nitrogen 0.02 0.05 Carbon 0.04 0.08 Hydrogen 0.0125 Other Elements, each 0.1 Other Elements, total 0.4 Titanium Balance

The following table lists the chemical analysis of starting bar stock formulated to produce enhanced strength Ti-6Al-4V powder.

TABLE 3 Composition of Ti—6Al—4V enhanced strength titanium alloy starting bar stock. Element wt % Aluminum 6.44 Vanadium 4.28 Iron 0.20 Oxygen 0.09 Nitrogen 0.04 Carbon 0.05 Hydrogen 0.002 Yttrium <0.001 Titanium Balance

The experimentally determined room temperature tensile properties of this starting stock are given in the following table with the required minimum properties for ASTM B348 Grade 5.

TABLE 4 Room temperature properties of enhanced strength titanium alloy starting bar stock. Tensile 0.2% Yield Reduction Strength Strength Elongation of ksi (MPa) ksi (MPa) % Area % Enhanced 145 (1000) 131 (905) 16 44 Ti—6Al—4V ASTM B348 130 (896) min 120 (827) min 10 min 25 min Grade 5

As indicated in Table 4, the room temperature tensile properties of the enhanced Ti-6Al-4V meets the property requirements of the ASTM B348 Grade 5 specification although the oxygen content is well below the typical oxygen content of Grade 5 product. Conversion of this starting stock to powder will result in a small increase in oxygen content which will increase strength further with essentially no detriment to ductility.

While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims

1. An enhanced strength Ti-6Al-4V titanium powder alloy having the following composition by weight percent:

Aluminum—6.3 to 6.7%
Vanadium—4.2 to 4.5%
Iron—0.25 to 0.4%
Oxygen—0.1 to 0.13%
Nitrogen—0.02 to 0.05%
Carbon—0.04 to 0.08%
Hydrogen—0 to 0.0125%
Other Elements—0 to 0.4%
Titanium—Balance.

2. (canceled)

3. (canceled)

4. (canceled)

5. (canceled)

6. (canceled)

7. (canceled)

8. An enhanced strength Ti-6Al-4V titanium alloy starting bar stock having the following composition by weight percent:

Aluminum—6.44
Vanadium—4.28
Iron—0.20
Oxygen—0.09
Nitrogen—0.04
Carbon—0.05
Hydrogen—0.002
Yttrium—<0.001
Titanium—Balance.

9. (canceled)

10. (canceled)

11. (canceled)

12. (canceled)

13. (canceled)

14. (canceled)

15. (canceled)

16. A method of increasing the strength of Ti-6Al-4V titanium alloy powder or starting bar stock without increasing oxygen content, comprising adding to the powder or starting bar stock one or more of the following elements:

Aluminum
Iron
Nitrogen
Carbon,
wherein in the case of alloy powder, the addition results in the following weight percent of the elements for the alloy powder:
Aluminum—6.3 to 6.7%
Iron—0.25 to 0.4%
Nitrogen—0.02 to 0.05%
Carbon—0.04 to 0.08%; and
wherein in the case of starting bar stock, the addition results in the following weight percent of the elements for the starting bar stock:
Aluminum—6.3% to 6.7%
Iron—0.15% to 0.30%
Nitrogen—0.02% to 0.05%
Carbon—0.04% to 0.08%.

17. (canceled)

18. (canceled)

19. A 3-D printing method comprising processing the enhanced strength Ti-6Al-4V titanium powder alloy of claim 1 with a powder-bed printing system based on e-beam, a laser direct melt technology, or a binder-jet technology, to produce a 3-D printed object.

20. A 3-D printing method comprising processing a recycled powder alloy of Ti-6Al-4V titanium alloy with a powder-bed printing system based on e-beam, a laser direct melt technology, or a binder-jet technology, to produce a 3-D printed object, wherein the recycled powder alloy of Ti-6Al-4V titanium alloy is obtained from an earlier processing of the enhanced strength Ti-6Al-4V titanium powder alloy of claim 1 with a powder-bed printing system based on e-beam, a laser direct melt technology, or a binder-jet technology.

21. A 3-D printing method comprising processing a Ti-6Al-4V titanium powder alloy with a powder-bed printing system based on e-beam, a laser direct melt technology, or a binder-jet technology, to produce a 3-D printed object, wherein the Ti-6Al-4V titanium powder alloy is prepared from the enhanced strength Ti-6Al-4V titanium alloy starting bar stock of claim 8.

22. A 3-D printing method comprising processing a Ti-6Al-4V titanium powder alloy with a powder-bed printing system based on e-beam, a laser direct melt technology, or a binder-jet technology, to produce a 3-D printed object, wherein the Ti-6Al-4V titanium powder alloy is produced by the method of claim 16.

23. A 3-D printing method comprising processing a Ti-6Al-4V titanium powder alloy with a powder-bed printing system based on e-beam, a laser direct melt technology, or a binder-jet technology, to produce a 3-D printed object, wherein the Ti-6Al-4V titanium powder alloy is prepared from a Ti-6Al-4V starting bar stock, which is produced by the method of claim 16.

24. A 3-D printing system comprising:

1) the enhanced strength Ti-6Al-4V titanium powder alloy of claim 1; and
2) a 3-D printer.

25. The 3-D printing system of claim 24, wherein the 3-D printer is an e-beam based powder-bed printing system, a laser direct melt technology based printing system, or a binder-jet technology based printing system.

26. A 3-D printing system comprising:

1) the enhanced strength Ti-6Al-4V titanium alloy starting bar stock of claim 8; and
2) a 3-D printer.

27. The 3-D printing system of claim 26, wherein the 3-D printer is an e-beam based powder-bed printing system, a laser direct melt technology based printing system, or a binder-jet technology based printing system.

28. A 3-D printing system comprising:

1) a Ti-6Al-4V titanium powder alloy; and
2) a 3-D printer,
wherein the Ti-6Al-4V titanium powder alloy is produced by the method of claim 16.

29. The 3-D printing system of claim 28, wherein the 3-D printer is an e-beam based powder-bed printing system, a laser direct melt technology based printing system, or a binder-jet technology based printing system.

30. A 3-D printing system comprising:

1) a Ti-6Al-4V titanium alloy starting bar stock; and
2) a 3-D printer,
wherein the Ti-6Al-4V titanium alloy starting bar stock is produced by the method of claim 16.

31. The 3-D printing system of claim 30, wherein the 3-D printer is an e-beam based powder-bed printing system, a laser direct melt technology based printing system, or a binder-jet technology based printing system.

Patent History
Publication number: 20200063238
Type: Application
Filed: Oct 28, 2019
Publication Date: Feb 27, 2020
Inventor: Charles Frederick Yolton (Moon Twp., PA)
Application Number: 16/665,628
Classifications
International Classification: C22C 1/04 (20060101); C22C 14/00 (20060101); C22C 1/02 (20060101); B22F 1/00 (20060101); B33Y 70/00 (20060101); B22F 3/105 (20060101);