MULTI PORT FLUID CONNECTOR
Aspects of the disclosure relate to a fluid connector mechanism having an opening therethrough. The mechanism may include a connector having a connector base portion and a piston portion including a piston housing and a piston. The opening may extend from the piston portion, through the piston, and through the connector base portion. The mechanism may also include a base having first and second pairs of O-rings arranged in first and second pairs of grooves, the opening further extending from one end of the base to another. The connector base portion and the base may be configured to engage with one another and create fluid-tight seals with the O-rings while the piston is arranged outside of the base.
Various systems, such as cranes, towing machines, and other devices, employ grabbing mechanisms to grab, hold, lift, and move objects. These mechanisms may include hooks, pneumatically operated claws or grabbers, etc. which require pneumatic connectors. These connectors are typically configured for single connection devices or rather control of a single device via a single fluid port.
BRIEF SUMMARYAspects of the present disclosure provide a system comprising a fluid connector mechanism having an opening therethrough. The fluid connector including a connector having a connector base portion and a piston portion including a piston housing, a piston. The opening extends from the piston portion, through the piston, and through the connector base portion. The fluid connector also includes a base having first and second pairs of O-rings arranged in first and second pairs of grooves. The opening extending from one end of the base to another, and the connector base portion and the base are configured to engage with one another and create fluid-tight seals with the O-rings while the piston is arranged outside of the base.
In one example, the piston housing includes a chamber, and the piston is arranged such that pressurizing the chamber causes the piston to move relative to the piston housing and engage the connector with the base. In another example, the connector base portion also includes first and second chambers configured to allow fluid to flow from the connector into the base when the connector is engaged with the base. In this example, the first and second fluid chambers are completely separate and do not allow for fluid to pass between the first chamber and the second chamber during operation. In addition, the connector base portion includes a chamfer and the first and second chambers include respective chamber openings arranged in the chamfer. In addition, the base includes a groove arranged in an interior surface of the base and another O-ring in the groove, and when the connector is engaged with the base, the another O-right creates a pair of separate chambers, and each of the respective chamber openings is connected to one of the pair of separate chambers. In addition, the base includes a pair of fluid ports, and each one of the pair of separate chambers is connected to a respective one of the pair of fluid ports. In some examples, the system includes a plug in one of the respective chamber openings. In some examples, the first chamber includes a first chamber opening arranged in the chamfer and the second chamber includes a second chamber opening arranged in an outer side surface of the connector base portion. In this example, the base includes a fluid port and when the connector is engaged with the base, the first chamber opening is arranged to allow fluid to flow from the first chamber opening into a chamber between the connector and the base and out of the mechanism through the fluid port. In another example, the base also includes a port positioned between the first pair of grooves, and when the connector is engaged with the base, the second chamber opening is arranged in fluid communication with the port. In another example, the base includes a groove arranged in an interior surface of the base and another O-ring in the groove. In another example, the first pair of grooves is arranged in a first interior surface of the base and the second pair of grooves is arranged in a second interior surface of the base. In this example, the first interior surface is opposite of the second interior surface. In another example, the connector base portion includes a first chamfer and the base includes a second chamfer, and when the connector base portion is inserted into the base, the first chamfer is configured to engage with the second chamfer and thereby self-align the connector with the base. In another example, the first chamfer is an outer chamfer, the connector base portion includes a third chamfer that is an interior chamfer, the base includes a fourth chamfer, and when the connector base portion is inserted into the base, the third interior chamfer is configured to engage with the fourth chamfer and thereby self-align the connector with the base. In this example, the third chamfer is arranged to enable load distribution during operation and prevents the first and second pairs of O-rings from slipping out of the first and second pairs of grooves. In another example, the connector is configured for a blind mate connection with the base. In another example, the system also includes a balloon having a balloon envelope, and the base portion is connected to a structure which is connected to a fill port of the balloon envelope, and in operation, lift gas may be provided to the fill port via the opening and the structure.
The technology relates to a multi-port fluid connector mechanism for fluid routing. An example mechanism may include connector and a base configured to engage with one another. The connector and base are configured to pass fluid from the connector portion into and through the base portion via a plurality of individual chambers. This may enable the mechanism to supply different fluids independently from one another. Other features and benefits are discussed further below.
The connector may include two substructures: a piston portion and a connector base portion. The piston portion and the connector base portion may be attached to one another via bolts or any other connection devices or means. The connector may include an interior opening in order to enable a first fluid to pass from a first end of the connector to a second end of the connector.
The piston portion may include a cylindrical piston housing including an interior piston. The piston housing may include one or more openings which may be connected to a pressurized or compressed air source in order to move the piston relative to the piston housing. The opening that passes through the piston portion also passes through the piston. Moving the piston also changes the position of the opening relative to the piston housing.
The connector base portion may also include a pair of chambers separate from the opening. These chambers may allow fluid to enter into the connector base portion and flow into the base.
The base may include a plurality of sealing O-rings. The plurality of O-rings may include corresponding pairs of O-rings each arranged in respective grooves in opposing interior side surfaces of the base as well as a fifth O-ring arranged in a groove in a bottom interior side surface of the base. The base may also include an inward-oriented chamfer and an outward-oriented chamfer, each configured to engage with a corresponding chamfer of the connector. The base may also include a generally complementary shape with respect to the connector base portion. This may enable the O-rings to create the fluid-tight seals when the connector is engaged with the base.
The base portion may also include a pair of fluid ports which allow fluid from the chambers to exit the base portion. Once engaged with the connector, the O-ring arranged in the groove of the base interior surface may create a pair of chambers between the connector and the base. Each one of these chambers may be connected to a respective one of the pair of fluid ports as well as a respective one of the chambers of the connector base portion. In this regard, the chamber openings in the outer chamfer may align with respective chambers allowing fluid to flow from each one of the chamber openings into a respective one of the chambers.
Alternatively, rather than using an O-ring to create a pair of chambers and rather than both of the chamber openings allowing fluid to flow out of the connector at the chamfer, one of the chamber openings may be removed or blocked. In this instance, an additional chamber opening may be arranged in an outer side surface of the connector base portion. When the connector is engaged with the base, the additional chamber opening may be positioned between the pair of O-rings arranged in one of the interior surfaces of the base. In this regard, the pair of O-rings may form a fluid-tight chamber between the connector and the base. The base also includes a port to enable fluid from the chamber to exit the base.
The mechanism described herein may be utilized in any number of gas dispensing, metering or storage equipment configurations and may also be used with various other devices as described further below.
The features described herein may provide a wide range of useful benefits. For instance, the configuration of the chamfers, which enables self-aligning or centering, may minimize engagement time as well as the potential for mistakes when aligning the connector and the base with one another. Thus, the mechanism provides for precise control in imprecise environments and may be especially useful in non-precision equipment, like large cranes or where a large arm is incapable of repeatedly returning to the exact same position. In addition, because the position of the piston can be controlled via a remote air source and because the connector is self-aligning centering, operation of the mechanism may be performed remotely. The combination of the cylindrical and complementary shapes of the connector and the base as well as the aforementioned chamfers may enable the connector to be constrained in translation, pitch and yaw with respect to the base once the connector and the base are fully engaged. In other words, the seals may remain fluid-tight even when the two sides of the connector are loaded in bending or in shear. This may be especially useful for use in systems which may be subject to high side and vertical loads. In addition, the mechanism enables the use of multiple (and even different types of) fluids, minimizes engagement time as well as the potential for mistakes.
Aspects, features and advantages of the disclosure will be appreciated when considered with reference to the foregoing description of embodiments and accompanying figures. The same reference numbers in different drawings may identify the same or similar elements. Furthermore, the following description is not limiting; the scope of the present technology is defined by the appended claims and equivalents.
The connector 110 may include two substructures: a piston portion 130 and a connector base portion 140. The piston portion and the connector base portion may be attached to one another via bolts or any other connection devices or means. The connector 110 may include an interior opening 112 (collectively 112a in the piston portion 130, 112b in the base portion 140, and 112c in the base 120 in
The piston portion 130 may include a piston housing 132 including an interior piston 134. In this example, the piston housing is cylindrical. The piston housing 132 may include one or more openings 136, 138 which may be connected to a pressurized or compressed air source in order to move the piston relative to the piston housing. In this regard, pressurizing a chamber 132a (see
As shown in
Alternatively, rather than using an O-ring 600e to create a pair of chambers 910, 920 and rather than both of the chamber openings 210b, 220b allowing fluid to flow out of the connector at the chamfer, one of the chamber openings may be removed or blocked (for instance, with a plug or other device). In this way, during manufacture, the chamber openings may be created in the connector base portion by drilling completely through the connector base portion.
As with fluid ports 1010, 1020, the fluid ports 1210, 1020 as shown in
The mechanism 100 described herein may be utilized in any number of gas dispensing, metering or storage equipment. This could be adapted for as many gasses as needed, or as high of flows as needed, for use in aerospace, oil and gas, semiconductor manufacturing, pharmaceutical manufacturing, or any other industry in which multiple high flow gasses need to be connected from one point to another.
The moving mechanism 1510 may include a tool (such as a handheld or larger device), a machine for towing (such as a car, truck, or train), or other device that can be used to move and release objects such as robotic arms, assembly machine parts, construction equipment, sorting machines, pick and place robots, various types of cranes, including gantry cranes and jib cranes, etc. The moving mechanism 1510 may be attached to or include a pressurized fluid source (or sources) 1520 such as an air source, compressor, or other device which can provide one or more pressurized fluids (air or gas) to the mechanism 100.
The mechanism 100 may also be used with other devices. For instance,
The first portion 1710 may connect to a boom of a crane (such as crane 1610 of
The second portion 1720 is connected to the grabbing mechanism 1530 for grabbing the object 1540, such as the top plate 1620. The grabbing mechanism 1530 may function to grab and release pull studs utilizing fluid, such as nitrogen, from the aforementioned chambers of the connector base portion of the mechanism. The grabbing mechanism 1530 may include any type of grabbing mechanism capable of automatically releasing the object pneumatically or hydraulically. For instance, the grabbing mechanism 1530 may include a hook, claw, grabbers, tow or other hitch, etc. that can grab the object and when supplied with pressurized fluid (such as air or gas) will automatically release the object 1540.
The second portion 1720 also includes a pair of arms 1750, 1752 or guide bars which extend laterally from a body 1760 of the second portion. The base 120 or 1120 mechanism 100 may be attached to one end 1764 of the body 1760 via bolts, screws or other fasteners. The body 1760 also includes a structure or fill line 1762 which connects the opening in the base with the fill port 2520. The fill line 1762 also connects with the fill port 2510.
In order to insert the second portion 1720 into the first portion 1710, the first portion may be moved lateral towards the second portion. Eventually the arms 1750, 1752 will contact a respective one of the angled surfaces 1712, 1714. The arms 1750, 1752 may then slide along the angled surfaces. The angle and relative positions of the angled surfaces 1712, 1714 with respect to the first portion 1710 act as a guide for the arms 1750, 1752 and may allow for quite a bit of freedom when attempting to line up the first portion 1710 and the second portion 1720 as shown in
The features described herein may provide a wide range of useful benefits. For instance, the configuration of the chamfers, which enables self-centering, may minimize engagement time as well as the potential for mistakes when aligning the connector and the base with one another. Thus, the mechanism provides for precise control in imprecise environments and may be especially useful in non-precision equipment, like large cranes or where a large arm is incapable of repeatedly returning to the exact same position. In addition, because the position of the piston can be controlled via a remote air source and because the connector is self-centering, operation of the mechanism may be performed remotely. The combination of the cylindrical and complementary shapes of the connector and the base as well as the aforementioned chamfers may enable the connector to be constrained in translation, pitch and yaw with respect to the base once the connector and the base are fully engaged. In other words, the seals may remain fluid-tight even when the two sides of the connector are loaded in bending or in shear. This may be especially useful for use in systems which may be subject to high side and vertical loads. In addition, the mechanism enables the use of multiple (and even different types of) fluids, minimizes engagement time as well as the potential for mistakes.
Most of the foregoing alternative examples are not mutually exclusive, but may be implemented in various combinations to achieve unique advantages. As these and other variations and combinations of the features discussed above can be utilized without departing from the subject matter defined by the claims, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation of the subject matter defined by the claims. In addition, the provision of the examples described herein, as well as clauses phrased as “such as,” “including” and the like, should not be interpreted as limiting the subject matter of the claims to the specific examples; rather, the examples are intended to illustrate only one of many possible embodiments. Further, the same reference numbers in different drawings can identify the same or similar elements.
Claims
1. A system comprising a fluid connector mechanism having an opening therethrough, the fluid connector mechanism further including:
- a connector having a connector base portion and a piston portion including a piston housing, a piston, and the opening extends from the piston portion, through the piston, and through the connector base portion, the connector base portion including first and second chambers configured to allow fluid to flow from the connector into the base when the connector is engaged with the base; and
- a base having first and second pairs of O-rings arranged in first and second pairs of grooves, the opening further extending from one end of the base to another, and wherein the connector base portion and the base are configured to engage with one another and create fluid-tight seals with the O-rings while the piston is arranged outside of the base.
2. The system of claim 1, wherein the piston housing includes a chamber, and the piston is arranged such that pressurizing the chamber causes the piston to move relative to the piston housing and engage the connector with the base.
3. (canceled)
4. The system of claim 1, wherein the first and second chambers are completely separate and do not allow for fluid to pass between the first chamber and the second chamber during operation.
5. The system of claim 4, wherein the connector base portion includes a chamfer and the first and second chambers include respective chamber openings arranged in the chamfer.
6. The system of claim 5, wherein the base includes a groove arranged in an interior surface of the base and another O-ring in the groove, and wherein when the connector is engaged with the base, the another O-ring creates a pair of separate chambers, and each of the respective chamber openings is connected to one of the pair of separate chambers.
7. The system of claim 6, wherein the base includes a pair of fluid ports, and wherein each one of the pair of separate chambers is connected to a respective one of the pair of fluid ports.
8. The system of claim 5, further comprising a plug in one of the respective chamber openings.
9. The system of claim 4, wherein the first chamber includes a first chamber opening arranged in the chamfer and the second chamber includes a second chamber opening arranged in an outer side surface of the connector base portion.
10. The system of claim 9, wherein the base includes a fluid port and when the connector is engaged with the base, the first chamber opening is arranged to allow fluid to flow from the first chamber opening into a chamber between the connector and the base and out of the fluid connector mechanism through the fluid port.
11. The system of claim 1, wherein the base further includes a port positioned between the first pair of grooves, and when the connector is engaged with the base, a second chamber opening is arranged in fluid communication with the port.
12. The system of claim 1, wherein the base includes a groove arranged in an interior surface of the base and another O-ring in the groove.
13. The system of claim 1, wherein the first pair of grooves is arranged in a first interior surface of the base and the second pair of grooves is arranged in a second interior surface of the base.
14. The system of claim 13, wherein the first interior surface is opposite of the second interior surface.
15. The system of claim 1, wherein the connector base portion includes a first chamfer and the base includes a second chamfer and wherein when the connector base portion is inserted into the base, the first chamfer is configured to engage with the second chamfer and thereby self-align the connector with the base.
16. The system of claim 15, wherein the first chamfer is an outer chamfer, the connector base portion includes a third chamfer that is an interior chamfer, and the base includes a fourth chamfer and wherein when the connector base portion is inserted into the base, the third interior chamfer is configured to engage with the fourth chamfer and thereby self-align the connector with the base.
17. The system of claim 16, wherein the third chamfer is arranged to enable load distribution during operation and prevents the first and second pairs of O-rings from slipping out of the first and second pairs of grooves.
18. The system of claim 1, wherein the connector is configured for a blind mate connection with the base.
19. The system of claim 1, further comprising a balloon, and wherein the base portion is connected to a structure which is connected to a fill port of the balloon, and in operation, lift gas is provided to the fill port via the opening and the structure.
Type: Application
Filed: Sep 3, 2019
Publication Date: Mar 4, 2021
Inventors: Mathew Tabor (San Francisco, CA), Keegan Gartner (Los Gatos, CA)
Application Number: 16/558,619