THERMOPHILIC DNA POLYMERASE MUTANTS

This disclosure relates to thermophilic family B DNA polymerases comprising a neutral amino acid residue at a certain position near the C-terminus of the catalytic domain, which corresponds to a position occupied by a basic amino acid residue in wild-type Pfu polymerase. The thermophilic family B DNA polymerases provided herein also comprise an N-terminal domain comprising a uracil-binding pocket that has been modified to reduce template uracil binding. Related uses, methods, and compositions are also provided. In some embodiments, the polymerases comprise a 3′-5′ exonuclease domain and/or a sequence nonspecific dsDNA binding domain.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application is a continuation of U.S. Pat. Application No. 16/623332, filed on Dec. 16, 2019, which is a 371 U.S. National Phase Application of PCT/EP2018/066896 filed Jun. 25, 2018, which claims priority to and the benefit of U.S. Provisional Pat. Applications Serial # 62/524,730 filed Jun. 26, 2017, which applications are incorporated herein by reference in their entirety.

SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and single letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an XML file in the form of the file named “9748-108598-02_ST_26.xml” (~418,221 bytes), which was created on Feb. 22, 2023 which is incorporated by reference herein.

BACKGROUND OF THE DISCLOSURE

This disclosure relates to the field of thermophilic DNA polymerase mutants, including methods, uses, and compositions thereof.

Thermophilic DNA polymerases are commonly used in biotechnology and molecular biology applications, including nucleic acid synthesis techniques such as amplification (e.g., polymerase chain reaction, or PCR), which involves cycles of alternating denaturation and primer annealing and extension. Thermophilic DNA polymerases are resistant to inactivation by high temperatures and so are compatible with thermal denaturation steps. DNA polymerases comprise a catalytic domain that extends a 3′ terminus of a DNA strand in a template-dependent manner. DNA polymerases can also comprise an exonuclease domain, such as a 3′ to 5′ exonuclease domain. Such an exonuclease domain can reduce the frequency of misincorporation by removing mismatched nucleotides from the 3′ end of a nascent DNA strand. Certain artificial DNA polymerases further comprise a sequence non-specific double-stranded DNA (dsDNA) binding domain. The presence of this domain can improve performance of the enzyme with respect to various parameters, including processivity, sensitivity, and yield.

Nucleic acid amplification can permit rapid detection of a target nucleic acid sequence and/or provide sufficient quantities of a sample for further analysis or manipulation, such as sequencing, cloning, restriction digestion, hybridization, ligation, mutagenesis, recombination, etc. Two key parameters of amplification are sensitivity and yield. Improving the sensitivity reduces the minimum amount of a target needed to produce a detectable product. Improving the yield increases the amount of product that results from a reaction, or reduces the amount of time and/or reagents necessary to obtain a given amount of product.

Samples may be refractory to amplification or may decrease sensitivity and/or yield if they contain nucleic acid synthesis inhibitors, which may occur naturally in the sample or may be introduced during earlier sample processing steps. Examples of nucleic acid synthesis inhibitors include polyanions such as heparin or xylan; anionic detergents such as sodium dodecyl sulfate; and certain complex organic substances such as humic acid, collagen, heme and heme-containing proteins, bile salts, and the like. Thermophilic DNA polymerases with improved tolerance of such inhibitors would reduce the need for purification and other sample processing steps in advance of nucleic acid synthesis and reduce the frequency of unsatisfactory synthesis reactions.

Certain polymerases such as the family B polymerases, including Pyrococcus furiosus (Pfu) DNA polymerase (see Kennedy et al., “The Mechanistic Architecture of the Thermostable Pyrococcus furiosus Family B DNA Polymerase Motif A and its Interaction with dNTP Substrate,” Biochemistry 2009 December 1; 48(47): 11161-11168. doi:10.1021/bi9010122) and related polymerases, may benefit from mutations that increase yield and/or sensitivity. In some instances, an A408S mutation has been introduced into family B polymerases in order to improve accuracy (i.e., reduced error rate or increased fidelity), but with a detrimental impact on yield and/or sensitivity. It would be desirable to provide variants of family B polymerases that have improved yield and/or sensitivity. Further, coupled with an A408S mutation, such variants may have improved yield and/or sensitivity and also improved fidelity. It would also be desirable to provide variants of such polymerases with improved inhibitor resistance. Such polymerases could be suitable for use with a broader spectrum of samples and/or could reduce the need for preprocessing in advance of nucleic acid synthesis reactions in which high fidelity is desirable, such as for cloning, sequencing, gene construction, site-directed mutagenesis, etc.

A feature of archaeal family B DNA polymerases is the ability to recognize and bind uracil bases in template DNA during the amplification reaction. The uracil-binding pocket in nature reduces the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transitions to A-T during DNA replication. The uracil binding pocket recognizes and binds uracil bases in the template strand, stopping the polymerase. In PCR, the uracil-binding property of archaeal family B polymerases may be disadvantageous and result in decreased DNA amplification yields and lowered sensitivity. Even trace amounts of uracil may decrease DNA amplification yields and lower the sensitivity in simple PCR, high-fidelity PCR, and particularly in long-range PCR, where long elongation times are required. Furthermore, in certain diagnostic methods, qPCR, RT-qPCR, and end-point PCR may be performed using dNTP mixtures in which dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, a primary concern in diagnostic laboratories. A thermostable archaeal family B DNA polymerase with improved yield and/or sensitivity and/or fidelity, and in which termplate uracil binding is diminished or abolished would therefore be highly desirable.

The uracil-binding pocket is located in the N-terminal domain of archaeal family B DNA polymerases and comprises amino acids from two conserved regions of the archaeal DNA polymerases: Region A and Region B, which are separated by a less conserved region. In the archaeal polymerase from Pyrococcus furiosus, Region A comprises amino acids 1-40 and Region B comprises amino acids 78-130. Uracil binding is mediated by relatively inflexible main-chain atoms, consistent with the sizeable difference (greater than 2 orders of magnitude) in binding affinity for uracil- and non-uracil-containing DNA. The pocket also contains a relatively high proportion of prolines, which may impart additional rigidity. The C5-C6 edge of the bound uracil packs against Pro90, Pro36 and Phe116. Packing above and below uracil are the side chains of Val93 and Pro36, and Ile114 and Arg119, respectively. These amino acids show a high level of conservation, approaching 100%, emphasizing their structural and functional importance (Firbank, 2008, J. Mol. Biol. 381: 529-539).

Archaeal family B DNA polymerases with substitutions at position Pro36 have been shown to have reduced affinity for uracil as compared to the wild-type polymerase. P36A mutant of Pfu DNA polymerase was able to extend primers beyond template strand uracil, yielding a mixture of truncated and full-length products (Firbank 2008). P36L mutant of Sh1B DNA polymerase was shown to amplify DNA in the presence of higher concentrations of dUTP compared with the wild-type enzyme, while P36H showed the highest resistance by performing PCR in the reaction mixtures where dTTP was completely replaced by dUTP (Tubeleviciute, 2010, Protein Engineering Design & Selection 23: 589-597).

Thus, there are needs for thermophilic DNA polymerases having increased inhibitor tolerance and/or the capability to provide increased yield and/or sensitivity and/or fidelity, and in which template uracil binding is diminished or abolished. Provided herein are polymerases and related methods and compositions that can solve these needs and/or provide other benefits.

In some embodiments, the present disclosure provides thermophilic DNA polymerase mutants and methods of nucleic acid synthesis using thermophilic DNA polymerase mutants. In some embodiments, a thermophilic DNA polymerase comprising a family B polymerase N-terminal domain comprising a uracil-binding pocket and a family B polymerase catalytic domain is provided, the family B polymerase N-terminal domain comprising a uracil-binding pocket having an amino acid sequence in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P, and the family B polymerase catalytic domain having an amino acid sequence in which the position corresponding to position 762 of SEQ ID NO: 1 is a neutral amino acid residue. In some embodiments, the position corresponding to position 36 of SEQ ID NO: 1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, and G. In some embodiments, the position corresponding to position 36 of SEQ ID NO: 1 is H. In some embodiments, the position corresponding to position 762 of SEQ ID NO: 1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G. In some embodiments, the position corresponding to position 762 of SEQ ID NO: 1 is selected from Q and N.

In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the family B polymerase catalytic domain sequence of a sequence selected from SEQ ID NOs: 6 to 10, 15 to 18, 25, 26, 33, 34, 37, 38, 41, 42, and 45 to 48, wherein X is the neutral amino acid residue and is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G. In some embodiments, X is N or G.

In some embodiments, a thermophilic DNA polymerase is provided, wherein the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the family B polymerase N-terminal domain comprising a uracil-binding pocket sequence of a sequence selected from SEQ ID NOs: 115 to 121 and 162 to 168, wherein X1 is any amino acid other than P. In some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, and G. In some embodiments, X1 is H.

In some embodiments, a thermophilic DNA polymerase is provided, comprising a family B polymerase N-terminal domain comprising a uracil-binding pocket and a family B polymerase catalytic domain, wherein the amino acid residue at the position of the amino acid sequence that aligns to position 36 of SEQ ID NO: 1 is any amino acid other than P, and wherein the amino acid residue at the position of the amino acid sequence that aligns to position 762 of SEQ ID NO: 1 is a neutral amino acid residue.. In some embodiments, the amino acid residue at the position of the amino acid sequence that aligns to position 36 of SEQ ID NO: 1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, and G. In some embodiments, the amino acid residue at the position of the amino acid sequence that aligns to position 36 of SEQ ID NO: 1 is H. In some embodiments, the amino acid residue at the position of the amino acid sequence that aligns to position 762 of SEQ ID NO: 1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G. in some embodiments, the amino acid residue at the position of the amino acid sequence that aligns to position 762 of SEQ ID NO: 1 is selected from Q and N.

In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 6. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 115 to 121 and 162 to 168, wherein X1 is any amino acid other than P. In some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, and G. In some embodiments, X1 is H.

In some embodiments, the amino acid residue at the position of the amino acid sequence that corresponds to position 408 of SEQ ID NO: 1 is a serine.

In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket comprises a consecutive amino acid sequence of RHYIY (SEQ ID NO: 177), QHYIY (SEQ ID NO: 178), EHYIY (SEQ ID NO: 179), EHYFY (SEQ ID NO: 180), or RHYFY (SEQ ID NO: 181), and the family B polymerase catalytic domain comprises a consecutive amino acid sequence of WQKTX (SEQ ID NO: 182), XQTGL (SEQ ID NO: 183), KTXQT (SEQ ID NO: 184), YQKTX (SEQ ID NO: 185), XQVGL (SEQ ID NO: 186), KTXQV (SEQ ID NO: 187), YQSSX (SEQ ID NO: 188), XQTGL (SEQ ID NO: 183), SSXQT (SEQ ID NO: 189), TGRVX (SEQ ID NO: 190), XKSLL (SEQ ID NO: 191), RVXKS (SEQ ID NO: 192), TGRSX (SEQ ID NO: 193), XRTLL (SEQ ID NO: 194), or RSXRT (SEQ ID NO: 195);

wherein X is a neutral amino acid residue; and wherein X is within 20 residues of the C-terminus of the family B polymerase catalytic domain. In some embodiments, the family B polymerase catalytic domain is a subfamily B3 polymerase domain. In some embodiments, the neutral amino acid residue is a polar neutral amino acid residue. In some embodiments, the neutral amino acid residue comprises an amide. In some embodiments, the neutral amino acid residue is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G. In some embodiments, the neutral amino acid residue is selected from Q and N. In some embodiments, the neutral amino acid residue is Q.

In some embodiments, the thermophilic DNA polymerase comprises a sequence non-specific double-stranded DNA-binding domain. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 53 to 62. In some embodiments, the sequence non-specific double-stranded DNA-binding domain is C-terminal to the family B polymerase catalytic domain. In some embodiments, the sequence non-specific double-stranded DNA-binding domain is a 7 kD DNA-binding domain. In some embodiments, the sequence non-specific double-stranded DNA-binding domain is an Sso7d, Sac7d, or Sac7e domain.

In some embodiments, the thermophilic DNA polymerase comprises: (a) the consecutive amino acid residues LDFRS (SEQ ID NO: 196), (b) the consecutive amino acid residues FRSLY (SEQ ID NO: 197), or (c) the consecutive amino acid residues SLYPS (SEQ ID NO: 198), wherein the underlined serine residue is within 30 amino acid residues of the N-terminus of the family B polymerase catalytic domain.

In some embodiments, the thermophilic DNA polymerase comprises a 3′ to 5′ exonuclease domain. In some embodiments, the 3′ to 5′ exonuclease domain is N-terminal to the family B polymerase catalytic domain. In some embodiments, the 3′ to 5′ exonuclease domain is a DEDDy archaeal exonuclease domain. In some embodiments, the 3′ to 5′ exonuclease domain comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 63. In some embodiments, the 3′ to 5′ exonuclease domain comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to the 3′ to 5′ exonuclease domain of a sequence selected from SEQ ID NOs: 1, 19, 23, 31, 35, 39, 43, 49, 51, 52, 76 to 79, 92, 96, 102, 104, 106, 108, 110, 112, and 113, 139, 143, 149, 151, 155, 157, 159, and 160.

In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 80 to 113 and 127 to 160, wherein X1 is any amino acid other than P and X2 is the neutral amino acid residue. In some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G. In some embodiments, X1 is H. In some embodiments, X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G. In some embodiments, X2 is N or G.

In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence comprising (i) at least one difference at a position corresponding to position 15, 72, 93, 141, 143, 247, 265, 337, 385, 387, 388, 399, 400, 405, 407, 410, 485, 542, 546, 593, or 595 of SEQ ID NO: 1 or (ii) at least one missing residue corresponding to position 92, 93, 94, or 381 of SEQ ID NO: 1. In some embodiments, the at least one mismatch or missing residue comprises at least one of:

  • (i) a missing residue corresponding to position 92 or 94 of SEQ ID NO: 1;
  • (ii) a Q or R at the position corresponding to position 93 of SEQ ID NO: 1;
  • (iii) an A at the position corresponding to position 141 of SEQ ID NO: 1;
  • (iv) an A at the position corresponding to position 143 of SEQ ID NO: 1;
  • (v) an I at the position corresponding to position 337 of SEQ ID NO: 1;
  • (vi) a Q, S, N, L, or H at the position corresponding to position 385 of SEQ ID NO: 1;
  • (vii) a P or S at the position corresponding to position 387 of SEQ ID NO: 1;
  • (viii) a P at the position corresponding to position 388 of SEQ ID NO: 1;
  • (ix) a D at the position corresponding to position 399 of SEQ ID NO: 1;
  • (x) a G or D at the position corresponding to position 400 of SEQ ID NO: 1;
  • (xi) an E at the position corresponding to position 405 of SEQ ID NO: 1;
  • (xii) an I at the position corresponding to position 407 of SEQ ID NO: 1;
  • (xiii) an L or F at the position corresponding to position 410 of SEQ ID NO: 1;
  • (xiv) a T at the position corresponding to position 485 of SEQ ID NO: 1;
  • (xv) a P at the position corresponding to position 542 of SEQ ID NO: 1;
  • (xvi) an H at the position corresponding to position 546 of SEQ ID NO: 1;
  • (xvii) a T at the position corresponding to position 593 of SEQ ID NO: 1; or
  • (xviii) an S at the position corresponding to position 595 of SEQ ID NO: 1.

In some embodiments, the thermophilic DNA polymerase has at least one of the following properties:

  • (i) capable of amplifying a 2 kb target from 40 ng of human genomic DNA template in the presence of 0.2 µM heparin in a PCR; and/or
  • (ii) capable of amplifying a 2 kb target from 40 ng of human genomic DNA template in the presence of 400 ng/µl xylan in a PCR;
wherein amplification is successful if product is detectable by agarose gel electrophoresis and ethidium bromide staining within 30 PCR cycles.

In some embodiments, the thermophilic DNA polymerase is capable of amplifying a 2 kb target from 200 ng of human genomic DNA in the presence of at least 100 µM, at least 120 µM, at least 140 µM, at least 160 µM, at least 180 µM, or at least 200 µM dUTP, wherein amplification is successful if product is detectable by agarose gel electrophoresis and ethidium bromide staining within 30 PCR cycles.

In some embodiments, the thermophilic DNA polymerase is bound to a thermolabile inhibitor. In some embodiments, the thermolabile inhibitor comprises an antibody, an Affibody®, an oligonucleotide, such as an aptamer, and/or a chemical modification.

In some embodiments, a method of in vitro nucleic acid synthesis is provided, comprising contacting at least one primer and at least one template with a thermophilic DNA polymerase provided herein in the presence of at least one dNTP. In some embodiments, the thermophilic DNA polymerase is initially bound to a thermolabile inhibitor and the method comprises denaturing the inhibitor. In some embodiments, the method further comprises amplification of the template. In some embodiments, the amplification comprises a PCR.

In some embodiments, a nucleic acid comprising a sequence encoding a thermophilic DNA polymerase described herein is provided. In some embodiments, an expression vector comprising the nucleic acid is provided. In some embodiments, an isolated host cell comprising the nucleic acid or the expression vector is provided. In some embodiments, a method of producing a thermophilic DNA polymerase described herein is provided, comprising culturing at least one host cell comprising a nucleic acid encoding the thermophilic DNA polymerase, wherein the at least one host cell expresses the thermophilic DNA polymerase. In some embodiments, the method further comprises isolating the thermophilic DNA polymerase.

In some embodiments, compositions comprising thermophilic DNA polymerases described herein are provided. In some embodiments, the composition comprises at least one hot start inhibitor. In some embodiments, the composition comprises at least two hot start inhibitors. In some embodiments, each hot start inhibitor is independently selected from an antibody, an Affibody®, an oligonucleotide and/or a chemical modification. In some embodiments, the composition comprises at least two antibodies. In some embodiments, the composition comprises an antibody and an oligonucleotide. In some embodiments, the oligonucleotide is an aptamer. In some embodiments, the composition comprises at least one antibody, and an Affibody® or an aptamer.

In some embodiments, the composition is a storage composition. In some embodiments, the composition comprises at least one protein stabilizer. In some embodiments, the protein stabilizer is selected from BSA, inactive polymerase, and apotransferrin. In some embodiments, the composition comprises a UTPase. In some embodiments, the composition comprises at least one buffering agent. In some embodiments, the buffering agent is selected from acetate buffer, sulfate buffer, phosphate buffer, MOPS, HEPES and Tris-(hydroxymethyl)aminomethane (TRIS). In some embodiments, the composition comprises at least one monovalent cationic salt. In some embodiments, the monovalent cationic salt is selected from KCl and NaCl. In some embodiments, the composition comprises at least one stabilizer. In some embodiments, the stabilizer is selected from glycerol, trehalose, lactose, maltose, galactose, glucose, sucrose, dimethyl sulfoxide (DMSO), polyethylene glycol, and sorbitol. In some embodiments, the composition comprises at least one reducing agent. In some embodiments, the reducing agent is dithiothreitol (DTT). In some embodiments, the composition comprises at least one divalent chelating agent. In some embodiments, the divalent chelating agent is EDTA. In some embodiments, the composition comprises at least one detergent. In some embodiments, the detergent is anionic. In some embodiments, the detergent is cationic. In some embodiments, the detergent is non-ionic. In some embodiments, the detergent is zwitterionic. In some embodiments, the composition comprises a detergent selected from Hecameg (6-O-(N-Heptylcarbamoyl)-methyl-α-D-glucopyranoside), Triton X-200, Brij-58, CHAPS, n-Dodecyl-b-D-maltoside, NP-40, sodium dodecyl sulphate (SDS), TRITON® X-15, TRITON® X-35, TRITON® X-45, TRITON® X-100, TRITON® X-102, TRITON® X-114, TRITON® X-165, TRITON® X-305, TRITON® X-405, TRITON® X-705, Tween® 20 and/or ZWITTERGENT®.

In some embodiments, the composition is an aqueous solution. In some embodiments, the composition is a lyophilized composition.

In some embodiments, the composition is a reaction composition. In some embodiments, the composition comprises at least one buffering agent. In some embodiments, the buffering agent is selected from acetate buffer, sulfate buffer, phosphate buffer, MOPS, HEPES and Tris-(hydroxymethyl)aminomethane (TRIS). In some embodiments, the composition comprises at least one monovalent cationic salt. In some embodiments, the monovalent cationic salt is selected from KCl and NaCl. In some embodiments, the composition comprises at least one divalent cationic salt. In some embodiments, the divalent cationic salt is MgCl2 or MnCl2. In some embodiments, the composition comprises at least one detergent. In some embodiments, the detergent is anionic. In some embodiments, the detergent is cationic. In some embodiments, the detergent is non-ionic. In some embodiments, the detergent is zwitterionic. In some embodiments, the composition comprises a detergent selected from Hecameg (6-O-(N-Heptylcarbamoyl)-methyl-α-D-glucopyranoside), Triton X-200, Brij-58, CHAPS, n-Dodecyl-b-D-maltoside, NP-40, sodium dodecyl sulphate (SDS), TRITON® X-15, TRITON® X-35, TRITON® X-45, TRITON® X-100, TRITON® X-102, TRITON® X-114, TRITON® X-165, TRITON® X-305, TRITON® X-405, TRITON® X-705, Tween® 20 and/or ZWITTERGENT®. In some embodiments, the composition comprises at least one dNTP. In some embodiments, the composition comprises dATP, dGTP, dTTP, and dCTP. In some embodiments, the composition further comprises glycerol, DMSO, and/or ammonium sulphate. In some embodiments, the composition comprises at least one dye. In some embodiments, the composition comprises at least one dye selected from xylene cyanol FF, tartrazine, phenol red, quinoline yellow, zylene cyanol, Brilliant Blue, Patent Blue, indigocarmine, acid red 1, m-cresol purple, cresol red, neutral red, bromocresol green, acid violet 5, bromo phenol blue, and orange G. In some embodiments, the composition comprises at least one agent that increases the density of the composition. In some embodiments, the composition comprises at least one agent selected from PEG 4000 and/or sucrose. In some embodiments, the composition comprises at least one primer. In some embodiments, the composition comprises at least one nucleic acid template.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a comparison of PCR amplifications in which heparin was present at a series of concentrations from 0 to 0.3 µM and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with (“408S”) or without (no 408 designation) a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 2 shows a comparison of PCR amplifications in which xylan was present at a series of concentrations from 0 to 400 ng/µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with (“408S”) or without (no 408 designation) a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 3 shows a comparison of PCR amplifications in which humic acid was present at a series of concentrations from 0 to 1 ng/µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 4 shows a comparison of PCR amplifications in which sodium dodecyl sulfate (“SDS”) was present at a series of concentrations from 0 to 0.016% or 0.2% (w/v) and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 5 shows a comparison of PCR amplifications in which a 2 kb fragment was amplified from a series of amounts of human genomic DNA template between 0 and 400 ng in a 20 µl PCR mixture using a polymerase comprising a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with (“408S”) or without (no 408 designation) a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 6A shows a comparison of PCR amplifications in which a 10 kb fragment was amplified from a series of amounts of bacteriophage lambda DNA template between 0 and 200 ng in a 20 µl PCR mixture using a polymerase comprising a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with (“408S”) or without (no 408 designation) a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 6B shows a bar graph illustrating yield from amplification of a 10 kb fragment from a series of amounts of bacteriophage lambda DNA template using a polymerase comprising a family B thermophilic DNA polymerase catalytic domain with (“762Q”) or without (“762K”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with (“408S”) or without (no 408 designation) a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 7A shows a comparison of PCR amplifications of a 2 kb product in which human genomic DNA template was present at a series of amounts from 0 to 400 ng in a reaction volume of 20 µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain without (“408S 762K”) or with (“408S 762Q”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 7B shows a comparison of PCR amplifications of a 5 kb product in which bacteriophage lambda DNA template was present at a series of amounts from 0 to 200 ng in a reaction volume of 20 µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain without (“408S 762K”) or with (“408S 762Q”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 8 shows a comparison of PCR amplifications of a 20 kb product in which bacteriophage lambda DNA template was present at a series of amounts from 0 to 100 ng in a reaction volume of 20 µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain without (“408S 762K”) or with (“408S 762Q”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 9 shows a comparison of PCR amplifications of a 20 kb product in which Escherichia coli genomic DNA template was present at a series of amounts from 0 to 40 ng in a reaction volume of 20 µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain without (“408S 762K”) or with (“408S 762Q”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIG. 10 shows a comparison of PCR amplifications of a 7.5 kb product in which human genomic DNA template was present at a series of amounts from 0 to 400 ng in a reaction volume of 20 µl and in which the polymerase comprised a family B thermophilic DNA polymerase catalytic domain without (“408S 762K”) or with (“408S 762Q”) a neutral amino acid residue at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 379 of the Pfu catalytic domain (SEQ ID NO: 6)) and with a serine at the position that aligns to position 762 of Pfu (SEQ ID NO: 1; aligning to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)).

FIGS. 11A through 11B show a multiple amino acid sequence alignment of Thermococcus litoralis (“Tli” ; SEQ ID NO: 31), (“Tsp9N7”; SEQ ID NO: 49), Thermococcus gorgonarius (“Tgo”; SEQ ID NO: 39), Thermococcus kodakarensis (“Tko” ; SEQ ID NO: 43), Pyrococcus furiosus (“Pfu” ; SEQ ID NO: 2), and Deep Vent (“DP”; SEQ ID NO: 23) polymerases, in which the position corresponding to position 36 of Pfu (SEQ ID NO: 1) is marked with a percent (%), the position corresponding to position 408 of Pfu (SEQ ID NO: 1) is marked with an asterisk (*) and the position corresponding to position 762 of Pfu (SEQ ID NO: 1) is marked with a pound (#). The position corresponding to position 762 of Pfu is indicated as “X” in each amino acid sequence of the sequence alignment. X may be selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. In some embodiments, X is Q.

FIG. 12 shows a multiple amino acid sequence alignment of the catalytic domains of Thermococcus litoralis (“Tli” ; SEQ ID NO: 33), (“Tsp9N7”; SEQ ID NO: 47), Thermococcus gorgonarius (“Tgo”; SEQ ID NO: 41), Thermococcus kodakarensis (“Tko” ; SEQ ID NO: 45), Pyrococcus furiosus (“Pfu” ; SEQ ID NO: 7), and Deep Vent (“DP”; SEQ ID NO: 25) polymerases, in which the position corresponding to position 408 of Pfu in the full-length polymerase (SEQ ID NO: 1; corresponding to position 25 of the Pfu catalytic domain (SEQ ID NO: 6)) is marked with an asterisk (*) and position corresponding to position 762 of Pfu in the full-length polymerase (SEQ ID NO: 1; corresponding to position 379 in the Pfu catalytic domain (SEQ ID NO: 6)) is marked with a pound (#). The position corresponding to position 762 of Pfu (SEQ ID NO: 1; position 379 in the Pfu catalytic domain (SEQ ID NO: 6)) is indicated as “X” in the sequence alignment. X may be selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. In some embodiments, X is Q.

FIG. 13 shows amplification of a 2 kb human genomic DNA product by a 36H 408S 762Q polymerase in the presence increasing replacement of dTTP with dUTP.

FIG. 14 shows amplification of a 5 kb human genomic DNA product by a 36H 408S 762Q polymerase in the presence increasing replacement of dTTP with dUTP.

FIG. 15 shows amplification of a 2 kb human genomic DNA product by a 36H 408S 762Q polymerase and 36H polymerase in the presence of added dUTP

FIG. 16 shows multiplex amplification of human genomic DNA with 4 or 5 primer pairs.

DETAILED DESCRIPTION

This description and exemplary embodiments should not be taken as limiting. For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages, or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about,” to the extent they are not already so modified. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” and any singular use of any word, include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.

The term “nucleic acid synthesis” refers to template-directed synthesis of a nucleic acid strand using a polymerase enzyme. Nucleic acid synthesis includes all such template-directed nucleic acid synthesis by a polymerase, including, but not limited to, amplification, PCR, end point PCR (epPCR), real time or quantitative PCR (qPCR), one-step RT-PCR, sequencing, etc.

As used herein the terms “amplify”, “amplifying”, “amplification” and other related terms include producing multiple copies of an original biomolecule, such as a nucleic acid. In some embodiments, nucleic acid amplification produces multiple copies of an original nucleic acid and/or its complement (e.g., target nucleic acid, also referred to as a target polynucleotide), where the copies comprise at least a portion of the template sequence and/or its complement. Such copies may be single-stranded or double-stranded.

A “template” or “template nucleic acid” or “template polynucleotide” refers to a polynucleotide that comprises the polynucleotide sequence to be amplified. In some embodiments, the polynucleotide sequence to be amplified is flanked by primer hybridization sites, such as a hybridization site for a 5′ primer (or the complement thereof) and a hybridization site for a 3′ primer (or the complement thereof). A template may comprise RNA and/or DNA, and may be from a natural source, or be synthetic. Nonlimiting exemplary templates include genomic DNA, viral DNA, mitochondrial DNA, viral RNA, mRNA, tRNA, microRNA, plasmids, vectors, cosmids, artificial chromosomes, etc. Any polynucleotide that may be copied or amplified by a polymerase enzyme is considered a template.

“Domain” refers to a unit of a protein or protein complex, comprising a polypeptide subsequence, a complete polypeptide sequence, or a plurality of polypeptide sequences where that unit has a defined function. The function is understood to be broadly defined and can be ligand binding, catalytic activity, and/or can have a stabilizing effect on the structure of the protein.

Residues “correspond” to each other where they occur at equivalent positions in aligned amino acid sequences, such as family B thermophilic polymerase sequences and/or a domain thereof, such as a uracil-binding pocket, catalytic domain, or exonuclease domain. Corresponding positions can be identified as positions that align with one another. Related or variant polypeptides are aligned by any method in the art. Such methods typically maximize matches, and include methods such as using manual alignments and by using any of the numerous alignment programs available (for example, BLASTP) and others known in the art. By aligning the sequences of polypeptides, one of skill in the art can identify corresponding residues, using conserved and identical amino acid residues as guides. In some embodiments, an amino acid of a polypeptide is considered to correspond to an amino acid in a disclosed sequence when the amino acid of the polypeptide is aligned with the amino acid in the disclosed sequence upon alignment of the polypeptide with the disclosed sequence to maximize identity and homology (e.g., where conserved amino acids are aligned) using a standard alignment algorithm, such as the BLASTP algorithm with default scoring parameters (such as, for example, BLOSUM62 Matrix, Gap existence penalty 11, Gap extension penalty 1, and with default general parameters). As a non-limiting example, with reference to the multiple sequence alignment shown in FIGS. 11A-C, amino acid residue 408 in SEQ ID NO: 9 corresponds to positions 410, 407, 407, 407, and 408 in SEQ ID NOs: 52, 57, 55, 56, and 51, respectively (marked with an asterisk in FIG. 11A). As another non-limiting example, amino acid residue 762 in SEQ ID NO: 9 corresponds to positions 764, 761, 761, 761, and 762 in SEQ ID NOs: 52, 57, 55, 56, and 51, respectively (marked with a pound in FIG. 11B). As another non-limiting example, amino acid residue 36 in SEQ ID NO: 9 corresponds to position 36 in SEQ ID NOs: 52, 57, 55, 56, and 51 (marked with a percent in FIG. 11B). In some embodiments, corresponding positions can also be identified using overlaid 3-D structures, where available, as positions at which greater than 50% of the volume occupied by a space-filling model of an amino acid in a first polypeptide is occupied by the space-filling model of the corresponding amino acid in a second polypeptide.

“Identity” is measured by a score determined by comparing the amino acid sequences of the two polypeptides using the Bestfit program. Bestfit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981) to find the best segment of similarity between two sequences. When using Bestfit to determine whether a test amino acid sequence is, for instance, 95% identical to a reference sequence according to the present disclosure, the parameters are set so that the percentage of identity is calculated over the full length of the test amino acid sequence, such that 95% of the amino acids in the test amino acid sequence align with identical amino acids on the reference sequence.

“Sequence-non-specific DNA binding domain” or “DNA binding domain” refers to a protein domain that binds to DNA without significant sequence preference. In some embodiments, a DNA binding domain binds to double-stranded DNA. Non-limiting exemplary DNA binding domains include Sso7d from Sulfolobus solfataricus, Sac7d, Sac7a, Sac7b, and Sac7e from S. acidocaldarius, and Ssh7a and Ssh7b from Sulfolobus shibatae, Pae3192, Pae0384, and Ape3192, HMf family archaeal histone domains, and archaeal PCNA homolog.

With reference to two polypeptides or two polypeptide domains, the term “fused” means that the two polypeptides or polypeptide domains are contained in a single contiguous polypeptide sequence.

“Heterologous”, when used with reference to portions of a protein, indicates that the protein comprises two or more domains that are not found in the same relationship to each other in nature. In some embodiments, such a protein, e.g., a fusion protein, contains two or more domains from unrelated proteins arranged to make a new functional protein.

“Error-correcting activity” of a polymerase or polymerase domain refers to the 3′ to 5′ exonuclease proofreading activity of a polymerase whereby nucleotides that do not form Watson-Crick base pairs with the template are removed from the 3′ end of an oligonucleotide, i.e., a strand being synthesized from a template, in a sequential manner. Examples of polymerases that have error-correcting activity include polymerases from Pyrococcus furiosus, Thermococcus litoralis, and Thermotoga maritima with wild-type exonuclease domains, and certain others discussed herein.

“Sensitivity” as used herein, refers to the ability of a polymerase to amplify a target nucleic acid that is present at low copy number. In some embodiments, low copy number refers to a target nucleic acid that is present at fewer than 10,000 or fewer than 1,000 or fewer than 100 or fewer than 10 copies in the composition comprising the target nucleic acid and the polymerase.

“Specificity” as used herein, refers to the ability of a polymerase to amplify a target nucleic acid while producing fewer non-specific amplification byproducts, such as those resulting from primer-dimers.

As used herein the terms “hybridize”, “hybridizing”, “hybridization” and other related terms include hydrogen bonding between two different nucleic acids, or between two different regions of a nucleic acid, to form a duplex nucleic acid. Hybridization can comprise Watson-Crick or Hoogstein binding to form a duplex nucleic acid. The two different nucleic acids, or the two different regions of a nucleic acid, may be complementary, or partially complementary. The complementary base pairing can be the standard A-T or C-G base pairing, or can be other forms of base-pairing interactions. Duplex nucleic acids can include mismatched base-paired nucleotides. Complementary nucleic acid strands need not hybridize with each other across their entire length.

In some embodiments, conditions that are suitable for nucleic acid hybridization and/or nucleic acid synthesis include parameters such as salts, buffers, pH, temperature, % GC content of the polynucleotide and primers, and/or time. For example, conditions suitable for hybridizing nucleic acids (e.g., polynucleotides and primers) can include hybridization solutions having sodium salts, such as NaCl, sodium citrate and/or sodium phosphate. In some embodiments, a hybridization solution can be a stringent hybridization solution which can include any combination of formamide (e.g., about 50%), 5X SSC (e.g., about 0.75 M NaCl and about 0.075 M sodium citrate), sodium phosphate (e.g., about 50 mM at about pH 6.8), sodium pyrophosphate (e.g., about 0.1%), 5X Denhardt’s solution, SDS (e.g., about 0.1%), and/or dextran sulfate (e.g., about 10%). In some embodiments, hybridization and/or nucleic acid synthesis can be conducted at a temperature range of about 45-55° C., or about 55-65° C., or about 65-75° C.

In some embodiments, hybridization or nucleic acid synthesis conditions can be conducted at a pH range of about 5-10, or about pH 6-9, or about pH 6.5-8, or about pH 6.5-7.

Thermal melting temperature (Tm) for nucleic acids can be a temperature at which half of the nucleic acid strands are double-stranded and half are single-stranded under a defined condition. In some embodiments, a defined condition can include ionic strength and pH in an aqueous reaction condition. A defined condition can be modulated by altering the concentration of salts (e.g., sodium), temperature, pH, buffers, and/or formamide. Typically, the calculated thermal melting temperature can be at about 5-30° C. below the Tm, or about 5-25° C. below the Tm, or about 5-20° C. below the Tm, or about 5-15° C. below the Tm, or about 5-10° C. below the Tm. Methods for calculating a Tm are well known and can be found in Sambrook (1989 in “Molecular Cloning: A Laboratory Manual”, 2nd edition, volumes 1-3; Wetmur 1966, J. Mol. Biol., 31:349-370; Wetmur 1991 Critical Reviews in Biochemistry and Molecular Biology, 26:227-259). Other sources for calculating a Tm for hybridizing or denaturing nucleic acids include OligoAnalyze (from Integrated DNA Technologies) and Primer3 (distributed by the Whitehead Institute for Biomedical Research).

Provided herein are thermophilic DNA polymerases comprising a family B polymerase N-terminal domain comprising a uracil-binding pocket in which a proline is replaced with another amino acid, and a family B polymerase catalytic domain in which a neutral amino acid residue is present at a certain position. Many types of Family B polymerases are described in Rothwell and Watsman, Advances in Protein Chemistry 71:401-440 (2005). Examples of thermophilic Family B polymerases include those of the Pyrococcus and Thermococcus genera, such as the Deep Vent polymerase and Family B polymerases of P. furiosus, P. calidifontis, P. aerophilum, T. kodakarensis, T. gorgonarius, and Thermococcus sp. 9°N-7. Exemplary wild-type amino acid sequences for such thermophilic family B polymerases can be obtained from public databases such as NCBI GenBank or UniProt. Wild-type sequences include naturally-occurring variants of the amino acid sequences for such thermophilic family B polymerases can be obtained from public databases such as NCBI GenBank or UniProt. Note that in some cases, the sequences are annotated as containing inteins; the inteins are not present in the mature enzyme.

In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has an amino acid sequence in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has an amino acid sequence wherein the amino acid residue at the position of the amino acid sequence that aligns to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 115 to 121 and 162 to 168, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 115, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 116, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 117, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 118, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 119, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 120, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 121, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 162, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 163, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 164, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 165, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 166, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 167, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 168, wherein the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P.

In some embodiments, the family B polymerase catalytic domain has an amino acid sequence in which the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has an amino acid sequence wherein the amino acid residue at the position of the amino acid sequence that aligns to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 6 to 10, 15 to 18, 25, 26, 33, 34, 37, 38, 41, 42, and 45 to 48, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 7, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 15, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 25, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 33, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 37, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 47, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 41, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue. In some embodiments, the family B polymerase catalytic domain has at least 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the catalytic domain of SEQ ID NO: 45, wherein the position corresponding to position 379 of SEQ ID NO: 6 is a neutral amino acid residue.

Examples of family B polymerase catalytic domain sequences are shown, e.g., in FIG. 12. In some embodiments, the C-terminus is the residue at the position of the conserved leucine shown as the last residue in the multiple sequence alignment in FIG. 12. In some embodiments, the C-terminus of the family B polymerase catalytic domain is the position corresponding to position 383 of SEQ ID NO: 6. In some embodiments, the C-terminus of the family B polymerase catalytic domain is the position corresponding to the leucine which is the last residue of SEQ ID NO: 6. In some embodiments, the C-terminus of the family B polymerase catalytic domain is the position that aligns to the leucine which is the last residue of SEQ ID NO: 6. In some embodiments, the C-terminus of the family B polymerase catalytic domain is the position corresponding to a leucine selected from the leucines shown as the final residues in FIG. 12. In some embodiments, the C-terminus of the family B polymerase catalytic domain is the position that aligns to a leucine selected from the leucines shown as the final residues in FIG. 12. The C-terminal residue in any of the foregoing embodiments can be a leucine.

In some embodiment, the thermophilic DNA polymerase comprises an N-terminal domain comprising a uracil-binding pocket that comprises: (a) the consecutive amino acid residues RX1YIY (SEQ ID NO: 199), (b) the consecutive amino acid residues QX1YIY (SEQ ID NO: 200), (c) the consecutive amino acid residues EX1YIY (SEQ ID NO: 201), (d) the consecutive amino acid residues EX1YFY (SEQ ID NO: 202), or (e) the consecutive amino acid residues RX1YFY (SEQ ID NO: 203); wherein X1 is any amino acid other than P; and wherein X1 is within 50, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, or 30 residues of the N-terminus of the family B polymerase N-terminal domain comprising a uracil-binding pocket. In some embodiments, the N-terminus of the family B polymerase N-terminal domain comprising a uracil-binding pocket is the N-terminus of the thermophilic DNA polymerase. In some embodiments, X1 is within 42, 41, 40, 39, 38, 37, or 36 residues of the N-terminus of the family B polymerase N-terminal domain comprising a uracil-binding pocket. In some embodiments, X1 is within 42 residues of the N-terminus of the family B polymerase N-terminal domain comprising a uracil-binding pocket. In some embodiments, X1 is within 40 residues of the N-terminus of the family B polymerase N-terminal domain comprising a uracil-binding pocket. In some embodiments, X1 is within 36 residues of the N-terminus of the family B polymerase N-terminal domain comprising a uracil-binding pocket.

In some embodiments, the thermophilic DNA polymerase comprises: (a) the consecutive amino acid residues WQKTX2 (SEQ ID NO: 204), (b) the consecutive amino acid residues YQKTX2 (SEQ ID NO: 205), (c) the consecutive amino acid residues X2QTGL (SEQ ID NO: 206), (d) the consecutive amino acid residues X2QVGL (SEQ ID NO: 207), (e) the consecutive amino acid residues KTX2QT (SEQ ID NO: 208), or (f) the consecutive amino acid residues KTX2QV (SEQ ID NO: 209); wherein X2 is a neutral amino acid residue; and wherein X2 is within 20, 15, 10, 5, or 4 residues of the C-terminus of the family B polymerase catalytic domain. In some embodiments, The C-terminus of the family B polymerase catalytic domain can be identified as the amino acid that aligns to or corresponds to the last amino acid of SEQ ID NO: 6. In some embodiments, the thermophilic DNA polymerase comprises a consecutive amino acid sequence of WQKTX2 (SEQ ID NO: 204), X2QTGL (SEQ ID NO: 206), KTX2QT (SEQ ID NO: 208), YQKTX2 (SEQ ID NO: 205), X2QVGL (SEQ ID NO: 207), KTX2QV (SEQ ID NO: 209), YQSSX2 (SEQ ID NO: 210), X2QTGL (SEQ ID NO: 206), SSX2QT (SEQ ID NO: 211),; wherein X2 is a neutral amino acid residue; and wherein X2 is within 20, 15, 10, 5, or 4 residues of the C-terminus of the family B polymerase catalytic domain. In some embodiments, the thermophilic DNA polymerase comprises a consecutive amino acid sequence of WQKTX2 (SEQ ID NO: 204), X2QTGL (SEQ ID NO: 206), KTX2QT (SEQ ID NO: 208), YQKTX2 (SEQ ID NO: 205), X2QVGL (SEQ ID NO: 207), KTX2QV (SEQ ID NO: 209), YQSSX2 (SEQ ID NO: 210), X2QTGL (SEQ ID NO: 206), SSX2QT (SEQ ID NO: 211), TGRVX2 (SEQ ID NO: 212), X2KSLL (SEQ ID NO: 213), RVX2KS (SEQ ID NO: 214), TGRSX2 (SEQ ID NO: 215), X2RTLL (SEQ ID NO: 216), or RSX2RT (SEQ ID NO: 217); wherein X2 is a neutral amino acid residue; and wherein X2 is within 20, 15, 10, 5, or 4 residues of the C-terminus of the family B polymerase catalytic domain. X2 can be within 15 residues of the C-terminus of the family B polymerase catalytic domain in any of the foregoing embodiments. X2 can be within 10 residues of the C-terminus of the family B polymerase catalytic domain in any of the foregoing embodiments. X2 can be within 5 residues of the C-terminus of the family B polymerase catalytic domain in any of the foregoing embodiments. X2 can be within 4 residues of the C-terminus of the family B polymerase catalytic domain in any of the foregoing embodiments. For the avoidance of doubt, in a sequence segment consisting of n residues, residues 1 to n are within n-1 residues of position n; e.g., if n is 5, positions 1, 2, 3, 4, and 5 and are within 4 residues of position 5.

This paragraph concerns the neutral amino acid residue referred to in any of the embodiments mentioned in the preceding paragraphs. Neutral amino acid residues do not have side chains containing groups that are more than 50% charged at pH 7.4 in aqueous solution at 37° C., such as carboxyls, amines, and guanidino groups. Neutral amino acid residues include canonical and noncanonical residues unless indicated to the contrary. In some embodiments, the neutral amino acid is a noncanonical residue. A noncanonical residue is a residue other than the twenty amino acid residues abbreviated as one of the twenty following letters: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y (e.g., norleucine and selenomethionine are noncanonical; see, e.g., U.S. Pat. No. 7,541,170 for additional examples of noncanonical residues, which are referred to therein as “nonclassical amino acids or chemical amino acid analogs”). In some embodiments, the neutral amino acid is less than 10%, 1%, 0.1%, or 0.01% charged at pH 7.4 in aqueous solution at 37° C. In some embodiments, the neutral amino acid residue is a polar neutral amino acid residue. A residue is polar if its side chain contains at least one hydrogen bond donor or acceptor. In some embodiments, the neutral amino acid comprises a side chain comprising an alcohol, amide, carbonyl, ester, or ether. In some embodiments, the neutral amino acid comprises a side chain comprising an alcohol. In some embodiments, the neutral amino acid comprises a side chain comprising an amide. In some embodiments, the neutral amino acid residue is Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, or G. In some embodiments, the neutral amino acid residue is Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, or G. In some embodiments, the neutral amino acid residue is Q, N, S, T, C, M, A, I, L, V, or G. In some embodiments, the neutral amino acid residue is Q, N, S, T, C, M, A, or G. In some embodiments, the neutral amino acid residue is Q, N, H, S, T, Y, C, M, or W. In some embodiments, the neutral amino acid residue is Q, N, H, S, T, Y, or W. In some embodiments, the neutral amino acid residue is Q, N, H, S, T, C, or M. In some embodiments, the neutral amino acid residue is Q, N, S, T, C, or M. In some embodiments, the neutral amino acid residue is Q, N, S, or T. In some embodiments, the neutral amino acid residue is Q or N. In some embodiments, the neutral amino acid residue is S. In some embodiments, the neutral amino acid residue is T. In some embodiments, the neutral amino acid residue is Q. In some embodiments, the neutral amino acid residue is N.

In some embodiments, the family B polymerase catalytic domain is a subfamily B3 polymerase domain. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of a Pyrococcus in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of a Thermococcus in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of a Pyrobaculum in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Pyrococcus furiosus in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Pyrococcus species GB-D in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Thermococcus kodakarensis in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Thermococcus litoralis in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Thermococcus gorgonarius in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Thermococcus sp. 9°N-7 in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Pyrobaculum calidifontis in which a neutral amino acid residue is present at a position discussed above. In some embodiments, the family B polymerase catalytic domain is a family B polymerase domain of Pyrobaculum aerophilum in which a neutral amino acid residue is present at a position discussed above.

In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a subfamily B3 N-terminal domain. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of a Pyrococcus in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of a Thermococcus in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of a Pyrobaculum in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Pyrococcus furiosus in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Pyrococcus species GB-D in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Thermococcus kodakarensis in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Thermococcus litoralis in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Thermococcus gorgonarius in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Thermococcus sp. 9°N-7 in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Pyrobaculum calidifontis in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P. In some embodiments, the family B polymerase N-terminal domain comprising a uracil-binding pocket is a family B N-terminal domain of Pyrobaculum aerophilum in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P.

In some embodiments, all domains of the thermophilic DNA polymerase are contained in a single polypeptide. In some embodiments, the thermophilic DNA polymerase comprises a plurality of polypeptide chains, which may be noncovalently associated or covalently associated. In some embodiments, the plurality of polypeptide chains can include a first polypeptide comprising an N-terminal domain comprising a uracil-binding procket and a polymerase catalytic domain and a second polypeptide comprising an additional domain, such as a sequence non-specific double-stranded DNA-binding domain. A covalent association can include, e.g., one or more disulfide bonds or chemical conjugation using a linking compound, e.g., a chemical crosslinking agent, including, for example, succinimidyl-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC). Disulfide bonds and chemical conjugation are discussed further below.

In some embodiments, the thermophilic DNA polymerase comprises a sequence non-specific DNA-binding domain, e.g., a thermostable DNA binding domain. The DNA binding domain can be, for example, present as part of a fusion protein with the polymerase catalytic domain. In some embodiments, the DNA binding domain is fused C-terminal to the polymerase catalytic domain. In some embodiments, the DNA binding domain is noncovalently associated with the polypeptide comprising the polymerase catalytic domain, e.g., in the manner of the association between sliding clamps and certain family B polymerases. In some embodiments, the polypeptide comprising the polymerase catalytic domain further comprises a sequence that noncovalently associates with an DNA binding domain, such as the PCNA-interacting sequence of a dimeric archaeal polymerase such as Pfu Pol II. As discussed, e.g., in U.S. Pat. No. 7,541,170, an DNA binding domain can provide improved processivity relative to version of the enzyme lacking the DNA binding domain. Processivity reflects the extent to which a polymerase continues to synthesize DNA (adding nucleotides in processive catalytic events) along the same template without falling off. In some embodiments, high processivity correlates to high sensitivity in amplification reactions.

In some embodiments, the DNA binding domain is covalently conjugated to the polypeptide comprising the polymerase catalytic domain. Techniques for covalent conjugation of heterologous domains are described, e.g., in BIOCONJUGATE TECHNIQUES, Hermanson, Ed., Academic Press (1996). Such techniques include, for example, derivitization for the purpose of linking the moieties to each other, either directly or through a linking compound, by methods that are well known in the art of protein chemistry. For example, in one chemical conjugation embodiment, the catalytic domain and the nucleic acid binding domain are linked using a heterobifunctional coupling reagent which ultimately contributes to formation of an intermolecular disulfide bond between the two moieties. Other types of coupling reagents that are useful in this capacity for the present invention are described, for example, in U.S. Pat. No. 4,545,985. Alternatively, an intermolecular disulfide may conveniently be formed between cysteines in each moiety, which occur naturally or are inserted by genetic engineering. The means of linking moieties may also use thioether linkages between heterobifunctional crosslinking reagents or specific low pH cleavable crosslinkers or specific protease cleavable linkers or other cleavable or noncleavable chemical linkages.

In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to an amino acid sequence selected from SEQ ID NOs: 53 to 62. In some embodiments, the DNA binding domain is an archaeal DNA binding domain. In some embodiments, the DNA binding domain is a 7kD DNA-binding domain, which occurs in certain archaeal small basic DNA binding proteins (see, e.g., Choli et al., Biochimica et Biophysica Acta 950:193-203, 1988; Baumann et al., Structural Biol. 1:808-819, 1994; and Gao et al, Nature Struc. Biol. 5:782-786, 1998). Additional archaeal DNA binding domains are discussed in Hardy and Martin, Extremophiles 12:235-46 (2008).

In some embodiments, the DNA binding domain is an Sso7d domain. In some embodiments, the DNA binding domain is a Sac7d domain. In some embodiments, the DNA binding domain is a Sac7e domain. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 53. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 54. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 62.

In some embodiments, the DNA binding domain is a Pae3192 domain. In some embodiments, the DNA binding domain is a Pae0384 domain. In some embodiments, the DNA binding domain is a Ape3192 domain. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 55. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 56. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 57.

In some embodiments, the DNA binding domain is an archaeal histone domain. In some embodiments, the archaeal histone domain is an HMf family archaeal histone domain (see, e.g., Starich et al., J Molec. Biol. 255:187-203, 1996; Sandman et al., Gene 150:207-208, 1994). In some embodiments, the archaeal histone domain is an HMf family archaeal histone domain from Methanothermus. In some embodiments, the archaeal histone domain is an HMf family archaeal histone domain from Pyrococcus. In some embodiments, the archaeal histone domain is an HMf family archaeal histone domain from Methanothermus fervidus. In some embodiments, the archaeal histone domain is an HMf family archaeal histone domain from Pyrococcus strain GB-3a. In some embodiments, the archaeal histone domain is a Methanothermus HMfA archaeal histone domain. In some embodiments, the archaeal histone domain is a Methanothermus HMfB archaeal histone domain. In some embodiments, the archaeal histone domain is a Pyrococcus HpyA1 archaeal histone domain. In some embodiments, the archaeal histone domain is a Pyrococcus HpyA2 archaeal histone domain. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 58. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 59. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 60. In some embodiments, the sequence non-specific double-stranded DNA-binding domain comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 61.

In some embodiments, the DNA binding domain is a sliding clamp, such as an archaeal PCNA homolog. Sliding clamps can exist as trimers in solution, and can form a ring-like structure with a central passage capable of accommodating double-stranded DNA. The sliding clamp forms specific interactions with the amino acids located at the C terminus of particular DNA polymerases, and tethers those polymerases to the DNA template during replication. The sliding clamp in eukaryotes is referred to as the proliferating cell nuclear antigen (PCNA), while similar proteins in other domains are often referred to as PCNA homologs. These homologs have marked structural similarity but limited sequence similarity. PCNA homologs have been identified from thermophilic Archaea (e.g., Sulfolobus solfataricus, Pyrococcus furiosus, etc.). Some family B polymerases in Archaea have a C terminus containing a consensus PCNA-interacting amino acid sequence and are capable of using a PCNA homolog as a processivity factor (see, e.g., Cann et al., J. Bacteriol. 181:6591-6599, 1999 and De Felice et al., J Mol. Biol. 291:47-57, 1999). These PCNA homologs are useful sequence-non-specific double-stranded DNA binding domains. For example, a consensus PCNA-interacting sequence can be joined to a polymerase that does not naturally interact with a PCNA homolog, thereby allowing a PCNA homolog to serve as a processivity factor for the polymerase. By way of illustration, the PCNA-interacting sequence from Pyrococcus furiosus Pol II (a heterodimeric DNA polymerase containing two family B-like polypeptides) can be covalently joined to a sequence based on Pyrococcus furiosus Pol I (a monomeric family B polymerase that does not normally interact with a PCNA homolog). The resulting fusion protein can then be allowed to associate noncovalently with the Pyrococcus furiosus PCNA homolog to generate a heterologous protein with increased processivity.

Nucleic acids encoding the domains of a fusion protein invention can be obtained using recombinant genetics techniques. Basic texts disclosing the general methods for doing so include Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL (2nd ed. 1989); Kriegler, GENE TRANSFER AND EXPRESSION:A LABORATORY MANUAL (1990); and CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Ausubel et al., eds., 1994)).

In some embodiments, catalytic and binding domains of the polymerase are joined by a linker domain, e.g., a polypeptide sequence of 1 to about 200 amino acids in length, such as 1 to about 100, 50, 25, or 10 amino acids. In some embodiments, proline residues are incorporated into the linker to prevent the formation of significant secondary structural elements by the linker. Linkers can often be flexible amino acid subsequences that are synthesized as part of a recombinant fusion protein. For a discussion of linkers, see, e.g., US 2011/0086406 A1 including at paragraphs 83-89 thereof.

In some embodiments, the thermophilic DNA polymerase comprises an exonuclease domain. In some embodiments, the exonuclease domain is a 3′ to 5′ exonuclease domain. The 3′-5′ exonuclease domain can have error-correcting activity, also known as proofreading activity, in which the exonuclease preferentially removes a base from a nascent DNA strand/extension product/3′ terminus that is not a Watson-Crick match to the template strand. In some embodiments, the 3′-5′ exonuclease domain is a DEDDy archaeal exonuclease domain. In some embodiments, the exonuclease domain is N-terminal to the DNA polymerase catalytic domain. In some embodiments, the exonuclease domain is C-terminal to the N-terminal domain comprising a uracil-binding pocket. In some embodiments, the exonuclease domain is N-terminal to the DNA polymerase catalytic domain and C-terminal to the N-terminal domain comprising a uracil-binding pocket. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 63. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of a sequence selected from SEQ ID NO: 1, 19, 23, 31, 35, 39, 43, 49, 51, or 52. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 1. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 19. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 23. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 31. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 35. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 39. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 43. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 49. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 51. In some embodiments, the thermophilic DNA polymerase comprises a domain having at least 75%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identity to the exonuclease domain of SEQ ID NO: 52. An exonuclease domain can be identified using BLASTP against the RefSeq database can be identified by using NCBI BLASTP to search the RefSeq database. NCBI BLASTP automatically identifies certain domains such as exonuclease domains and indicates their termini as the positions at which the domain begins and ends.

In some embodiments, the exonuclease domain is an exonuclease domain of a Pyrococcus. In some embodiments, the exonuclease domain is an exonuclease domain of a Thermococcus. In some embodiments, the exonuclease domain is an exonuclease domain of a Pyrobaculum. In some embodiments, the exonuclease domain is an exonuclease domain of Pyrococcus furiosus. In some embodiments, the exonuclease domain is an exonuclease domain of Pyrococcus species GB-D. In some embodiments, the exonuclease domain is an exonuclease domain of Thermococcus kodakarensis. In some embodiments, the exonuclease domain is an exonuclease domain of Thermococcus litoralis. In some embodiments, the exonuclease domain is an exonuclease domain of Thermococcus gorgonarius. In some embodiments, the exonuclease domain is an exonuclease domain of Thermococcus sp. 9°N-7. In some embodiments, the exonuclease domain is an exonuclease domain of Pyrobaculum calidifontis. In some embodiments, the exonuclease domain is an exonuclease domain of Pyrobaculum aerophilum.

In some embodiments, the thermophilic DNA polymerase comprises an inactivated or reduced-activity exonuclease domain. An inactivated exonuclease domain is a mutated version of a wild-type domain that has less than 50% of the wild-type exonuclease activity. In some embodiments, the inactivated domain has less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% of the wild-type exonuclease activity. In some embodiments, the inactivated domain has less than 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, or 0.01% of the wild-type exonuclease activity. A reduced-activity exonuclease domain is a mutated version of a wild-type domain that has less than 10% of the wild-type exonuclease activity. Measurement of exonuclease activity is described, for example, in DNA Replication 2nd, edition, by Kornberg and Baker, W.H. Freeman & Company, New York, N.Y. 1991. Examples of exo- DNA polymerase mutants include those with a single mutation in Motif I and/or II (Motifs are as described, e.g., in U.S. Pat. No. 8,921,043, e.g., at FIG. 2), or a double mutation in Motif I (such as D141A and E143A, the position numbering corresponds to Pfu polymerase, SEQ ID NO: 1), that reportedly abolishes detectible exonuclease activity (see for example, VENT® (Thermococcus litoralis) (Kong et al. J. Biol. Chem. 268(3):1965-1975) (New England Biolabs, Inc. (NEB), Ipswich, Mass.); Thermococcus JDF-3 (U.S. Pat. No. 6,946,273, U.S. 2005/0069908); KODI (Thermococcus kodakaraensis) (U.S. Pat. No. 6,008,025); Pfu (Pyrococcus furiosus) (U.S. Pat. No. 5,489,523, U.S. Pat. No. 7,704,712, and U.S. Pat. No. 7,659,100); and 9° N (Thermococcus sp.) (U.S. 2005/0123940 and Southworth et al. Proc Natl Acad Sci USA 93:5281-5285 (1996)); see also U.S. Pat. No. 8,921,043. In some embodiments, the exonuclease domain has a D141A, E143A, D215A, D315A, D141A/E143A, D141A/D315A, E143A/D315A, D215A/D315A, or D141A/E143A/D315A mutation. In some embodiments, the exonuclease domain has an A, N, S, T, or E residue at the position corresponding to position 141 of SEQ ID NO: 1. In some embodiments, the exonuclease domain has an A at the position corresponding to position 141 of SEQ ID NO: 1. In some embodiments, the exonuclease domain has an A at the position corresponding to position 143 of SEQ ID NO: 1.

In some embodiments, the amino acid residue at the position of the family B polymerase catalytic domain amino acid sequence that aligns to position 25 of SEQ ID NO: 6 is a serine. In some embodiments, the amino acid residue at the position of the family B polymerase catalytic domain amino acid sequence that corresponds to position 25 of SEQ ID NO: 6 is a serine. In some embodiments, the thermophilic DNA polymerase comprises: (a) the consecutive amino acid residues LDFRS (SEQ ID NO: 196), (b) the consecutive amino acid residues FRSLY (SEQ ID NO: 197), or (c) the consecutive amino acid residues SLYPS (SEQ ID NO: 198), wherein the underlined serine residue is within 30 amino acid residues of the N-terminus of the family B polymerase catalytic domain. In some embodiments, the thermophilic DNA polymerase comprises:

(a) the consecutive amino acid residues LDFRS* (SEQ ID NO: 196), (b) the consecutive amino acid residues FRS*LY (SEQ ID NO: 197), or (c) the consecutive amino acid residues S*LYPS (SEQ ID NO: 198), wherein the serine residue immediately followed by an asterisk is within 30 amino acid residues of the N-terminus of the family B polymerase catalytic domain. The asterisk is included solely to designate the serine that is within 30 amino acid residues of the N-terminus of the family B polymerase catalytic domain and does not signify a structural difference. In some embodiments, the N-terminus of the family B polymerase catalytic domain is the residue immediately preceding the conserved tyrosine shown as the second residue in the multiple sequence alignment in FIG. 12. In some embodiments, the N-terminus of the family B polymerase catalytic domain is the position immediately preceding the position corresponding to the first tyrosine in SEQ ID NO: 6. In some embodiments, the N-terminus of the family B polymerase catalytic domain is the position that aligns to position 1 of SEQ ID NO: 6. In some embodiments, the N-terminus of the family B polymerase catalytic domain is the position corresponding to the position immediately preceding a tyrosine selected from the tyrosines shown as the second residues in FIG. 12. In some embodiments, the N-terminus of the family B polymerase catalytic domain is the position immediately preceding the position that aligns to a tyrosine selected from the tyrosines shown as the second residues in FIG. 12. In some embodiments, the N-terminus of the family B polymerase catalytic domain is the position immediately preceding the position corresponding to a tyrosine selected from the tyrosines shown as the second residues in FIG. 12. The N-terminal residue in any of the foregoing embodiments can be a serine. The N-terminal residue in any of the foregoing embodiments can be a threonine. The N-terminal residue in any of the foregoing embodiments can be a glycine. The N-terminal residue in any of the foregoing embodiments can be a proline.

As will be apparent from various aspects of the discussion above, family B polymerases are well-characterized in general and are known to tolerate mutations at a number of positions. Furthermore, the following is a non-exhaustive list of patents and published applications that discuss mutations in family B polymerases and the properties of mutated family B polymerases: U.S. Pat. 8,435,775; U.S. Pat. 8,557,554; WO2007/016702; US 2003/0180741; WO 2004/011605; WO 2003/060144; and U.S. Pat. 9,023,633. Accordingly, those skilled in the art will understand in view of this disclosure that the residues discussed herein such as the neutral amino acid at the position corresponding to position 379 of SEQ ID NO: 6 can be incorporated into a wide variety of thermophilic family B polymerases and can be accompanied by other amino acid residues that differ from wild-type residues. Thus, in some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence comprising at least one difference from SEQ ID NO: 1 at a position corresponding to position 15, 72, 93, 141, 143, 247, 265, 337, 385, 387, 388, 399, 400, 405, 407, 410, 485, 542, 546, 593, or 595 of SEQ ID NO: 1. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence comprising at least one missing residue corresponding to position 92, 93, 94, or 381 of SEQ ID NO: 1. In some embodiments, the at least one difference or missing residue is in the exonuclease domain. In some embodiments, the at least one difference or missing residue is in the polymerase catalytic domain.

In some embodiments, the polymerase with the at least one difference or missing residue has an expanded substrate range relative to a polymerase without the difference or in which the residue is not missing. In some embodiments, the at least one difference comprises a G or D at the position corresponding to position 400 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an I at the position corresponding to position 407 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an I at the position corresponding to position 337 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a D at the position corresponding to position 399 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an H at the position corresponding to position 546 of SEQ ID NO: 91.

In some embodiments, the polymerase with the at least one difference or missing residue incorporates a nucleotide analog to a greater extent than a polymerase without the difference or in which the residue is not missing. In some embodiments, the at least one difference comprises an L at the position corresponding to position 410 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a T at the position corresponding to position 485 of SEQ ID NO: 1.

In some embodiments, the polymerase with the at least one difference or missing residue has reduced uracil sensitivity relative to a polymerase without the difference or in which the residue is not missing. In some embodiments, the at least one missing residue comprises a missing residue at the position corresponding to position 93 of SEQ ID NO: 1. In some embodiments, the at least one missing residue comprises a missing residue at the position corresponding to position 94 of SEQ ID NO: 1. In some embodiments, the at least one missing residue comprises a missing residue at the position corresponding to position 92 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a Q, R, E, A, K, N, or G at the position corresponding to position 93 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a Q or R at the position corresponding to position 93 of SEQ ID NO: 1. In some embodiments, an at least one difference or missing residue as discussed above in this paragraph is accompanied by at least one difference or missing residue that offsets a loss of activity. In some embodiments, the at least one difference that offsets a loss of activity comprises an R at the position corresponding to position 247 of SEQ ID NO: 1. In some embodiments, the at least one difference that offsets a loss of activity comprises an R at the position corresponding to position 265 of SEQ ID NO: 1. In some embodiments, the at least one difference that offsets a loss of activity comprises an R at the position corresponding to position 485 of SEQ ID NO: 1. In some embodiments, the at least one missing residue that offsets a loss of activity comprises a missing residue at the position corresponding to position 381 of SEQ ID NO: 1.

In some embodiments, the at least one difference comprises an R at the position corresponding to position 247 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an R at the position corresponding to position 265 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an R at the position corresponding to position 485 of SEQ ID NO: 1. In some embodiments, the at least one missing residue comprises a missing residue at the position corresponding to position 381 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an I at the position corresponding to position 15 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an R at the position corresponding to position 72 of SEQ ID NO: 1.

In some embodiments, the polymerase with the at least one difference or missing residue has an altered proofreading spectrum relative to a polymerase without the difference or in which the residue is not missing. In some embodiments, the at least one difference comprises a P or S at the position corresponding to position 387 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an E at the position corresponding to position 405 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an F at the position corresponding to position 410 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a P at the position corresponding to position 542 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a T at the position corresponding to position 593 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises an S at the position corresponding to position 595 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a Q, S, N, L, or H at the position corresponding to position 385 of SEQ ID NO: 1. In some embodiments, the at least one difference comprises a P at the position corresponding to position 388 of SEQ ID NO: 1.

In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 11 to 14, 19 to 22, 27 to 30, and 76 to 79. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 11. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 12. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 13. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 14. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 19. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 20. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 21. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 22. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 27. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 28. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 29. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 30. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 76. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 77. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 78. In some embodiments, the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to SEQ ID NO: 79.

In some embodiments, the polymerase comprises an affinity purification tag. In some embodiments, the affinity purification tag comprises a sequence of histidines, such as 6, 7, 8, 9, or 10 consecutive histidines (SEQ ID NO: 218). The affinity purification tag can be located, e.g., at the N or C terminus of a polypeptide of the polymerase.

Hot Start Enzymes and Compositions

In some embodiments, a polymerase according to this disclosure is provided as a hot-start enzyme or a hot start composition. For discussion of hot-start enzymes and/or compositions, see, e.g., U.S. Pat. 5,338,671; U.S. Pat. 7,074,556; U.S. Publication 2015/0044683; U.S. Publication 2014/0099644. As used herein, the term “hot start” generally refers to a means of limiting the availability of an essential reaction component (e.g., a polymerase) when the reaction mixture is maintained at a first temperature (typically a lower temperature) until a second temperature (typically a higher temperature) is reached which allows the essential component to participate in the reaction. Hot start reactions typically involve incubation at a first (e.g., lower) temperature and subsequent elevation to a second (e.g., higher) temperature which allows the desired reaction to take place. Activation of the hot start reaction is preferably achieved by an incubation at a temperature which is equal to or higher than the primer hybridization (annealing) temperature used in the amplification reaction to ensure primer binding specificity. The length of incubation required to recover enzyme activity depends on the temperature and pH of the reaction mixture and on the stability of the enzyme. A wide range of incubation conditions are usable; optimal conditions may be determined empirically for each reaction.

As used herein, the term “dual hot start reaction mixture” refers to the combination of reagents or reagent solutions which are used to block nucleic acid polymerase extension at low temperatures (e.g., ambient temperature) until the hot start conditions of the initial denaturation temperature in an amplification reaction (e.g., PCR) are reached. At the elevated amplification temperature, the nucleic acid polymerase is no longer inhibited and allows for primer extension. As used herein, the dual hot start reaction mixture is meant to include a reaction mixture that comprises at least two different mechanisms for hot start. Accordingly, “dual hot start reaction mixtures” may include more than two hot start mechanisms (e.g., “triple hot start reaction mixture”, “quadruple hot start reaction mixture”, “quintuple hot start reaction mixture”, and so on).

Nonlimiting exemplary hot start mechanisms include, but are not limited to, antibodies or combinations of antibodies that block nucleic acid polymerase activity at lower temperatures and which dissociate from the polymerase at elevated temperatures (see, e.g., Eastlund et al., LifeSci. Quarterly 2:2 (2001), Mizuguchi et al., J. Biochem. (Tokyo) 126:762 (1999)); affibodies (small synthetic protein molecules that have high binding affinity for a target protein) or combinantions of affibodies, sometimes referred to as antibody mimetics; oligonucleotides that block nucleic acid polymerase activity at lower temperatures and which dissociate from the polymerase at elevated temperatures (see, e.g., Dang et al., J. Mol. Biol. 264:268 (1996)); reversible chemical modification of the nucleic acid polymerase such that the nucleic acid polymerase activity is blocked at lower temperatures and the modifications reverse or dissociate at elevated temperatures (see, e.g., U.S. Pat. No. 5,773,258 and Moretti et al., Biotechniques 25:716 (1998)); amino acid mutations of the nucleic acid polymerase that provide reduced activity at lower temperatures (see, e.g., Kermekchiev et al., Nucl. Acids Res. 31:6139 (2003)); nucleic acid polymerase fusion proteins including hyperstable DNA binding domains and topoisomerases (see, e.g., Pavlov et al., Proc. Natl. Acad. Sci. USA 99:13510 (2002)); ligands that inhibit the nucleic acid polymerase in a temperature-dependent manner (for example, HotMaster™ Taq DNA polymerase from Eppendorf (Hauppauge, N.Y.) and 5 PRIME (Gaithersburg, Md.)); single-stranded binding proteins that sequester primers at low temperatures (see, e.g., U.S. Pat. Application Publication No. 2008/0138878); thermostable pyrophosphatase which hydrolyzes inorganic pyrophosphate at elevated temperatures (see, e.g., U.S. Pat. Application Publication No. 2006/0057617); thermolabile blockers, such as a polymerase blocking protein (see, e.g., U.S. Pat. Application Publication No. 2007/0009922); primer competitor sequences (see, e.g., Puskas et al., Genome Res. 5:309 (1995) and Vestheim et al., Front. Zool. 5:12 (2008)); modified primer constructs (see, e.g., Ailenberg et al., Biotechniques 29:22 (2000) and Kaboev et al., Nucl. Acids Res. 28:E94 (2000)); modified primers that improve hybridization selectivity (see, e.g., U.S. Pat. Nos. 6,794,142 and 6,001,611); primers with 3′ modifications that are removable by 3′-5′ exonuclease activity (see, e.g., U.S. Pat. Application Publication No. 2003/0119150 and U.S. Pat. No. 6,482,590); primers with modified nucleobases that are removable by UV irradiation (see, e.g., Young et al., Chem. Commun. (Camb) 28:462 (2008)); primer modifications that are removable by thermal deprotection (see, e.g., U.S. Pat. Application Publication No. 2003/0162199 and Lebedev et al., Nucl. Acids Res. 36:e131 (2008)); or modification of the dNTPs with thermolabile modification groups (see, e.g., U.S. Pat. Application Publication No. 2003/0162199 and Koukhareva et al., Nucl. Acids Symp. Ser. (Oxford), 259 (2008)). Agents that are used as hot start mechanisms, such as antibodies, oligonucleotides, affibodies, chemical modifications, etc., may be referred to as “hot start inhibitors.”

In some embodiments, the hot start composition comprises an antibody specific for the polymerase. In some embodiments, the hot start composition comprises an antibody specific for the polymerase, which is bound to the polymerase. In some embodiments, the hot start composition comprises an inhibitor specific for the polymerase, which is bound to the polymerase. In some embodiments, the inhibitor comprises an Affibody®. Affibodies are described, e.g., in U.S. Publication 2012/0082981; see also Nord et al., 2000, J. Biotechnol. 80: 45-54; US Pat. No. 6602977; Nygren, 2008, FEBS J. 275: 2668-2676; Nord et al., 1997, 15: 772-777; U.S. Patent No. 5831012. In some embodiments, the inhibitor comprises an oligonucleotide. In some embodiments, the inhibitor comprises a chemical modification.

As used herein, dual hot start reaction mixtures comprising “at least two different mechanisms” encompass those reaction mixtures that may comprise at least two different hot start mechanisms that function similarly or use similar components. For example, dual hot start reaction mixtures can comprise reagents or reagent solutions designed for two different antibody-based hot start mechanisms, or two different oligonucleotide-based hot start mechanisms, or one antibody-based and one oligonucleotide-based hot start mechanism, or one antibody-based and one chemical modification-based hot start mechanism, or any such combination available.

Hot Start Antibodies and Methods of Making Same

In some embodiments, a hot start composition or dual hot start composition comprises an antibody inhibitor of a thermostable polymerase described herein. In some embodiments, the antibody is a monoclonal antibody.

Methods for producing and screening for antibodies that are suitable for use in hot start compositions with the polymerases described herein are known in the art. In some embodiments, a hot start antibody inhibits the nucleic acid synthesis activity of the thermostable polymerase described herein. In some embodiments, a hot start antibody inhibits exonuclease activity of the thermostable polymerase. In some embodiments, a hot start antibody inhibits both the nucleic acid synthesis activity and the exonuclease activity of the thermostable polymerase.

In some embodiments, hot-start antibodies increase the specificity of nucleic acid synthesis reactions, because they inactivate the polymerase at room temperature, thus avoiding extension of nonspecifically hybridized primers. The functional activity of the polymerase is restored by disassociating the antibody from the polymerase, for example, by incubating the composition at a higher temperature. In some embodiment, the “higher temperature” is from about 65° C. to about 99° C., from about 70° C. to about 99° C., 75° C. to about 99° C., or from about 80° C. to about 99° C., or from about 85° C. to about 99° C., or from about 90° C. to about 99° C., for a time period of at least 15 seconds, or at least 30 seconds, or at least 1 minute, or at least 90 seconds, or at least 2 minutes; to about 3 minutes, or about 4 minutes, or about 5 minutes, or about 7 minutes, or about 10 minutes, or more. In some embodiments, the higher temperature is at least 60° C., at least 65° C., at least 70° C., at least 75° C., at least 80° C., or at least 85° C. In some embodiments, the temperature and duration of incubation to disassociate the antibody and activate the polymerase may be determined for the particular polymerase and antibody to be employed.

Methods for screening for antibodies of use in the present invention include methods known in the art, such as affinity-based ELISA assays, as well as functional assays for polymerase and/or exonuclease inhibition. For such functional assays, the amount of DNA produced or digested per unit of time can be correlated to the activity of the polymerase or exonuclease used, thus providing an estimate of the amount of inhibition a particular antibody can exert on either or both the polymerase and exonuclease activity of the polymerase.

Antibodies may be produced using any method known in the art. As a nonlimiting example, an antibody to a particular antigen (such as a polymerase described herein) may be produced by immunizing an animal (such as a mouse, rat, rabbit, goat, sheep, horse, etc.) with the antigen and isolating antibodies from the serum of the animal and/or immortalizing primary B cells from the animal to produce hybridomas that express the antibodies. Phage display technology may also be used to produce antibodies that bind to the polymerases described herein. Phage display libraries are commercially available and methods of selecting antibodies from such libraries are known in the art. See, e.g., Vaughan et al., 1996, Nature Biotechnology, 14:309-314; Sheets et al., 1998, Proc. Natl. Acad. Sci. (USA) 95:6157-6162; Hoogenboom and Winter, 1991, J. Mol. Biol., 227:381; Marks et al., 1991, J. Mol. Biol., 222:581.

Exemplary Assays to Determine Polymerase Processivity, Yield, Sensitivity, and Specificity

Polymerase processivity may be measured using various methods known in the art. In some embodiments, processivity refers to the number of nucleotides incorporated during a single binding event of polymerase to a primed template. As a nonlimiting example, a detectably labeled primer may be annealed to circular or linearized DNA to form a primed nucleic acid template. In measuring processivity, the primed nucleic acid template may be present in significant molar excess to the polymerase to reduce the likelihood that any one primed template will be extended more than once by a polymerase. A “significant molar excess” may be, for example, a ratio of 500:1, or 1000:1, or 2000:1, or 4000:1, or 5000:1 (primed DNA:DNA polymerase), etc., in the presence of suitable buffers and dNTPs. Nucleic acid synthesis may be initiated by adding, for example, MgCl2. Nucleic acid synthesis reactions are quenched at various times after initiation, and analyzed by any appropriate method to determine the length of the product. At a polymerase concentration where the median product length does not change with time or polymerase concentration, the length corresponds to the processivity of the enzyme. In some embodiments, the processivity of a polymerase described, such as a polymerase comprising a neutral amino acid at position corresponding to position 762 of SEQ ID NO: 1 may be compared to the processivity of the same polymerase without the neutral amino acid mutation.

In some embodiments, yield can be demonstrated by measuring the ability of a polymerase to produce product. Increased yield can be demonstrated by determining the amount of product obtained in a reaction using a polymerase described herein (such as a polymerase comprising a neutral amino acid at position corresponding to position 762 of SEQ ID NO: 1), as compared to the amount of product obtained in a reaction carried out under the same reaction conditions, but with the same polymerase without the neutral amino acid mutation.

In some embodiments, long PCR may be used to determine enhanced processivity and yield. For example, an enzyme with enhanced processivity typically allows the amplification of a longer amplicons (>5 kb) in shorter extension times compared to an enzyme with relatively lower processivity.

Other methods of assessing efficiency of the polymerases of the invention can be determined by those of ordinary skill in the art using standard assays of the enzymatic activity of a given modification enzyme.

The sensitivity of a polymerase described herein may be determined by measuring the yield of nucleic acid synthesis product in a series of reactions with differing copy numbers of nucleic acid template. In some embodiments, the template copy number at which a polymerase of the invention (such as a polymerase comprising a neutral amino acid at position corresponding to position 762 of SEQ ID NO: 1) produces detectable product is compared to the template copy number at which the same polymerase without the neutral amino acid mutation produces detectable product. The lower the template copy number at which the polymerase produces detectable product, the more sensitive the polymerase.

In some embodiments, specificity of a polymerase may be measured by determining the ability of the polymerase to discriminate between matched primer/template duplexes and mismatched primer/template duplexes. In some embodiments, specificity is a measure of the difference in the relative yield of two reactions, one of which employs a matched primer, and one of which employs a mismatched primer. In some embodiments, an enzyme with increased discrimination will have a higher relative yield with the matched primer than with the mismatched primer. In some embodiments, a ratio of the yield with the matched primer versus the mismatched primer is determined. In some embodiments, the ratio can be compared to the yield obtained under the same reaction conditions using the parental polymerase.

DNA Synthesis Methods; Kits, Compositions, Systems, and Apparatuses

Provided herein are methods of synthesizing or amplifying DNA and related kits, compositions, systems, and apparatuses involving at least one polymerase according to this disclosure. In some embodiments, reagents for nucleic acid synthesis are provided. In some embodiments, reagents for nucleic acid synthesis include any one or any combination of target polynucleotides, particles attached with capture primers, solution-phase primers, fusion primers, other additional primers, enzymes (e.g., polymerases), accessory proteins (e.g., recombinase, recombinase loading protein, single-stranded binding protein, helicase or topoisomerase), nucleotides, divalent cations, binding partners, co-factors and/or buffer. In some embodiments, reagents for nucleic acid synthesis include a dUTPase as an accessory protein.

In some embodiments, the disclosure relates generally to compositions, as well as related systems, methods, kits and apparatuses, comprising one or more nucleotides. In some embodiments, the compositions (and related methods, systems, kits and apparatuses) includes one type, or a mixture of different types of nucleotides. A nucleotide comprises any compound that can bind selectively to, or can be polymerized by, a polymerase. Typically, but not necessarily, selective binding of the nucleotide to the polymerase is followed by polymerization of the nucleotide into a nucleic acid strand by the polymerase. Such nucleotides include not only naturally occurring nucleotides but also any analogs, regardless of their structure, that can bind selectively to, or can be polymerized by, a polymerase. While naturally occurring nucleotides typically comprise base, sugar and phosphate moieties, the nucleotides of the present disclosure can include compounds lacking any one, some or all of such moieties. In some embodiments, the nucleotide can optionally include a chain of phosphorus atoms comprising three, four, five, six, seven, eight, nine, ten or more phosphorus atoms. In some embodiments, the phosphorus chain can be attached to any carbon of a sugar ring, such as the 5′ carbon. The phosphorus chain can be linked to the sugar with an intervening O or S. In some embodiments, one or more phosphorus atoms in the chain can be part of a phosphate group having P and O. In some embodiments, the phosphorus atoms in the chain can be linked together with intervening O, NH, S, methylene, substituted methylene, ethylene, substituted ethylene, CNH2, C(O), C(CH2), CH2CH2, or C(OH)CH2R (where R can be a 4-pyridine or 1-imidazole). In some embodiments, the phosphorus atoms in the chain can have side groups having O, BH3, or S. In the phosphorus chain, a phosphorus atom with a side group other than O can be a substituted phosphate group. In the phosphorus chain, phosphorus atoms with an intervening atom other than O can be a substituted phosphate group. Some examples of nucleotide analogs are described in Xu, U.S. Pat. No. 7,405,281.

Some examples of nucleotides that can be used in the disclosed compositions (and related methods, systems, kits and apparatuses) include, but are not limited to, ribonucleotides, deoxyribonucleotides, modified ribonucleotides, modified deoxyribonucleotides, ribonucleotide polyphosphates, deoxyribonucleotide polyphosphates, modified ribonucleotide polyphosphates, modified deoxyribonucleotide polyphosphates, peptide nucleotides, modified peptide nucleotides, metallonucleosides, phosphonate nucleosides, and modified phosphate-sugar backbone nucleotides, analogs, derivatives, or variants of the foregoing compounds, and the like. In some embodiments, the nucleotide can comprise non-oxygen moieties such as, for example, thio- or borano- moieties, in place of the oxygen moiety bridging the alpha phosphate and the sugar of the nucleotide, or the alpha and beta phosphates of the nucleotide, or the beta and gamma phosphates of the nucleotide, or between any other two phosphates of the nucleotide, or any combination thereof. In some embodiments, a nucleotide can include a purine or pyrimidine base, including adenine, guanine, cytosine, thymine, uracil or inosine. In some embodiments, a nucleotide includes dATP, dGTP, dCTP, dTTP and dUTP.

In some embodiments, the nucleotide is unlabeled. In some embodiments, the nucleotide comprises a label and referred to herein as a “labeled nucleotide”. In some embodiments, the label can be in the form of a fluorescent dye attached to any portion of a nucleotide including a base, sugar or any intervening phosphate group or a terminal phosphate group, i.e., the phosphate group most distal from the sugar.

In some embodiments, the disclosure relates generally to compositions, as well as related systems, methods, kits and apparatuses, comprising any one or any combination of capture primers, reverse solution-phase primers, fusion primers, target polynucleotides and/or nucleotides that are non-labeled or attached to at least one label. In some embodiments, the label comprises a detectable moiety. In some embodiments, the label can generate, or cause to generate, a detectable signal. In some embodiments, the detectable signal can be generated from a chemical or physical change (e.g., heat, light, electrical, pH, salt concentration, enzymatic activity, or proximity events). For example, a proximity event can include two reporter moieties approaching each other, or associating with each other, or binding each other. In some embodiments, the detectable signal can be detected optically, electrically, chemically, enzymatically, thermally, or via mass spectroscopy or Raman spectroscopy. In some embodiments, the label can include compounds that are luminescent, photoluminescent, electroluminescent, bioluminescent, chemiluminescent, fluorescent, phosphorescent or electrochemical. In some embodiments, the label can include compounds that are fluorophores, chromophores, radioisotopes, haptens, affinity tags, atoms or enzymes. In some embodiments, the label comprises a moiety not typically present in naturally occurring nucleotides. For example, the label can include fluorescent, luminescent or radioactive moieties.

In some embodiments, the nucleic acid synthesis reaction includes a cycled amplification reaction, such as a polymerase chain reaction (PCR) (U.S. Pat. 4,683,195 and 4,683,202 both granted to Mullis). Multiple examples of PCR according to this disclosure are provided below. In some embodiments, the nucleic acid synthesis reaction includes an isothermal reaction, such as an isothermal self-sustained sequence reaction (Kwoh 1989 Proceedings National Academy of Science USA 86:1173-1177; WO 1988/10315; and U.S. patents 5,409,818, 5,399,491, and 5,194,370), or a recombinase polymerase amplification (RPA) (U.S. Pat. No. 5,223,414 to Zarling, U.S. Pat. Nos. 5,273,881 and 5,670,316 both to Sena, and U.S. Pat. Nos. 7,270,981, 7,399,590, 7,435,561, 7,666,598, 7,763,427, 8,017,339, 8,030,000, 8,062,850, and 8,071,308).

PCR is a nucleic acid synthesis reaction in which the reaction mixture is subjected to reaction cycles, each reaction cycle comprising a denaturation period and at least one annealing and/or extension period, resulting if successful in synthesis of copies of a nucleic acid template in at least the initial cycles, and copies of the copies in at least the later cycles, generally resulting in exponential amplification of the template. In PCR, in some instances, a pair of primers are provided that bind at each end of a target region, on opposite strands such that they each prime synthesis toward the other primer. The reaction is thermocycled so as to drive denaturation of the substrate in a high temperature step, annealing of the primers at a lower temperature step, and extension at a temperature which may be but is not necessarily higher than that of the annealing step. Exponential amplification occurs because the products of one cycle can serve as template in the next cycle.

An embodiment of isothermal self-sustained sequence reaction, also sometimes referred to as transcription-mediated amplification or TMA, involves synthesizing single-stranded RNA, single-stranded DNA and double-stranded DNA. The single-stranded RNA is a first template for a first primer, the single-stranded DNA is a second template for a second primer, and the double stranded DNA is a third template for synthesis of a plurality of copies of the first template. A sequence of the first primer or the second primer is complementary to a sequence of a target nucleic acid and a sequence of the first primer or the second primer is homologous to a sequence of the target nucleic acid. In an embodiment of an isothermal self-sustained sequence reaction, a first cDNA strand is synthesized by extension of the first primer along the target by an enzyme with RNA-dependent DNA polymerase activity, such as a reverse transcriptase. The first primer can comprise a polymerase binding sequence (PBS) such as a PBS for a DNA-dependent RNA polymerase, such as T7, T3, or SP6 RNA polymerase. The first primer comprising a PBS is sometimes referred to as a promoter-primer. The first cDNA strand is rendered single-stranded, such as by denaturation or by degradation of the RNA, such as by an RNase H. The second primer then anneals to the first cDNA strand and is extended to form a second cDNA strand by a DNA polymerase activity. Forming the second cDNA strand renders the cDNA double-stranded, including the PBS. RNA can then be synthesized from the cDNA, which comprises the PBS, by a DNA-dependent RNA polymerase, such as T7, T3, or SP6 RNA polymerase, thereby providing a template for further events (extension of the first primer, rendering the product single-stranded, extension of the second primer, and RNA synthesis). Exponential amplification occurs because the RNA product can subsequently serve as a template and also because RNA products can be generated repeatedly from a cDNA comprising the PBS.

An embodiment of RPA can be performed isothermally and employs a recombinase to promote strand invasion of a double-stranded template by forward and reverse primers. The 3′ ends of the primers are extended, displacing template strands at least in part. Subsequent strand invasion/annealing events, including to previously produced extension products, occur and are followed by extension, resulting in amplification. In some embodiments, recombinase activity is supported by the presence of one or more recombinase accessory proteins, such as a recombinase loading protein and/or single-stranded binding protein.

In some embodiments, the disclosure relates generally to compositions, and related methods, systems, kits and apparatuses, comprising a nucleic acid synthesis reaction (synthesis condition) that can be conducted under thermocycling or isothermal conditions, or a combination of both types of conditions. For example, the synthesis condition can include alternating between thermocycling and isothermal synthesis conditions, in any order.

In some embodiments thermocycling synthesis conditions comprise a nucleic acid synthesis reaction mixture that is subjected to an elevated temperature for a period of time that is sufficient to denature at least about 30-95% of the double-stranded target nucleic acids, and then subjected to a lower temperature for a period of time that is sufficient to permit hybridization between the single-stranded target nucleic acids and any of the primers (e.g., capture primer, reverse solution-phase primer, or fusion primer). In some embodiments, the increase and decrease temperature cycle is repeated at least once.

In some embodiments isothermal synthesis conditions comprise a nucleic acid synthesis reaction mixture that is subjected to a temperature variation which is constrained within a limited range during at least some portion of the synthesis, including for example a temperature variation is within about 20° C., or about 10° C., or about 5° C., or about 1-5° C., or about 0.1-1° C., or less than about 0.1° C.

In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 2, 5, 10, 15, 20, 30, 40, 50, 60 or 120 minutes, or longer. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for at least about 2 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 120 minutes or less. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 2 to about 120 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 2 to about 60 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 60 to about 120 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 2 to about 5 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 5 to about 10 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 10 to about 15 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 10 to about 15 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 10 to about 15 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 15 to about 20 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 20 to about 30 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 30 to about 40 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 40 to about 50 minutes. In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted for about 50 to about 60 minutes.

In some embodiments, an isothermal nucleic acid synthesis reaction can be conducted at about 15-30° C., or about 30-45° C., or about 45-60° C., or about 60-75° C., or about 75-90° C., or about 90-93° C., or about 93-99° C.

In some embodiments, the disclosure relates generally to methods, and related compositions, systems, kits and apparatuses, that further include an enrichment step. In some embodiments, an enrichment step comprises a pre-amplification reaction. See, e.g., U.S. Pat. No. 8,815,546 B2 . As a nonlimiting example, a pre-amplification reaction may comprise random primers to amplify a portion, even a substantial portion, of the nucleic acid template in a sample. In this manner, the overall amount of nucleic acid template may be increased prior to a sequence-specific nucleic acid synthesis reaction.

In some embodiments, an amplified population of nucleic acids can include an affinity moiety. For example, in conducting any of the nucleic acid synthesis methods according to the present teachings, a solution-phase/reverse primer that is attached to an affinity moiety (e.g., biotin) can be used to conduct a synthesis reaction to produce an amplified population of nucleic acids that are attached to the affinity moiety. In some embodiments, the enrichment step comprises forming a enrichment complex by binding the affinity moiety (which is attached to the amplified population of nucleic acids) with a purification particle (e.g., paramagnetic bead) that is attached to a receptor moiety (e.g., streptavidin). An example of purification particles include MyOne™ Beads from Dynabeads, which are paramagnetic beads attached to streptavidin. In some embodiments, a magnet can be used to separate/remove the enrichment complex from amplified population of nucleic acids that lack the affinity moiety. In some embodiments, the enrichment step can be repeated at least once. In some embodiment, the enrichment step is followed by one or more washing step.

In some embodiments, the disclosure relates generally to methods, and related compositions, systems, kits and apparatuses that further include at least one washing step. The washing step can be conducted at any time during the workflow for nucleic acid synthesis. In some embodiments, a washing step can remove excess or unreacted components of the nucleic acid synthesis or enrichment reactions.

In some embodiments, any of the nucleic acid synthesis methods, or enrichment steps, according to the present teachings, can be conducted manually or by automation. In some embodiments, any one or any combination of the steps can be conducted manually or by automation, including: conducting a nucleic acid synthesis reaction, enriching, and/or washing. For example, any reagents for a nucleic acid synthesis, enrichment or washing, can be deposited into, or removed from, a reaction vessel via manual or automated modes.

In various embodiments, the disclosure relates to compositions comprising at least one polymerase described herein. In some embodiments, the composition is a hot start composition. In some such embodiments, the composition is a dual hot start composition. In some embodiments, the dual hot start composition comprises at least two different hot start mechanisms that are used to inhibit or substantially inhibit the polymerase activity at a first temperature. Such hot start mechanisms include, but are not limited to, antibodies or combinations of antibodies that block DNA polymerase activity at lower temperatures, antibody mimetics or combinations of antibody mimetics that block DNA polymerase activity at lower temperatures (such as, for example, Affibodies®), oligonucleotides that block DNA polymerase activity at lower temperatures (such as, for example, aptamers), reversible chemical modifications of the DNA polymerase that dissociate at elevated temperatures, amino acid modifications of the DNA polymerase that provide reduced activity at lower temperatures, fusion proteins that include hyperstable DNA binding domains and topoisomerase, other temperature dependent ligands that inhibit the DNA polymerase, single stranded binding proteins that sequester primers at lower temperatures, modified primers or modified dNTPs. Hot start compositions, in some embodiments, comprise at least one polymerase described herein with or without a hot start chemical modification, at least one hot start antibody, at least one hot start aptamer, and/or at least one hot start Affibody®. In some embodiments, a hot start composition comprises at least one polymerase described herein with or without a hot start chemical modification, at least one hot start antibody and at least one hot start aptamer or at least one hot start Affibody®. In some embodiments, a hot start composition comprises at least one polymerase described herein with or without a hot start chemical modification, at least one hot start Affibody® and at least one hot start antibody or at least one hot start aptamer. In some embodiments, a hot start composition comprises a polymerase described herein with or without a hot start chemical modification, a hot start antibody, and a hot start aptamer or a hot start Affibody®. In some embodiments, a hot start composition comprises a polymerase described herein with or without a hot start chemical modification, a hot start Affibody®, and a hot start antibody or a hot start aptamer. In some embodiments, a hot start composition comprises a polymerase described herein with or without a hot start chemical modification, a hot start antibody, and a hot start Affibody®. In some embodiments, a hot start composition comprises a polymerase described herein with or without a hot start chemical modification, a hot start antibody, and a hot start aptamer.

In some embodiments, a composition comprises one or more detergents, one or more protein stabilizers, and/or at least one UTPase. In some embodiments, a composition comprises one or more detergents, one or more protein stabilizers, and at least one UTPase. In some embodiments, a composition comprises at least one monovalent cationic salt, at least one divalent cationic salt, and/or at least one dNTP. In some embodiments, a composition further comprises at least one dye. In some embodiments, a composition comprises additional stabilizers that increase the density of the composition.

Nonlimiting exemplary detergents that may be used in the compositions provided herein include nonionic, ionic (anionic, cationic) and zwitterionic detergents. Exemplary such detergents include, but are not limited to, Hecameg (6-O-(N-Heptylcarbamoyl)-methyl-α-D-glucopyranoside), Trition X-200, Brij-58, CHAPS, n-Dodecyl-b-D-maltoside, NP-40, sodium dodecyl sulphate (SDS), TRITON® X-15, TRITON® X-35, TRITON® X-45, TRITON® X-100, TRITON® X-102, TRITON® X-114, TRITON® X-165, TRITON® X-305, TRITON® X-405, TRITON® X-705, Tween® 20 and/or ZWITTERGENT®. Other detergents may also be suitable, as may be determined by one of skill in the art. See, e.g., U.S. Pat. No. 7972828B2, U.S. Pat. No. 8980333B2 U.S. Publication No. 2008/0145910; U.S. Publication No. 2008/0064071; U.S. Pat. No. 6,242,235; U.S. Pat. No. 5,871,975; and U.S. Pat. No. 6,127,155 for exemplary detergents.

Nonlimiting exemplary protein stabilizers that may be used in the compositions provided herein include BSA, inactive polymerases (such as inactivated Taq polymerase; see, e.g., US Publication No. 2011/0059490), and apotransferrin. Further nonlimiting exemplary stabilizers that may be used in the compositions provided herein include glycerol, trehalose, lactose, maltose, galactose, glucose, sucrose, dimethyl sulfoxide (DMSO), polyethylene glycol, and sorbitol.

Nonlimiting exemplary UTPases that may be used in the compositions provided herein include UTPases from thermophilic bacteria. See, e.g., PNAS, 2002, 99: 596-601.

Nonlimiting exemplary dyes that may be used in the compositions provided herein include xylene cyanol FF, tartrazine, phenol red, quinoline yellow, zylene cyanol, Brilliant Blue, Patent Blue, indigocarmine, acid red 1, m-cresol purple, cresol red, neutral red, bromocresol green, acid violet 5, bromo phenol blue, and orange G (see, e.g., US Pat. No. 8663925 B2). Additional nonlimiting exemplary dyes are described, e.g., in US Pat. No. 6,942,964. One skilled in the art will appreciate that any dye that does not inhibit nucleic acid synthesis by the polymerases described herein may be used.

In some embodiments, a storage composition is provided comprising a polymerase provided herein, at least one hot start antibody, at least one protein stabilizer, and at least one UTPase, in a buffer suitable for storage. In some embodiments, a storage composition is provided comprising a polymerase provided herein, at least one hot start antibody, at least one Affibody®, at least one protein stabilizer, and at least one UTPase, in a buffer suitable for storage. In some embodiments, a storage composition is provided comprising a polymerase provided herein, two hot start antibodies, a protein stabilizer, and a UTPase, in a buffer suitable for storage. In some embodiments, the storage buffer comprises a buffering agent (such as Tris HCl), a salt (such as KCl or NaCl), a stabilizer (such as glycerol), a reducing agent (such as DTT), a divalent cation chelating agent (such as EDTA), and a detergent (such as hecameg and/or Triton X-200 and/or NP-40 and/or Tween-20, etc.). In some embodiments, the storage composition comprises 0.5 to 5 units (U), or 0.5 to 3U, or 1 to 3U, or 2U of polymerase per µl. In some embodiments, the storage composition comprises 0.05 to 1 mg/ml, or 0.05 to 0.5 mg/ml, or 0.1 to 0.5 mg/ml, or 0.1 to 0.3 mg/ml of each hot start antibody. In some embodiments, the storage composition comprises 0.1 to 10 mg/ml, or 0.1 to 5 mg/ml, or 0.5 to 5 mg/ml, or 0.5 to 2 mg/ml of each hot start Affibody®. In some embodiments, the storage composition comprises 0.5 to 5 mg/ml, or 1 to 5 mg/ml, or 1 to 3 mg/ml of each protein stabilizer.

In some embodiments, a reaction composition is provided, comprising at least one polymerase described herein, at least one buffering agent (such as Tris HCl), at least one monovalent cationic salt (such as KCl or NaCl), at least one divalent cationic salt (such as MgCl2 or MnCl2), at least one detergent (such as hecameg and/or Triton X-200 and/or NP-40 and/or Tween-20, etc.), and at least one dNTP. In some embodiments, the composition comprises dATP, dCTP, dGTP, and dTTP. In some embodiments, the reaction composition further comprises at least one dye. In some embodiments, for example when the composition is to be loaded on a gel, the reaction composition comprises additional stabilizers that increase the density of the composition, such as polyethylene glycol (e.g., PEG 4000) and/or sucrose. PEG 4000 may be included, in some embodiments, at a concentration of 0.5-2%, or about 1%; and sucrose may be included, in some embodiments, at a concentration of 1-5%, or 1-3%, or about 2% (or 2-10%, or 2-6%, or about 4% for a 2X reaction composition). In some embodiments, the buffering agent (such as Tris HCl) is present at a concentration of 5-50 mM, or 5-30 mM, or 5-20 mM (or 10-100 mM, or 10-60 mM, or 10-40 mM for a 2X reaction composition). In some embodiments, the monovalent cation (such as K+ or Na+) is present at a concentration of 50-300 mM, or 50-200 mM, or 75-150 mM, or about 110 mM (or 100-600 mM, or 100-400 mM, or 150-300 mM, or about 220 mM for a 2X reaction composition). In some embodiments, a detergent (such as hecameg and/or Triton X-200 and/or NP-40 and/or Tween-20, etc.) is present at a concentration of 0.05-0.3%, or 0.1-0.2%, or about 0.15% (or 0.01-0.6%, or 0.2-0.4%, or about 0.3% for a 2X reaction composition). In some embodiments, the Mg2+ or Mn2+ is present at a concentration of 0.5-5 mM, or 0.5-3 mM, or about 1.5 mM (or 1-10 mM, or 1-6 mM, or about 3 mM for a 2X reaction composition). In some embodiments, each dNTP is present at a concentration of 0.05-1 mM, or 0.1-0.8 mM, or 0.1-0.6 mM, or 0.1-0.4 mM, or about 0.2 mM (or 0.1-2 mM, or 0.2-1.6 mM, or 0.2-1.2 mM, or 0.2-0.8 mM, or about 0.4 mM for a 2X reaction composition).

PCR enhancing factors may also be used to improve efficiency of the amplification. As used herein, a “PCR enhancing factor” or a “Polymerase Enhancing Factor” (PEF) refers to a complex or protein possessing polynucleotide polymerase enhancing activity (Hogrefe et al., 1997, Strategies 10:93-96; and U.S. Pat. No. 6,183,997, both of which are hereby incorporated by references). For Pfu DNA polymerase, for example, PEF may comprise either P45 in native form (as a complex of P50 and P45) or as a recombinant protein. In the native complex of Pfu P50 and P45, only P45 exhibits PCR enhancing activity. The P50 protein is similar in structure to a bacterial flavoprotein. The P45 protein is similar in structure to dCTP deaminase and dUTPase, but it functions only as a dUTPase converting dUTP to dUMP and pyrophosphate. PEF, according to the present disclosure, may also be selected from the group consisting of: an isolated or purified naturally occurring polymerase enhancing protein obtained from an archaeabacteria source (e.g., Pyrococcus furiosus); a wholly or partially synthetic protein having the same amino acid sequence as Pfu P45, or analogs thereof possessing polymerase enhancing activity; polymerase-enhancing mixtures of one or more of said naturally occurring or wholly or partially synthetic proteins; polymerase-enhancing protein complexes of one or more of said naturally occurring or wholly or partially synthetic proteins; or polymerase-enhancing partially purified cell extracts containing one or more of said naturally occurring proteins (U.S. Pat. No. 6,183,997, supra).

In some embodiments, a reaction composition further comprises ingredients that enhance nucleic acid synthesis from high GC-content templates. In some such embodiments, the reaction composition comprises glycerol, DMSO, and/or ammonium sulphate. In some embodiments, the reaction composition comprises glycerol, DMSO, and ammonium sulphate. In some embodiments, glycerol is present in the reaction composition at a concentration of 5-20%, or 5-15%, or about 10%. In some embodiments, DMSO is present in the reaction composition at a concentration of 1-10%, or 3-10%, or 3-7%, or about 5%. In some embodiments, ammonium sulphate is present in the reaction composition at 10-50 mM, or 15-40 mM, or 20-30 mM, or about 25 mM.

In some embodiments, a reaction composition is provided at 2X, 5X, 10X, etc. concentration, in which case, the concentrations discussed herein are multiplied (e.g., as noted above; doubled for 2X). A 2X reaction composition is typically diluted by 2-fold, for example, when the template nucleic acid and/or primers are added to the composition.

In some embodiments, a reaction composition comprises nucleic acid template and at least one primer for nucleic acid synthesis. In some embodiments, each primer is included in the reaction composition at a concentration of 0.1-0.8 µM, or 0.1-0.5 µM, or 0.2-0.4 µM, or about 0.3 µM. One skilled in the art will appreciate that the template nucleic acid may be provided at a wide range of concentrations, which lower limit, in some embodiments, may be determined by the sensitivity of the polymerase.

In some embodiments, the composition comprises at least one PCR inhibitor. In some embodiments, the PCR inhibitor comprises xylan, heparin, humic acid, or SDS. In some embodiments, methods according to the disclosure comprise amplifying DNA in the presence of at least one PCR inhibitor. In some embodiments, the PCR inhibitor comprises xylan. In some embodiments, the PCR inhibitor comprises heparin.

In various embodiments, the composition may be an aqueous composition. In various embodiments, the composition may be a lyophilized composition. In some embodiments, the composition comprises a cryoprotectant and/or a preservative and/or other additives known to those skilled in the art. Nonlimiting exemplary cryoprotectants and preservatives include, for example, the stabilizers and reducing agents described herein.

Nucleic Acids; Vectors; Host Cells; Methods of Production and/or Purification

Provided herein are nucleic acids comprising a sequence encoding a polymerase according to this disclosure. In some embodiments, the nucleic acid is operably linked to a promoter. In some embodiments, the promoter is a promoter for a bacteriophage RNA polymerase, such as a T7 promoter. In some embodiments, the nucleic acid is codon-optimized for expression in a host cell, such as a microorganism, e.g., a bacterium, such as E. coli.

Also provided herein are vectors comprising any of the nucleic acids comprising a sequence encoding a polymerase according to this disclosure discussed above. In some embodiments, the vector is a plasmid. In some embodiments, the vector is an expression vector. In some embodiments, the vector contains a selectable marker. In some embodiments, the vector is capable of being propagated in a microorganism, e.g., a bacterium, such as E. coli.

Also provided herein are host cells comprising any of the nucleic acids comprising a sequence encoding a polymerase according to this disclosure discussed above. Also provided herein are host cells comprising any of the vectors comprising a sequence encoding a polymerase according to this disclosure discussed above. In some embodiments, the host cell is a microorganism, e.g., a bacterium, such as E. coli. In some embodiments, the host cell further comprises a nucleic acid encoding a heterologous RNA polymerase. In some embodiments, the heterologous RNA polymerase is a bacteriophage RNA polymerase, such as bacteriophage T7 RNA polymerase. In some embodiments, the heterologous RNA polymerase is operably linked to a promoter, such as an inducible promoter, e.g., a lac-inducible promoter. In some embodiments, the host cell is of a protease-deficient strain. In some embodiments, the host cell is E. coli BL-21. In some embodiments, the host cell, such as BL-21, is modified to carry tRNA genes encoding tRNAs with rarer anticodons (for example, argU, ileY, leuW, and proL tRNA genes).

Also provided herein are methods of producing and/or purifying a polymerase according to this disclosure. In some embodiments, such a method comprises culturing at least one host cell comprising a nucleic acid encoding a thermophilic DNA polymerase according to this disclosure, wherein the at least one host cell expresses the thermophilic DNA polymerase. In some embodiments, such a method comprises isolating a polymerase according to this disclosure from host cells that have expressed the polymerase. In some embodiments, the isolating comprises lysing the host cells. In some embodiments, the isolating comprises heat treatment to denature host proteins. In some embodiments, denatured host proteins are removed, e.g., by centrifugation. In some embodiments, the polymerase is purified via chromatography. Examples of procedures for purifying DNA polymerases are provided, e.g., in Lawyer et al. (1993, PCR Meth. & App. 2: 275) (designed originally for the isolation of Taq polymerase) and Kong et al. (1993, J. Biol. Chem. 268: 1965) (involving a heat denaturation step of host proteins, and two column purification steps over DEAE-Sepharose and heparin-Sepharose columns).

EXAMPLES

The following examples are provided to illustrate certain disclosed embodiments and are not to be construed as limiting the scope of this disclosure in any way.

Example 1. Tolerance of Inhibitors by a Thermophilic DNA Polymerase According to the Disclosure

The inhibitor resistance of a thermophilic DNA polymerase with the sequence of SEQ ID NO: 20 (including a Q at position 762) (762Q polymerase) was compared to a version with a K at position 762 (762K polymerase) by amplifying PCR fragments in the presence of various amounts of polymerase inhibitors. The performance of a thermophilic DNA polymerase with the sequence of SEQ ID NO: 22 (including a Q at position 762 and S at position 408) (408S 762Q polymerase) was compared to a version with a K at position 762 (408S 762K polymerase) by amplifying PCR fragments in the presence of various amounts of polymerase inhibitors.

Heparin. A 2 kb fragment was amplified from 20 ng of human genomic DNA template in 20 µl PCR reactions in the presence of 0 to 0.3 µM of heparin using the thermophilic DNA polymerases (FIG. 1). Primers with the following sequences were used:

  • GAAGAGCCAAGGACAGGTAC (SEQ ID NO: 64) (forward);
  • CCTCCAAATCAAGCCTCTAC (SEQ ID NO: 65) (reverse). The PCR program was as follows:

98° C. 30 s 98° C. 10 s 60° C. 10 s x30 72° C. 1 min 72° C. 5 min

Products were detected by agarose gel electrophoresis and staining with Ethidium bromide. Detectable product was observed at up to 0.25 µM heparin for the 762Q polymerase and 0.15 µM for 408S 762Q polymerase. Products were not detected at or above 0.1 µM heparin for the 762K and 408S 762K polymerases.

Xylan. A 2 kb fragment was amplified from 40 ng of human genomic DNA template in 20 µl PCR reactions in the presence of 0 to 400 ng/µl xylan using the thermophilic DNA polymerases (FIG. 2). The primers, PCR program, and product detection were as described above with respect to heparin.

Detectable product was observed at up to 400 ng/µl xylan for the 762Q polymerase. Products were not detected at 400 ng/µl xylan for the 762K polymerases.

Humic acid. A 2 kb fragment was amplified from 40 ng of human genomic DNA template in 20 µl PCR mixture in the presence of 0 to 1.0 ng/ml of humic acid using a thermophilic DNA polymerase with the sequence of SEQ ID NO: 20 (including a Q at position 762) was compared to a version with a K at position 762 (FIG. 3). Primers, the PCR program, and product detection were as described above with respect to heparin.

Sodium dodecyl sulfate. A 2 kb fragment was amplified from 40 ng of human genomic DNA template in 20 µl PCR mixture in the presence of 0 to 0.016% or 0.2% (w/v) sodium dodecyl sulfate (SDS) using the 762Q or 762K polymerases (FIG. 4). The primers, PCR program, and product detection were as described above with respect to heparin.

Thus, increased inhibitor tolerance was observed for the polymerases with a Q at position 762.

Example 2. Yield and Sensitivity of PCR With a Thermophilic DNA Polymerase According to the Disclosure

The PCR performance (sensitivity and yield) of the 762Q and 762K polymerases discussed in Example 1 were compared by amplifying PCR fragments from various amounts of DNA template.

Sensitivity. A 2 kb fragment was amplified from a series of amounts of human genomic DNA template between 0 and 400 ng in a 20 µl PCR mixture using the thermophilic DNA polymerases (FIG. 5). The primers and the PCR program were the same as those used in Example 1. Products were analyzed by agarose gel electrophoresis and stained as in Example 1.

The results showed that the reaction with the 762Q polymerase had higher sensitivity (amplification from lower amounts of template DNA) than with the 762K polymerase, and the reaction with the 408S 762Q polymerase had higher sensitivity than with the 408S 762K polymerase.

Yield. A 10 kb fragment was amplified from a series of amounts of phage lambda DNA template between 0 and 200 ng in a 20 µl PCR mixture using the thermophilic DNA polymerases. The primers were: CAGTGCAGTGCTTGATAACAGG (SEQ ID NO: 66) (forward) and GTAGTGCGCGTTTGATTTCC (SEQ ID NO: 67) (reverse). The PCR program was:

98° C. 30 s 98° C. 10 s 60° C. 15 s x25 72° C. 150 s 72° C. 10 min

Products were analyzed by agarose gel electrophoresis and stained as in Example 1. The results from two experiments showed that the reaction sensitivity (amplification from lower amounts of template DNA) was similar for all the polymerases (FIG. 6A), while the 762Q polymerase showed the highest yield (140% from the 762K polymerase) amplifying the 10 kb fragment from 0.5 ng of the template (FIG. 6B).

Example 3 Fidelity of Thermophilic DNA Polymerases According to the Disclosure

Polymerase fidelity was measured by next generation sequencing. Fragmented E.coli DNA (~300 bp) was amplified by Taq polymerase, 762K polymerase, 762Q polymerase, 408S 762K polymerase and 408S 762Q polymerase. The number of effective PCR cycles was found by qPCR. The amplified libraries were subjected to paired-end Illumina sequencing together with control E.coli PCR-free libraries. The polymerase error rates were calculated using bioinformatics techniques. The background level of experimental errors was estimated from PCR-free library sequencing data. The polymerase introduced errors were identified as nucleotide changes in both pair-end reads, while nucleotide changes in only pair-end one read have been treated as instrumental errors and were eliminated. The polymerase fidelities (1/error rate) were normalized to the fidelity of Taq polymerase, which fidelity value is indicated as 1x.

The fidelity of the 762K polymerase was ~50X of the Taq polymerase, the 762Q polymerase also showed similar fidelity (Table 1). The error rates for the 408S 762K and A408S 762Q polymerases were almost indistinguishable from the background, which indicate >100X fidelity of the Taq polymerase and is the threshold of fidelity measurements using this particular experimental setup. A thermophilic DNA polymerase with the sequence of SEQ ID NO: 95 (including a H at position 36, S at a position 408 and Q at position 762; “36H 408S 762Q polymerase”) was also found to have a fidelity of > 100 x of the Taq polymerase.

TABLE 1 Polymerase Fidelity, xTaq polymerase fidelity Taq 1 × 762K 20-70 × 762Q 20-70 × 408S 762K >100 × * 408S 762Q >100 × * * - 100 x Taq fidelity is the threshold of fidelity measurements

Example 4. Yield and Sensitivity of PCR With a Thermophilic DNA Polymerase According to the Disclosure Provided as Hot-Start Compositions

The performance of a thermophilic DNA polymerase with the sequence of SEQ ID NO: 22 (including a Q at position 762 and S at position 408) (408S 762Q polymerase) was compared to a version with a K at position 762 (408S 762K polymerase) by amplifying various PCR fragments, with the polymerases being provided as dual hot-start compositions. A dUTPase was also supplied in the reactions.

2 kb fragment from human genomic DNA template. The template was human genomic DNA in a series of amounts between 0 and 400 ng in 20 µl reactions. The primers and the PCR program were the same as in Example 1.

The 408S 762Q polymerase showed increased yield and higher sensitivity relative to the 408S (FIG. 7A).

5 kb fragment from phage lambda DNA template. PCR primers were CCTGCTCTGCCGCTTCACGC (SEQ ID NO: 68) (forward) and CGAACGTCGCGCAGAGAAACAGG (SEQ ID NO: 69) (reverse). The PCR program was:

98° C. 30 s 98° C. 10 s x30 72° C. 1 min 40 s 72° C. 10 min

Lambda DNA was provided as template at amounts between 0 and 200 ng in 20 µl reactions. Products were analyzed by agarose gel electrophoresis and stained as in Example 1. Sensitivity was higher for reactions with the 408S 762Q polymerase (FIG. 7B).

20 kb fragment from phage lambda DNA template. PCR primers were CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC (SEQ ID NO: 70) (forward) and GTGCACCATGCAACATGAATAACAGTGGGTTATC (SEQ ID NO: 71) (reverse). The PCR program was:

98° C. 30 s 98° C. 10 s x25 72° C. 10 min 72° C. 10 min

Lambda DNA was provided as template at amounts between 0 and 100 ng in 20 µl reactions. Products were analyzed by agarose gel electrophoresis and stained as in Example 1. Band intensities from lower amounts of the template were generally greater for reactions with the 408S 762Q polymerase, indicating increased yield and sensitivity (FIG. 8).

20 kb fragment from Escherichia coli genomic DNA template. PCR primers were:

  • GGGCGTTTTCCGTAACACTG (SEQ ID NO: 72) (forward) and
  • TGACCACATACAATCGCCGT (SEQ ID NO: 73) (reverse). The PCR program was:

98° C. 30 s 98° C. 10 s 61° C. 30 s x30 72° C. 10 min 72° C. 10 min

E. coli gDNA template was provided as template at amounts between 0 and 40 ng in 20 µl reactions. Products were analyzed by agarose gel electrophoresis and stained as in Example 1.

Band intensities from lower amounts of the template were generally greater for reactions with the 408S 762Q polymerase, indicating increased yield and sensitivity (FIG. 9).

7.5 kb fragment from human genomic DNA template. The template was human genomic DNA in a series of amounts between 0 and 400 ng in 20 µl reactions. Primers were:

  • CTCCACAGGGTGAGGTCTAAGTGATGACA (SEQ ID NO: 74) (forward) and
  • CAATCTCAGGGCAAGTTAAGGGAATAGTG (SEQ ID NO: 75) (reverse). The PCR program was:

98° C. 30 s x30 98° C. 10 s 72° C. 180 s 72° C. 10 min

Band intensities were greater for reactions with the 408S 762Q polymerase, indicating increased yield and sensitivity (FIG. 10).

Example 5 Fidelity of Thermophilic DNA Polymerases Provided as Hot-Start Compositions

Polymerase fidelity was measured by next generation sequencing. Fragmented E.coli DNA (~300 bp) was amplified by Taq polymerase, 408S polymerase, and 408S 762Q polymerase with the polymerases being provided as dual hot-start compositions, including affibodies and antibodies. A dUTPase was also supplied in the reactions. Polymerase fidelities were measured as in the Example 3.

The error rates for the 408S and 408S 762Q polymerases were almost indistinguishable from the background, which indicate > 100X fidelity of the Taq polymerase and is the threshold of fidelity measurements using this particular experimental setup (Table 2).

TABLE 2 Polymerase Fidelity, xTaq polymerase fidelity Taq 1 × 408S >100 × * 408S 762Q >100 × * * - 100 x Taq fidelity is the threshold of fidelity measurements

Example 6. Tolerance of dUTP by a Thermophilic DNA Polymerase According to the Disclosure

Tolerance of dUTP as a replacement for dTTP of a thermophilic DNA polymerase with the sequence of SEQ ID NO: 95 (including a H at position 36, S at a position 408 and Q at position 762; “36H 408S 762Q polymerase”) was performed amplifying a 2 kb fragment of human genomic DNA.

dUTP replacement of dTTP (2 mM MgCl2). 2 kb fragment of human genomic DNA was amplified from 200 ng of human genomic DNA template in 50 µl PCR reactions in the presence of dATP, dCTP, and dGTP (each 200 µM) and variable amounts of dUTP replacing dTTP (the final concentration of dUTP and dTTP was 200 µM) (FIG. 13). Primers with the following sequences were used:

GAAGAGCCAAGGACAGGTAC (SEQ ID NO: 64) (forward)

CCTCCAAATCAAGCCTCTAC (SEQ ID NO: 65) (reverse)

The PCR program was as follows:

98° C. 30 s 98° C. 10 s 61° C. 30 s x30 72° C. 1 min 72° C. 10 min

Products were detected by agarose gel electrophoresis and staining with ethidium bromide. Detectable product was observed at up to when 60 µM dTTP was replaced with dUTP (FIG. 13).

dUTP replacement of dTTP (1.5 mM MgCl2). 5 kb fragment of human genomic DNA was amplified from 200 ng of human genomic DNA template in 50 µl PCR reactions in the presence of dATP, dCTP, and dGTP (each 200 µM) and variable amounts of dUTP replacing dTTP (the final concentration of dUTP and dTTP was 200 µM) (FIG. 14). Primers with the following sequences were used:

CCAACATGGCGAAATGCTGT (SEQ ID NO: 170) (forward)

CATCAACAACACGGTCAGCC (SEQ ID NO: 171) (reverse)

The PCR program was as follows:

98° C. 30 s 98° C. 10 s 61° C. 30 s x30 72° C. 3 min 72° C. 10 min

Products were detected by agarose gel electrophoresis and staining with ethidium bromide. Detectable product was observed at up to when 140 µM dTTP was replaced with dUTP (FIG. 14).

Additional dUTP. The PCR performance of the 36H 408S 762Q DNA polymerase and thermophilic DNA polymerase with the sequence of SEQ ID NO: 169 (including a H at position 36; “36H polymerase”) were compared by amplifying 2 kb PCR fragments from 200 ng of human genomic DNA template in 50 µl PCR reactions in the presence of four standard dNTPs (each 200 µM) and increasing amounts of dUTP (from 0 µM to 200 µM) (FIG. 15; the 180 µM dUTP lane for the 36H 408S 762Q DNA polymerase appeared to have technical issues). The primers, PCR program, and product detection were as described above for the 2kb human genomic fragment amplification in which dUTP replaced varying amounts of dTTP.

Easily detectable amounts of PCR product was observed even in the presence of 200 µM dUTP for the 36H 408S 762Q DNA polymerase. It is believed that the 36H 408S 762Q DNA polymerase would still produce detectable amounts of PCR product in the presence of dUTP concentrations of 220-260 µM. PCR products were not detected at 200 µM dUTP for 36H DNA polymerase.

The results showed that 36H 408S 762Q DNA polymerase can use dUTP as a replacement of dTTP in dNTPs mixture and has higher additional dUTP tolerance compared to 36H DNA polymerase.

Example 7. Performance of 36H 408S 762Q DNA Polymerase in Multiplex Reactions and Tolerance of High Primer Concentration

The tolerance of high primer concentration of the 36H 408S 762Q DNA polymerase was assessed by amplifying regions of human gnomic DNA template with 4 or 5 primer pairs in a multiplex PCR reaction. 8 ng of human genomic DNA template was used in 20 µl PCR reactions. Total primer concentration 5 µM to 100 µM was tested (FIG. 16). Primers with the following sequences were used:

99 bp amplicon CCCACAGTTGGTAGGCATCA (SEQ ID NO: 172) (forward) TTGCTCAGCAACAAGTTGGC (SEQ ID NO: 173) (reverse) 131 bp amplicon TCATGTTGGACGGATGGCTG (SEQ ID NO: 174) (forward) CGGGCTGTCTTCATCACCTC (SEQ ID NO: 175) (reverse) 160 bp amplicon ACCATGTGAGACGCTAATCCA (SEQ ID NO: 176) (forward) ACCTGGGAGGCTTTTCTGTA (SEQ ID NO: 122) (reverse) 199 bp amplicon GTTTATGGAGGTCCTCTTGTGTCC (SEQ ID NO: 123) (forward) GGGTCAACGCTAGGCTGGCAG (SEQ ID NO: 124) (reverse) 250 bp amplicon TCTGGACGGGCATCTCAAGT (SEQ ID NO: 125) (forward) TTCACAGGAAGCACTCACCA (SEQ ID NO: 126) (reverse)

The PCR program was as follows:

98° C. 30 s 98° C. 10 s 65° C. 10 s x30 72° C. 6 s

Products were analyzed by agarose gel electrophoresis and stained as in Example 6.

With both 4 and 5 primer pairs, all PCR products were detectable, indicating that the 36H 408S 762Q DNA polymerase tolerated high primer concentrations (FIG. 16). Reasonably even amplification was observed using multiple primer pairs, thus making this polymerase suitable for various multiplex PCR applications, for example, amplification of DNA for next-generation sequencing.

Table of Sequences SEQ ID NO Description Sequence 1 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TRQVGLTSWL NIKKS 2 Pfu GenBank WP_011011325.1 R762X amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TXQVGLTSWL NIKKS; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 3 Pfu GenBank WP_011011325.1 R762Q amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TQQVGLTSWL NIKKS 4 Pfu GenBank WP_011011325.1 A408S R762X amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TXQVGLTSWL NIKKS; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 5 Pfu GenBank WP_011011325.1 A408S R762Q amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TQQVGLTSWL NIKKS 6 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1), catalytic domain amino acid sequence SYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TRQVGL 7 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) catalytic domain R762X amino acid sequence SYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TXQVGL; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 8 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) catalytic domain A408S R762X amino acid sequence SYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TXQVGL; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 9 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) catalytic domain R762Q amino acid sequence SYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TQQVGL 10 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) catalytic domain A408S R762Q amino acid sequence SYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TQQVGL 11 Pfu GenBank WP_011011325.1 R762X with DNA binding domain amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TXQVGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 12 Pfu GenBank WP_011011325.1 R762Q with DNA binding domain amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRALY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TQQVGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK 13 Pfu GenBank WP_011011325.1 A408S R762X with DNA binding domain amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TXQVGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 14 Pfu GenBank WP_011011325.1 A408S R762Q with DNA binding domain amino acid sequence MILDVDYITE EGKPVIRLFK KENGKFKIEH DRTFRPYIYA LLRDDSKIEE VKKITGERHG KIVRIVDVEK VEKKFLGKPI TVWKLYLEHP QDVPTIREKV REHPAVVDIF EYDIPFAKRY LIDKGLIPME GEEELKILAF DIETLYHEGE EFGKGPIIMI SYADENEAKV ITWKNIDLPY VEVVSSEREM IKRFLRIIRE KDPDIIVTYN GDSFDFPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVITRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE SGENLERVAK YSMEDAKATY ELGKEFLPME IQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNEVAPN KPSEEEYQRR LRESYTGGFV KEPEKGLWEN IVYLDFRSLY PSIIITHNVS PDTLNLEGCK NYDIAPQVGH KFCKDIPGFI PSLLGHLLEE RQKIKTKMKE TQDPIEKILL DYRQKAIKLL ANSFYGYYGY AKARWYCKEC AESVTAWGRK YIELVWKELE EKFGFKVLYI DTDGLYATIP GGESEEIKKK ALEFVKYINS KLPGLLELEY EGFYKRGFFV TKKRYAVIDE EGKVITRGLE IVRRDWSEIA KETQARVLET ILKHGDVEEA VRIVKEVIQK LANYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKKLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPKKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRYQK TQQVGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK 15 Pyrococcus K762X catalytic domain amino acid sequence SYAGGFVKEP EKGLWENIVS LDFRALYPSI IITHNVSPDT LNREGCRNYD VAPEVGHKFC KDFPGFIPSL LKRLLDERQK IKTKMKASQD PIEKIMLDYR QRAIKILANS YYGYYGYAKA RWYCKECAES VTAWGREYIE FVWKELEEKF GFKVLYIDTD GLYATIPGGK SEEIKKKALE FVDYINAKLP GLLELEYEGF YKRGFFVTKK KYALIDEEGK IITRGLEIVR RDWSEIAKET QARVLEAILK HGNVEEAVRI VKEVTQKLSK YEIPPEKLAI YEQITRPLHE YKAIGPHVAV AKRLAAKGVK IKPGMVIGYI VLRGDGPISN RAILAEEYDP RKHKYDAEYY IENQVLPAVL RILEGFGYRK EDLRWQKTXQ TGL; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 16 Pyrococcus A408S K762X catalytic domain amino acid sequence SYAGGFVKEP EKGLWENIVS LDFRSLYPSI IITHNVSPDT LNREGCRNYD VAPEVGHKFC KDFPGFIPSL LKRLLDERQK IKTKMKASQD PIEKIMLDYR QRAIKILANS YYGYYGYAKA RWYCKECAES VTAWGREYIE FVWKELEEKF GFKVLYIDTD GLYATIPGGK SEEIKKKALE FVDYINAKLP GLLELEYEGF YKRGFFVTKK KYALIDEEGK IITRGLEIVR RDWSEIAKET QARVLEAILK HGNVEEAVRI VKEVTQKLSK YEIPPEKLAI YEQITRPLHE YKAIGPHVAV AKRLAAKGVK IKPGMVIGYI VLRGDGPISN RAILAEEYDP RKHKYDAEYY IENQVLPAVL RILEGFGYRK EDLRWQKTXQ TGL; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 17 Pyrococcus K762Q catalytic domain amino acid sequence SYAGGFVKEP EKGLWENIVS LDFRALYPSI IITHNVSPDT LNREGCRNYD VAPEVGHKFC KDFPGFIPSL LKRLLDERQK IKTKMKASQD PIEKIMLDYR QRAIKILANS YYGYYGYAKA RWYCKECAES VTAWGREYIE FVWKELEEKF GFKVLYIDTD GLYATIPGGK SEEIKKKALE FVDYINAKLP GLLELEYEGF YKRGFFVTKK KYALIDEEGK IITRGLEIVR RDWSEIAKET QARVLEAILK HGNVEEAVRI VKEVTQKLSK YEIPPEKLAI YEQITRPLHE YKAIGPHVAV AKRLAAKGVK IKPGMVIGYI VLRGDGPISN RAILAEEYDP RKHKYDAEYY IENQVLPAVL RILEGFGYRK EDLRWQKTQQ TGL 18 Pyrococcus 408S K762Q catalytic domain amino acid sequence SYAGGFVKEP EKGLWENIVS LDFRSLYPSI IITHNVSPDT LNREGCRNYD VAPEVGHKFC KDFPGFIPSL LKRLLDERQK IKTKMKASQD PIEKIMLDYR QRAIKILANS YYGYYGYAKA RWYCKECAES VTAWGREYIE FVWKELEEKF GFKVLYIDTD GLYATIPGGK SEEIKKKALE FVDYINAKLP GLLELEYEGF YKRGFFVTKK KYALIDEEGK IITRGLEIVR RDWSEIAKET QARVLEAILK HGNVEEAVRI VKEVTQKLSK YEIPPEKLAI YEQITRPLHE YKAIGPHVAV AKRLAAKGVK IKPGMVIGYI VLRGDGPISN RAILAEEYDP RKHKYDAEYY IENQVLPAVL RILEGFGYRK EDLRWQKTQQ TGL 76 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, K762X MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRALY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TXQTGL; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 77 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, A408S K762X MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPELGLWEN IVSLDFRSLY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TXQTGL; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 78 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, K762Q MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRALY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TQQTGL 79 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, A408S K762Q MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRSLY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TQQTGL 19 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, K762X MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRALY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TXQTGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 20 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, K762Q MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRALY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TQQTGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK 21 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, A408S K762X MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRSLY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TXQTGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 22 Pyrococcus DNA polymerase sequence including exonuclease domain and sequence non-specific DNA binding domain, A408S K762Q MILDADYITE EGKPVIRLFK KENGEFKIEH DRTFRPYIYA LLKDDSKIEE VKKITAERHG KIVRIVDAEK VEKKFLGRPI TVWRLYFEHP QDVPTIREKI REHSAVVDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFGKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKIIRE KDPDIIITYN GDSFDLPYLA KRAEKLGIKL TIGRDGSEPK MQRIGDMTAV EVKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YADEIAKAWE TGEGLERVAK YSMEDAKATY ELGKEFFPME AQLSRLVGQP LWDVSRSSTG NLVEWFLLRK AYERNELAPN KPDEREYERR LRESYAGGFV KEPEKGLWEN IVSLDFRSLY PSIIITHNVS PDTLNREGCR NYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQKIKTKMKA SQDPIEKIML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVWKELE EKFGFKVLYI DTDGLYATIP GGKSEEIKKK ALEFVDYINA KLPGLLELEY EGFYKRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQARVLEA ILKHGNVEEA VRIVKEVTQK LSKYEIPPEK LAIYEQITRP LHEYKAIGPH VAVAKRLAAK GVKIKPGMVI GYIVLRGDGP ISNRAILAEE YDPRKHKYDA EYYIENQVLP AVLRILEGFG YRKEDLRWQK TQQTGLTSWL NIKKSGTGGG GATVKFKYKG EEKEVDISKI KKVWRVGKMI SFTYDEGGGK TGRGAVSEKD APKELLQMLE KQKK 23 K762X variant of Deep Vent DNA polymerase amino acid sequence MILDADYITE DGKPIIRIFK KENGEFKVEY DRNFRPYIYA LLKDDSQIDE VRKITAERHG KIVRIIDAEK VRKKFLGRPI EVWRLYFEHP QDVPAIRDKI REHSAVIDIF EYDIPFAKRY LIDKGLIPME GDEELKLLAF DIETLYHEGE EFAKGPIIMI SYADEEEAKV ITWKKIDLPY VEVVSSEREM IKRFLKVIRE KDPDVIITYN GDSFDLPYLV KRAEKLGIKL PLGRDGSEPK MQRLGDMTAV EIKGRIHFDL YHVIRRTINL PTYTLEAVYE AIFGKPKEKV YAHEIAEAWE TGKGLERVAK YSMEDAKVTY ELGREFFPME AQLSRLVGQP LWDVSRSSTG NLVEWYLLRK AYERNELAPN KPDEREYERR LRESYAGGYV KEPEKGLWEG LVSLDFRSLY PSIIITHNVS PDTLNREGCR EYDVAPEVGH KFCKDFPGFI PSLLKRLLDE RQEIKRKMKA SKDPIEKKML DYRQRAIKIL ANSYYGYYGY AKARWYCKEC AESVTAWGRE YIEFVRKELE EKFGFKVLYI DTDGLYATIP GAKPEEIKKK ALEFVDYINA KLPGLLELEY EGFYVRGFFV TKKKYALIDE EGKIITRGLE IVRRDWSEIA KETQAKVLEA ILKHGNVEEA VKIVKEVTEK LSKYEIPPEK LVIYEQITRP LHEYKAIGPH VAVAKRLAAR GVKVRPGMVI GYIVLRGDGP ISKRAILAEE FDLRKHKYDA EYYIENQVLP AVLRILEAFG YRKEDLRWQK TXQTGLTAWL NIKKK; wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 24 K762Q variant of Deep Vent DNA polymerase amino acid sequence MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG DRNFRPYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK 25 K762X variant of Deep Vent DNA polymerase catalytic domain amino acid sequence SYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TXQTGL; PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 26 K762Q variant of Deep Vent DNA polymerase catalytic domain amino acid sequence SYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGL PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP 27 K762X variant of Deep Vent DNA polymerase amino acid sequence with DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DRNFRPYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TXQTGLTAWL KKVWRVGKMI KQKK; EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKKGTGGG SFTYDEGGGK DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 28 K762Q variant of Deep Vent DNA polymerase amino acid sequence with DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL KKVWRVGKMI KQKK DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKKGTGGG SFTYDEGGGK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD DRNFRPYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE 29 K762X K775S variant of Deep Vent DNA polymerase amino acid sequence with sequence non-specific DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TXQTGLTAWL KKVWRVGKMI KQKK; DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD DRNFRPYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 30 K762Q K775S variant of Deep Vent DNA polymerase amino acid sequence with sequence MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE DRNFRPYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI non-specific DNA binding domain SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL KKVWRVGKMI KQKK ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE 31 K764X variant of Thermococcus litoralis DNA polymerase MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYARNELA ENIIYLDFRS GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSXQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRGKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KTVRVLDAVK REHPAVVDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQPYIYA VRKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKEHPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 32 K764Q variant of Thermococcus litoralis DNA polymerase MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYARNELA ENIIYLDFRS GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSQQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRGKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR KENGEFKIEL KTVRVLDAVK REHPAVVDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQPYIYA VRKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKEHPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY 33 K764X variant of Thermococcus litoralis DNA TYLGG VSPDTLEKEG CKNYDVAPIV GYRFCKDFPG FIPSILGDLI polymerase catalytic domain amino acid sequence AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSXQTGL; LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 34 K764Q variant of Thermococcus litoralis DNA polymerase catalytic domain amino acid sequence TYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSQQTGL FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV 35 K764X variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1) MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYERNELA ENIIYLDFRS SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSXQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRDKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KSVRVVDAVK KEHPAVIDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQPYIYA VKKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKENPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 36 K764Q variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1) MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYERNELA ENIIYLDFRS SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA DGKPIIRIFK IKAIKGERHG QDVPAMRDKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT KENGEFKIEL KSVRVVDAVK KEHPAVIDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS DPHFQPYIYA VKKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKENPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL TEYDPEKHKY QSSQQTGLDA DPDYYIENQV WLKR LPAVLRILEA FGYRKEDLRY 37 K764X variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1), catalytic domain amino acid sequence TYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSXQTGL; FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 38 K764Q variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1), catalytic domain amino acid sequence TYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSQQTGL FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV 39 R761X variant of Thermococcus gorgonarius DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AIFGQPKEKV ELGKEFFPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE XQVGLGAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLVGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA PKT; KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DIETLYHEGE VDVVSTEKEM KRSEKLGVKF YPVIRRTINL TGEGLERVAR LWDVSRSSTG RESYAGGYVK DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY DRNFEPYIYA VKKKFLGRPI EYDIPFAKRY EFAEGPILMI IKRFLKVVKE ILGREGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 40 R761Q variant of Thermococcus gorgonarius DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AIFGQPKEKV ELGKEFFPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLVGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DIETLYHEGE VDVVSTEKEM KRSEKLGVKF YPVIRRTINL TGEGLERVAR LWDVSRSSTG RESYAGGYVK DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT DRNFEPYIYA VKKKFLGRPI EYDIPFAKRY EFAEGPILMI IKRFLKVVKE ILGREGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE QQVGLGAWLK VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA PKT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT 41 R761X variant of Thermococcus gorgonarius DNA polymerase, catalytic domain amino acid sequence SYAGGYVK DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE XQVGL; SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 42 R761Q variant of Thermococcus gorgonarius DNA polymerase, catalytic domain amino acid sequence SYAGGYVK VYLDFRSLYP DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE QQVGL SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA 43 R761X variant of Thermococcus kodakarensis DNA polymerase MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AVFGQPKEKV ELGKEFLPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE XQVGLSAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNVDLPY GDNFDFAYLK EVKGRIHFDL YAEEITTAWE AQLSRLIGQS KPDEKELARR SIIITHNVSP SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA PKGT; KENGEFKIEY TVVTVKRVEK REHPAVIDIY DIETLYHEGE VDVVSTEREM KRCEKLGINF YPVIRRTINL TGENLERVAR LWDVSRSSTG RQSYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY DRTFEPYFYA VQKKFLGRPV EYDIPFAKRY EFAEGPILMI IKRFLRVVKE ALGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 44 R761Q variant of Thermococcus kodakarensis DNA polymerase MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AVFGQPKEKV ELGKEFLPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNVDLPY GDNFDFAYLK EVKGRIHFDL YAEEITTAWE AQLSRLIGQS KPDEKELARR SIIITHNVSP SLLGDLLEER KENGEFKIEY TVVTVKRVEK REHPAVIDIY DIETLYHEGE VDVVSTEREM KRCEKLGINF YPVIRRTINL TGENLERVAR LWDVSRSSTG RQSYEGGYVK DTLNREGCKE QKIKKKMKAT DRTFEPYFYA VQKKFLGRPV EYDIPFAKRY EFAEGPILMI IKRFLRVVKE ALGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHR IDPIERKLLD YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE QQVGLSAWLK NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA PKGT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT 45 R761X variant of Thermococcus kodakarensis DNA polymerase, catalytic domain amino acid sequence SYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE XQVGL; SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 46 R761Q variant of Thermococcus kodakarensis DNA polymerase, catalytic domain amino acid sequence SYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE QQVGL SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA 47 K761X variant of Thermococcus species 9°N-7 DNA polymerase, catalytic domain amino acid sequence GYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE XQVGL; SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 48 K761Q variant of Thermococcus species 9°N-7 DNA polymerase, catalytic domain amino acid sequence GYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE QQVGL SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA 49 K761X variant of Thermococcus species 9°N-7 DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME SYADGSEARV KDPDVLITYN IQRMGDRFAV AVFGKPKEKV ELGREFFPME NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI GDEELTMLAF ITWKKIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLIGQS KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DIETLYHEGE VDVVSTEKEM KRCEELGIKF YPVIRRTINL SGEGLERVAR LWDVSRSSTG DRTFEPYFYA VQKKFLGRPI EYDIPFAKRY EFGTGPILMI IKRFLRVVRE TLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK AYKRNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE XQVGLGAWLK KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA VKGKK; RGGYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY EPERGLWDNI YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT wherein X is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X is selected from Q and N. 50 K761Q variant of Thermococcus species 9°N-7 DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME SYADGSEARV KDPDVLITYN IQRMGDRFAV AVFGKPKEKV ELGREFFPME AYKRNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE QQVGLGAWLK NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI GDEELTMLAF ITWKKIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLIGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA VKGKK KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DIETLYHEGE VDVVSTEKEM KRCEELGIKF YPVIRRTINL SGEGLERVAR LWDVSRSSTG RGGYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY DRTFEPYFYA VQKKFLGRPI EYDIPFAKRY EFGTGPILMI IKRFLRVVRE TLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWDNI YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT 51 E775Q variant of Pyrobaculum calidifontis DNA polymerase MRFWPLDATY YFYAKCDKCD FLKVVAKVPE IDKGVVPCAW PPLRVLAFDI FEAEGRDDRR SERAKALGVP IVDEFPEIKV NDPAKRPTLM PLDQVAAASV KGAIVLEPKP EPHEPDPPEG RAVREEAKKY VGARWYKKEV TDSLFVKKSG AKKRYAGLLR ILKSKSVGEA LDKELDEYKA GPGKVSERAM VLGVKESDLK SVVGGVPEVR ASLAKSYLSR DVRKLREAAL NVVEAREAGK EVYNERGSPD VIRGFVDFVK LRVDRLGGVP KTLDRVAEYF RYVLDDVRST GNRVEWMLLR GLYSDVLVLD VVVAPEVGHR PPDSPEYRLL AESVTAFARA AVDRLVKYVE DGRIDIVGFE RERVVKYVRE YGPHVHAALE PYIFVDDASK TGRVQKSLLD VFGVDGEGRR VAPVEAVEVV GAPGVVDVYE LGPLPLYEVV PLRDPVVMLA EFDPDVIVGY QQSVYGHWSV GVMKRSERVL LGLAEKLLPF YAYRMGEVAP FSSMYPNIMM FRKAPTGFIP DERQRALKVM ILLDVVEYAK ERHGIEIKVD VVRGDWCELA VVERLKAYKF LKRRGYKVGK VDVDYYIEKQ FLG VVLVDRRFRP ERRFFGRPTI ADIRYYMRYM EWAGVEEGFP VKTSDGREEV NSNGFDWPYL VGRANVDLYN IPGHKVYEYW LIQLSSVSGL NREEREYEPY KYNLSPDTYL AVLKHLVELR ANAMYGYLGW RLGIEVIYGD KDYERVLFTE KEVQLNVVEL DLDDLIIWKT GTTVGYVIVR VIPAALRIAE 52 E778Q variant of Pyrobaculum aerophilum DNA polymerase MKFKLWPLDA RPYFYADCPA RSFLKIVARV YMLDMGVVPC GFPPPLRVLA VEVFEASGRD PYLAERARAL LYNIVDEFPE EYWRDQGKRP TYSVVGGVPE CDPESVRSQL PEDVRKLREA SWNTVDAEAT FDIEVYNERG DRSVLRSFID GIPLKVDRVG IKLKTLDRVA LLRQYVIDDV VRIFGISESG GRVAPVEEVV AAALPGVSGV GEKLGNLPVY TPDPLRDPVI FVREFDPDVI GAPQQSVYGH EYFGVMKREE KSTYGLAEKL DRVVVVDRRF AVERRYLGRP YEADIRFYMR KVAEWGGVTE LLAVQASDGR VGYNSNQFDW WSVTGRANVD RVLVPGHKIY LPFLIQLSSV SGLPLDQVAA EPYKGAIVLE TYLERGEPDP ELRKRVREEL TGWVGARWYK YGDTDSLFVK FTEAKKRYAG IELILTSRDV WKTLDKELDE VVKGGEKVSE IAEVIGIKEG ASVGNRVEWM PRPGLYSDVL PGGVYVAPEV KKYPPDSPEY KEVAESVTAF KSGDVEKLVK LLRDGRIDIV SEARQKVVKY YKAYPPHVHA RAVPYIFIDD DLKTGRSQRT LLRYAYRLGE ALDFSSMYPN GHRFRREPPG RVLDERQRAL ARAILKDVIE YVEEKYGIDI GFEVVRGDWS VRGVIDKLRN AILLKKRGYK IEKIDLDYYV LLDFF VAPNREEREY IMMKYNLSPD FIPLVLRQLI KIMANAMYGY YARKAGIVVI KIDKDYSTVL ELAKEVQLRV YEVDLDDLII VGKGTTIGYV ERQVIPAALR 53 Sso7d SNS-dsDBD amino acid sequence of Sulfolobus solfataricus (see US 6,627,424) ATVKFKYKGE GRGAVSEKDA EKEVDISKIK PKELLQMLEK KVWRVGKMIS QKK FTYDEGGGKT 54 Sac7d SNS-dsDBD amino acid sequence of Sulfolobus acidocaldarius VKVKFKYKGE RGAVSEKDAP EKEVDTSKIK KELLDMLARA KVWRVGKMVS EREKK FTYDDNGKTG 55 Pyrobaculum aerophilum Pae3192 amino acid sequence SKKQKLKFYD SPYTGIKVYR IKAKQAFETD LLGKKK QYEVIEKQTA RGPMMFAVAK 56 Pyrobaculum aerophilum Pae0384 amino acid sequence AKQKLKFYDI PYTGIKVYRL KAKQSFETDK LGKKK YEVIEKETAR GPMLFAVATS 57 Aeropyrum pernix Ape3192 amino acid sequence PKKEKIKFFD SPYTGKIFYR LVAKKYYETD VLGKA NYEVEIKETK RGKFRFAKAK 58 HMfA HMf family archaeal histone amino acid sequence of Methanothermus fervidus GELPIAPIGR SEAVKLAKHA IIKNAGAERV GRKTIKAED SDDARIALAK VLEEMGEEIA 59 HMfB HMf family archaeal histone amino acid sequence of Methanothermus fervidus ELPIAPIGRI EAIKLARHAG IKDAGAERVS RKTIKAEDI DDARITLAKI LEEMGRDIAS 60 HpyA1 HMf family archaeal histone amino acid sequence of Pyrococcus strain GB-3a GELPIAPVDR KKAVEFARHA LIRKAGAERV GRKTVKAED SEEAAKILAE YLEEYAIEVS 61 HpyA2 HMf family archaeal histone amino acid sequence of Pyrococcus strain GB-3a AELPIAPVDR RKAVDLAKHA LIRKAGAQRV GRKTVKAED SEQAAKLLAE HLEEKALEIA 62 Sso7d sequence non-specific DNA-binding domain amino acid sequence ATVKFKYKGE GRGAVSEKDA EKEVDISKIK PKELLQMLEK KVWRVGKMIS QK FTYDEGGGKT 63 Pyrococcus 3′-5′ exonuclease domain amino acid sequence EELKLLAFDI WKKIDLPYVE SFDLPYLAKR KGRIHFDLYH DEIAKAWETG ETLYHEGEEF VVSSEREMIK AEKLGIKLTI VIRRTINLPT EGLERVAKYS GKGPIIMISY RFLKIIREKD GRDGSEPKMQ YTLEAVYEAI MEDAKATYEL ADEEEAKVIT PDIIITYNGD RIGDMTAVEV FGKPKEKVYA GKEF 64 PCR Primer nucleotide sequence GAAGAGCCAAGGACAGGTAC 65 PCR Primer nucleotide sequence CCTCCAAATCAAGCCTCTAC 66 PCR Primer nucleotide sequence CAGTGCAGTGCTTGATAACAGG 67 PCR Primer nucleotide sequence GTAGTGCGCGTTTGATTTCC 68 PCR Primer nucleotide sequence CCTGCTCTGCCGCTTCACGC 69 PCR Primer nucleotide sequence CGAACGTCGCGCAGAGAAACAGG 70 PCR Primer nucleotide sequence CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC 71 PCR Primer nucleotide sequence GTGCACCATGCAACATGAATAACAGTGGGTTATC 72 PCR Primer nucleotide sequence GGGCGTTTTCCGTAACACTG 73 PCR Primer nucleotide sequence TGACCACATACAATCGCCGT 74 PCR Primer nucleotide sequence CTCCACAGGGTGAGGTCTAAGTGATGACA 75 PCR Primer nucleotide sequence CAATCTCAGGGCAAGTTAAGGGAATAGTG 80 Pfu GenBank WP_011011325.1 P36H R762X2 amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TX2QVGLTSWL EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS; KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 81 Pfu GenBank WP_011011325.1 P36H R762Q amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK 82 Pfu GenBank WP_011011325.1 P36H A408S R762X2 amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TX2QVGLTSWL KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS; LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 83 Pfu GenBank WP_011011325.1 P36H A408S R762Q amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK 84 Pfu GenBank WP_011011325.1 P36H R762X2 with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TX2QVGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 85 Pfu GenBank WP_011011325.1 P36H R762Q with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL KKVWRVGKMI KQKK ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE 86 Pfu GenBank WP_011011325.1 P36H A408S R762X2 with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TX2QVGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 87 Pfu GenBank WP_011011325.1 P36H A408S R762Q with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI KKVWRVGKMI KQKK SFTYDEGGGK TGRGAVSEKD APKELLQMLE 88 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36H K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TX2QTGL; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 89 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36H A408S K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TX2QTGL; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 90 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36H K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGL IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK 91 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36H A408S K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGL EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK 92 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36H K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TX2QTGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 93 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36H K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGLTSWL KKVWRVGKMI KQKK EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE 94 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36H A408S K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TX2QTGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 95 Pyrococcus DNA polymerase sequence including exonuclease domain and sequence non-specific DNA binding domain, P36H A408S K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGLTSWL KKVWRVGKMI KQKK EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE 96 P36H K762X2 variant of Deep Vent DNA polymerase amino acid sequence MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL DRNFRHYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TX2QTGLTAWL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKK; TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 97 P36H K762Q variant of Deep Vent DNA polymerase amino acid sequence MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG DRNFRHYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK 98 P36H K762X2 variant of Deep Vent DNA polymerase amino acid sequence with DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TX2QTGLTAWL KKVWRVGKMI KQKK; DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKKGTGGG SFTYDEGGGK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD DRNFRHYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 99 P36H K762Q variant of Deep Vent DNA polymerase amino MILDADYITE LLKDDSQIDE DGKPIIRIFK VRKITAERHG KENGEFKVEY KIVRIIDAEK DRNFRHYIYA VRKKFLGRPI acid sequence with DNA binding domain EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL KKVWRVGKMI KQKK QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKKGTGGG SFTYDEGGGK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE 100 P36H K762X2 K775S variant of Deep Vent DNA polymerase amino acid sequence with sequence non-specific DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TX2QTGLTAWL KKVWRVGKMI KQKK; DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD DRNFRHYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 101 P36H K762Q K775S variant of Deep Vent DNA polymerase amino acid sequence with sequence non-specific DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP DRNFRHYIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE FDLRKHKYDA TQQTGLTAWL KKVWRVGKMI KQKK EYYIENQVLP NIKKSGTGGG SFTYDEGGGK AVLRILEAFG GATVKFKYKG TGRGAVSEKD YRKEDLRWQK EEKEVDISKI APKELLQMLE 102 P36H K764X2 variant of Thermococcus litoralis DNA polymerase MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYARNELA ENIIYLDFRS GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSX2QTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRGKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KTVRVLDAVK REHPAVVDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQHYIYA VRKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKEHPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 103 P36H K764Q variant of Thermococcus litoralis DNA polymerase MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYARNELA ENIIYLDFRS GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSQQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRGKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR KENGEFKIEL KTVRVLDAVK REHPAVVDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQHYIYA VRKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKEHPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY 104 P36H K764X2 variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1) MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYERNELA ENIIYLDFRS SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG DGKPIIRIFK IKAIKGERHG QDVPAMRDKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE KENGEFKIEL KSVRVVDAVK KEHPAVIDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL DPHFQHYIYA VKKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKENPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSX2QTGLDA EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; EKLVIHEQIT IISYIVLKGS LPAVLRILEA RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 105 P36H K764Q variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1) MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYERNELA ENIIYLDFRS SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSQQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRDKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR KENGEFKIEL KSVRVVDAVK KEHPAVIDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQHYIYA VKKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKENPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY 106 P36H R761X2 variant of Thermococcus gorgonarius DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AIFGQPKEKV ELGKEFFPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE X2QVGLGAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLVGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA PKT; KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DIETLYHEGE VDVVSTEKEM KRSEKLGVKF YPVIRRTINL TGEGLERVAR LWDVSRSSTG RESYAGGYVK DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY DRNFEHYIYA VKKKFLGRPI EYDIPFAKRY EFAEGPILMI IKRFLKVVKE ILGREGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 107 P36H R761Q variant of Thermococcus gorgonarius DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AIFGQPKEKV ELGKEFFPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLVGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DIETLYHEGE VDVVSTEKEM KRSEKLGVKF YPVIRRTINL TGEGLERVAR LWDVSRSSTG RESYAGGYVK DTLNREGCEE QKVKKKMKAT KARWYCKECA DRNFEHYIYA VKKKFLGRPI EYDIPFAKRY EFAEGPILMI IKRFLKVVKE ILGREGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE QQVGLGAWLK KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA PKT TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT 108 P36H R761X2 variant of Thermococcus kodakarensis DNA polymerase MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AVFGQPKEKV ELGKEFLPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE X2QVGLSAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNVDLPY GDNFDFAYLK EVKGRIHFDL YAEEITTAWE AQLSRLIGQS KPDEKELARR SIIITHNVSP SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA PKGT; KENGEFKIEY TVVTVKRVEK REHPAVIDIY DIETLYHEGE VDVVSTEREM KRCEKLGINF YPVIRRTINL TGENLERVAR LWDVSRSSTG RQSYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY DRTFEHYFYA VQKKFLGRPV EYDIPFAKRY EFAEGPILMI IKRFLRVVKE ALGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 109 P36H R761Q variant of Thermococcus kodakarensis DNA polymerase MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AVFGQPKEKV ELGKEFLPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE QQVGLSAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNVDLPY GDNFDFAYLK EVKGRIHFDL YAEEITTAWE AQLSRLIGQS KPDEKELARR SIIITHNVSP SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA PKGT KENGEFKIEY TVVTVKRVEK REHPAVIDIY DIETLYHEGE VDVVSTEREM KRCEKLGINF YPVIRRTINL TGENLERVAR LWDVSRSSTG RQSYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY DRTFEHYFYA VQKKFLGRPV EYDIPFAKRY EFAEGPILMI IKRFLRVVKE ALGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT 110 P36H K761X2 variant of Thermococcus species 9°N-7 DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME SYADGSEARV KDPDVLITYN IQRMGDRFAV AVFGKPKEKV ELGREFFPME AYKRNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI GDEELTMLAF ITWKKIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLIGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DIETLYHEGE VDVVSTEKEM KRCEELGIKF YPVIRRTINL SGEGLERVAR LWDVSRSSTG RGGYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA DRTFEHYFYA VQKKFLGRPI EYDIPFAKRY EFGTGPILMI IKRFLRVVRE TLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWDNI YDVAPEVGHK VDPLEKKLLD ESVTAWGREY IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE X2QVGLGAWLK KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA VKGKK; TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 111 P36H K761Q variant of Thermococcus species 9°N-7 DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME SYADGSEARV KDPDVLITYN IQRMGDRFAV AVFGKPKEKV ELGREFFPME AYKRNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE QQVGLGAWLK NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI GDEELTMLAF ITWKKIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLIGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA VKGKK KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DIETLYHEGE VDVVSTEKEM KRCEELGIKF YPVIRRTINL SGEGLERVAR LWDVSRSSTG RGGYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY DRTFEHYFYA VQKKFLGRPI EYDIPFAKRY EFGTGPILMI IKRFLRVVRE TLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWDNI YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT 112 P40H E775Q variant of Pyrobaculum calidifontis DNA polymerase MRFWPLDATY YFYAKCDKCD FLKVVAKVPE IDKGVVPCAW PPLRVLAFDI FEAEGRDDRR SERAKALGVP IVDEFPEIKV NDPAKRPTLM PLDQVAAASV KGAIVLEPKP EPHEPDPPEG RAVREEAKKY VGARWYKKEV TDSLFVKKSG AKKRYAGLLR ILKSKSVGEA LDKELDEYKA GPGKVSERAM VLGVKESDLK SVVGGVPEVR ASLAKSYLSR DVRKLREAAL NVVEAREAGK EVYNERGSPD VIRGFVDFVK LRVDRLGGVP KTLDRVAEYF RYVLDDVRST GNRVEWMLLR GLYSDVLVLD VVVAPEVGHR PPDSPEYRLL AESVTAFARA AVDRLVKYVE DGRIDIVGFE RERVVKYVRE YGPHVHAALE PYIFVDDASK TGRVQKSLLD VFGVDGEGRR VAPVEAVEVV GAPGVVDVYE LGPLPLYEVV PLRDPVVMLA EFDPDVIVGY QQSVYGHWSV GVMKRSERVL LGLAEKLLPF YAYRMGEVAP FSSMYPNIMM FRKAPTGFIP DERQRALKVM ILLDVVEYAK ERHGIEIKVD VVRGDWCELA VVERLKAYKF LKRRGYKVGK VDVDYYIEKQ FLG VVLVDRRFRH ERRFFGRPTI ADIRYYMRYM EWAGVEEGFP VKTSDGREEV NSNGFDWPYL VGRANVDLYN IPGHKVYEYW LIQLSSVSGL NREEREYEPY KYNLSPDTYL AVLKHLVELR ANAMYGYLGW RLGIEVIYGD KDYERVLFTE KEVQLNVVEL DLDDLIIWKT GTTVGYVIVR VIPAALRIAE 113 P42H E778Q variant of Pyrobaculum aerophilum DNA polymerase MKFKLWPLDA RHYFYADCPA RSFLKIVARV YMLDMGVVPC GFPPPLRVLA VEVFEASGRD PYLAERARAL LYNIVDEFPE EYWRDQGKRP SGLPLDQVAA EPYKGAIVLE TYLERGEPDP ELRKRVREEL TYSVVGGVPE CDPESVRSQL PEDVRKLREA SWNTVDAEAT FDIEVYNERG DRSVLRSFID GIPLKVDRVG IKLKTLDRVA LLRQYVIDDV ASVGNRVEWM PRPGLYSDVL PGGVYVAPEV KKYPPDSPEY VRIFGISESG GRVAPVEEVV AAALPGVSGV GEKLGNLPVY TPDPLRDPVI FVREFDPDVI GAPQQSVYGH EYFGVMKREE KSTYGLAEKL LLRYAYRLGE ALDFSSMYPN GHRFRREPPG RVLDERQRAL DRVVVVDRRF AVERRYLGRP YEADIRFYMR KVAEWGGVTE LLAVQASDGR VGYNSNQFDW WSVTGRANVD RVLVPGHKIY LPFLIQLSSV VAPNREEREY IMMKYNLSPD FIPLVLRQLI KIMANAMYGY TGWVGARWYK YGDTDSLFVK FTEAKKRYAG IELILTSRDV WKTLDKELDE VVKGGEKVSE IAEVIGIKEG KEVAESVTAF KSGDVEKLVK LLRDGRIDIV SEARQKVVKY YKAYPPHVHA RAVPYIFIDD DLKTGRSQRT ARAILKDVIE YVEEKYGIDI GFEVVRGDWS VRGVIDKLRN AILLKKRGYK IEKIDLDYYV LLDFF YARKAGIVVI KIDKDYSTVL ELAKEVQLRV YEVDLDDLII VGKGTTIGYV ERQVIPAALR 114 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36H MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TKQTGL EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK 115 Pyrococcus DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36H MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME EGKPVIRLFK VKKITAERHG QDVPTIREKI G KENGEFKIEH KIVRIVDAEK REHSAVVDIF DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY 116 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) N-terminal domain comprising a uracil-binding pocket, P36H MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME EGKPVIRLFK VKKITGERHG QDVPTIREKV G KENGKFKIEH KIVRIVDVEK REHPAVVDIF DRTFRHYIYA VEKKFLGKPI EYDIPFAKRY 117 Deep Vent DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36H MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME DGKPIIRIFK VRKITAERHG QDVPAIRDKI G KENGEFKVEY KIVRIIDAEK REHSAVIDIF DRNFRHYIYA VRKKFLGRPI EYDIPFAKRY 118 Thermococcus litoralis DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36H MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME DGKPIIRIFK IKAIKGERHG QDVPAMRGKI G KENGEFKIEL KTVRVLDAVK REHPAVVDIY DPHFQHYIYA VRKKFLGREV EYDIPFAKRY 119 Thermococcus gorgonarius DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36H MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME DGKPVIRIFK VKKITAERHG QDVPAIRDKI G KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DRNFEHYIYA VKKKFLGRPI EYDIPFAKRY 120 Thermococcus kodakarensis DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36H MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME DGKPVIRIFK VKKITAERHG QDVPAIRDKI G KENGEFKIEY TVVTVKRVEK REHPAVIDIY DRTFEHYFYA VQKKFLGRPV EYDIPFAKRY 121 Thermococcus species 9°N-7 DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36H MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI G KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DRTFEHYFYA VQKKFLGRPI EYDIPFAKRY 127 Pfu GenBank WP_011011325.1 P36X1 R762X2 amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TX2QVGLTSWL GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS; KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 128 Pfu GenBank WP_011011325.1 P36X1 R762Q amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS; KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 129 Pfu GenBank WP_011011325.1 P36X1 A408S R762X2 amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH VAVAKKLAAK YDPKKHKYDA TX2QVGLTSWL GVKIKPGMVI EYYIENQVLP NIKKS; GYIVLRGDGP AVLRILEGFG ISNRAILAEE YRKEDLRYQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 130 Pfu GenBank WP_011011325.1 P36X1 A408S R762Q amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKS; KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 131 Pfu GenBank WP_011011325.1 P36X1 R762X2 with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TXQVGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 132 Pfu GenBank WP_011011325.1 P36X1 R762Q with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRALY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 133 Pfu GenBank WP_011011325.1 P36X1 A408S R762X2 with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TXQVGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 134 Pfu GenBank WP_011011325.1 P36X1 A408S R762Q with DNA binding domain amino acid sequence MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME SYADENEAKV KDPDIIVTYN MQRIGDMTAV AIFGKPKEKV EGKPVIRLFK VKKITGERHG QDVPTIREKV GEEELKILAF ITWKNIDLPY GDSFDFPYLA EVKGRIHFDL YADEIAKAWE KENGKFKIEH KIVRIVDVEK REHPAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVITRTINL SGENLERVAK DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY EFGKGPIIMI IKRFLRIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY ELGKEFLPME AYERNEVAPN IVYLDFRSLY KFCKDIPGFI DYRQKAIKLL YIELVWKELE ALEFVKYINS EGKVITRGLE VRIVKEVIQK VAVAKKLAAK YDPKKHKYDA TQQVGLTSWL KKVWRVGKMI KQKK; IQLSRLVGQP KPSEEEYQRR PSIIITHNVS PSLLGHLLEE ANSFYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LANYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK LWDVSRSSTG LRESYTGGFV PDTLNLEGCK RQKIKTKMKE AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLET LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD NLVEWFLLRK KEPEKGLWEN NYDIAPQVGH TQDPIEKILL AESVTAWGRK GGESEEIKKK TKKRYAVIDE ILKHGDVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRYQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 135 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36X1 K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TXQTGL; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 136 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36X1 A408S K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YDPRKHKYDA TXQTGL; EYYIENQVLP AVLRILEGFG YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 137 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36X1 K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGL; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 138 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36X1 A408S K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGL; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 139 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36X1 K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TXQTGLTSWL KKVWRVGKMI KQKK; EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 140 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36X1 K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 141 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36X1 A408S K762X2 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TXQTGLTSWL KKVWRVGKMI KQKK; KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 142 Pyrococcus DNA polymerase sequence including exonuclease domain and sequence non-specific DNA binding domain, P36X1 A408S K762Q MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TQQTGLTSWL KKVWRVGKMI KQKK; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 143 P36X1 K762X2 variant of Deep Vent DNA polymerase amino acid sequence MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TXQTGLTAWL DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKK; KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 144 P36X1 K762Q variant of Deep Vent DNA polymerase amino acid sequence MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKK; KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 145 P36X1 K762X2 variant of Deep Vent DNA polymerase amino acid sequence with DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TXQTGLTAWL KKVWRVGKMI KQKK; DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKKGTGGG SFTYDEGGGK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 146 P36X1 K762Q variant of Deep Vent DNA polymerase amino acid sequence with DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL KKVWRVGKMI KQKK; GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKKGTGGG SFTYDEGGGK KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 147 P36X1 K762X2 K775S variant of Deep Vent DNA polymerase amino acid sequence with sequence non-specific DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TXQTGLTAWL KKVWRVGKMI KQKK; DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 148 P36X1 K762Q K775S variant of Deep Vent DNA polymerase amino acid sequence with sequence non-specific DNA binding domain MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDVIITYN MQRLGDMTAV AIFGKPKEKV ELGREFFPME AYERNELAPN LVSLDFRSLY KFCKDFPGFI DYRQRAIKIL DGKPIIRIFK VRKITAERHG QDVPAIRDKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLV EIKGRIHFDL YAHEIAEAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY KENGEFKVEY KIVRIIDAEK REHSAVIDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGKGLERVAK LWDVSRSSTG LRESYAGGYV PDTLNREGCR RQEIKRKMKA AKARWYCKEC DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY EFAKGPIIMI IKRFLKVIRE PLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWYLLRK KEPEKGLWEG EYDVAPEVGH SKDPIEKKML AESVTAWGRE YIEFVRKELE ALEFVDYINA EGKIITRGLE VKIVKEVTEK VAVAKRLAAR FDLRKHKYDA TQQTGLTAWL KKVWRVGKMI KQKK; EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKVRPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK DTDGLYATIP EGFYVRGFFV KETQAKVLEA LVIYEQITRP GYIVLRGDGP AVLRILEAFG GATVKFKYKG TGRGAVSEKD GAKPEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISKRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 149 P36X1 K764X2 variant of Thermococcus litoralis DNA polymerase MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYARNELA ENIIYLDFRS GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSXQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRGKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KTVRVLDAVK REHPAVVDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQX1YIYA VRKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKEHPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 150 P36X1 K764Q variant of Thermococcus litoralis DNA polymerase MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYARNELA ENIIYLDFRS GYRFCKDFPG MLDYRQRAIK RHYIEMTIRE KKAKEFLNYI DEEGRITTRG KAVEVVRDVV PHVAIAKRLA TEYDPRKHKY QSSQQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRGKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KTVRVLDAVK REHPAVVDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQDIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQX1YIYA VRKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKEHPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CKNYDVAPIV KSTIDPIEKK ECAESVTAWG IPGEKPELIK FVTKKRYAVI EAILKEGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 151 P36X1 K764X2 variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1) MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYERNELA ENIIYLDFRS SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSXQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRDKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KSVRVVDAVK KEHPAVIDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQX1YIYA VKKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKENPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 152 P36X1 K764Q variant of Thermococcus litoralis DNA polymerase, sequence 2 (acc. ADK47977.1) MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME SYADEEEARV KDPDVIITYN PKIQRMGDSF YEAVLGKTKS TYELGKEFFP RVAYERNELA ENIIYLDFRS SYRFCKDFPG MLDYRQRAVK RHYIEMTIKE KKAREFLNYI DEEGRITTRG KAVEIVRDVL PHVAIAKRLA TEYDPEKHKY QSSQQTGLDA DGKPIIRIFK IKAIKGERHG QDVPAMRDKI GDEELKLLAF ITWKNIDLPY GDNFDLPYLI AVEIKGRIHF KLGAEEIAAI MEAELAKLIG PNKPDEEEYK LYPSIIVTHN FIPSILGDLI LLANSYYGYM IEEKFGFKVL NSKLPGLLEL LEVVRRDWSE EKIAKYRVPL ARGIKVKPGT DPDYYIENQV WLKR; KENGEFKIEL KSVRVVDAVK KEHPAVIDIY DIETFYHEGD VDVVSNEREM KRAEKLGVRL DLFPVVRRTI WETEESMKKL QSVWDVSRSS RRLRTTYLGG VSPDTLEKEG AMRQEIKKKM GYPKARWYSK YADTDGFYAT EYEGFYLRGF IAKETQAKVL EKLVIHEQIT IISYIVLKGS LPAVLRILEA DPHFQX1YIYA VKKKFLGREV EYDIPFAKRY EFGKGEIIMI IKRFVQVVKE VLGRDKENPE NLPTYTLEAV AQYSMEDARA TGNLVEWYLL YVKEPEKGLW CENYDIAPIV KATIDPVERK ECAESVTAWG ISGEKPEIIK FVTKKRYAVI EAILKDGSVE RDLKDYKAIG GKISDRVILL FGYRKEDLRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 153 P36X1 R761X2 variant of Thermococcus gorgonarius DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AIFGQPKEKV ELGKEFFPME AYERNELAPN DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLVGQS KPDERELARR KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DIETLYHEGE VDVVSTEKEM KRSEKLGVKF YPVIRRTINL TGEGLERVAR LWDVSRSSTG RESYAGGYVK DRNFEX1YIYA VKKKFLGRPI EYDIPFAKRY EFAEGPILMI IKRFLKVVKE ILGREGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE XQVGLGAWLK SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA PKT; DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 154 P36X1 R761Q variant of Thermococcus gorgonarius DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AIFGQPKEKV ELGKEFFPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IETTIREIEE KEFLDYINAK DKITTRGLEI RIVKEVTEKL AVAKRLAARG DPAKHKYDAE QQVGLGAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLVGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL IKIRPGTVIS YYIENQVLPA PKT; KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DIETLYHEGE VDVVSTEKEM KRSEKLGVKF YPVIRRTINL TGEGLERVAR LWDVSRSSTG RESYAGGYVK DTLNREGCEE QKVKKKMKAT KARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAI VIYEQITRDL YIVLKGSGRI VERILRAFGY DRNFEX1YIYA VKKKFLGRPI EYDIPFAKRY EFAEGPILMI IKRFLKVVKE ILGREGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHK IDPIEKKLLD ESVTAWGRQY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 155 P36X1 R761X2 variant of Thermococcus kodakarensis DNA polymerase MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AVFGQPKEKV ELGKEFLPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE XQVGLSAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNVDLPY GDNFDFAYLK EVKGRIHFDL YAEEITTAWE AQLSRLIGQS KPDEKELARR SIIITHNVSP SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA PKGT; KENGEFKIEY TVVTVKRVEK REHPAVIDIY DIETLYHEGE VDVVSTEREM KRCEKLGINF YPVIRRTINL TGENLERVAR LWDVSRSSTG RQSYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY DRTFEX1YFYA VQKKFLGRPV EYDIPFAKRY EFAEGPILMI IKRFLRVVKE ALGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 156 P36X1 R761Q variant of Thermococcus kodakarensis DNA polymerase MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME SYADEEGARV KDPDVLITYN IQRMGDRFAV AVFGQPKEKV ELGKEFLPME AYERNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA ITMTIKEIEE MEFLKYINAK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHKYDAE QQVGLSAWLK DGKPVIRIFK VKKITAERHG QDVPAIRDKI GDEELKMLAF ITWKNVDLPY GDNFDFAYLK EVKGRIHFDL YAEEITTAWE AQLSRLIGQS KPDEKELARR SIIITHNVSP SLLGDLLEER NSYYGYYGYA KYGFKVIYSD LPGALELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA PKGT; KENGEFKIEY TVVTVKRVEK REHPAVIDIY DIETLYHEGE VDVVSTEREM KRCEKLGINF YPVIRRTINL TGENLERVAR LWDVSRSSTG RQSYEGGYVK DTLNREGCKE QKIKKKMKAT RARWYCKECA TDGFFATIPG GFYKRGFFVT ETQARVLEAL VIHEQITRDL YIVLKGSGRI VERILRAFGY DRTFEX1YFYA VQKKFLGRPV EYDIPFAKRY EFAEGPILMI IKRFLRVVKE ALGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWENI YDVAPQVGHR IDPIERKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKDGDVEKAV KDYKATGPHV GDRAIPFDEF RKEDLRYQKT wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 157 P36X1 K761X2 variant of Thermococcus species 9°N-7 DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME SYADGSEARV KDPDVLITYN IQRMGDRFAV AVFGKPKEKV ELGREFFPME AYKRNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE XQVGLGAWLK NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI GDEELTMLAF ITWKKIDLPY GDNFDFAYLK EVKGRIHFDL YAEEIAQAWE AQLSRLIGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA VKGKK; KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DIETLYHEGE VDVVSTEKEM KRCEELGIKF YPVIRRTINL SGEGLERVAR LWDVSRSSTG RGGYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY DRTFEX1YFYA VQKKFLGRPI EYDIPFAKRY EFGTGPILMI IKRFLRVVRE TLGRDGSEPK PTYTLEAVYE YSMEDAKVTY NLVEWFLLRK EPERGLWDNI YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H; and wherein X2 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, P, and G; in some embodiments, X2 is selected from Q and N. 158 P36X1 K761Q variant of Thermococcus species 9°N-7 DNA polymerase MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME SYADGSEARV KDPDVLITYN IQRMGDRFAV NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI GDEELTMLAF ITWKKIDLPY GDNFDFAYLK EVKGRIHFDL KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DIETLYHEGE VDVVSTEKEM KRCEELGIKF YPVIRRTINL DRTFEX1YFYA VQKKFLGRPI EYDIPFAKRY EFGTGPILMI IKRFLRVVRE TLGRDGSEPK PTYTLEAVYE AVFGKPKEKV ELGREFFPME AYKRNELAPN VYLDFRSLYP FCKDFPGFIP YRQRAIKILA IEMVIRELEE KEFLKYINPK GKITTRGLEI RIVKEVTEKL AVAKRLAARG DPTKHRYDAE QQVGLGAWLK YAEEIAQAWE AQLSRLIGQS KPDERELARR SIIITHNVSP SLLGDLLEER NSFYGYYGYA KFGFKVLYAD LPGLLELEYE VRRDWSEIAK SKYEVPPEKL VKIRPGTVIS YYIENQVLPA VKGKK; SGEGLERVAR LWDVSRSSTG RGGYAGGYVK DTLNREGCKE QKIKRKMKAT KARWYCKECA TDGLHATIPG GFYVRGFFVT ETQARVLEAI VIHEQITRDL YIVLKGSGRI VERILKAFGY YSMEDAKVTY NLVEWFLLRK EPERGLWDNI YDVAPEVGHK VDPLEKKLLD ESVTAWGREY ADAETVKKKA KKKYAVIDEE LKHGDVEEAV RDYKATGPHV GDRAIPADEF RKEDLRYQKT wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 159 P40X1 E775Q variant of Pyrobaculum calidifontis DNA polymerase MRFWPLDATY YFYAKCDKCD FLKVVAKVPE IDKGVVPCAW PPLRVLAFDI FEAEGRDDRR SERAKALGVP IVDEFPEIKV NDPAKRPTLM PLDQVAAASV KGAIVLEPKP EPHEPDPPEG RAVREEAKKY VGARWYKKEV TDSLFVKKSG AKKRYAGLLR ILKSKSVGEA LDKELDEYKA GPGKVSERAM VLGVKESDLK SVVGGVPEVR ASLAKSYLSR DVRKLREAAL NVVEAREAGK EVYNERGSPD VIRGFVDFVK LRVDRLGGVP KTLDRVAEYF RYVLDDVRST GNRVEWMLLR GLYSDVLVLD VVVAPEVGHR PPDSPEYRLL AESVTAFARA AVDRLVKYVE DGRIDIVGFE RERVVKYVRE YGPHVHAALE PYIFVDDASK TGRVQKSLLD VFGVDGEGRR VAPVEAVEVV GAPGVVDVYE LGPLPLYEVV PLRDPVVMLA EFDPDVIVGY QQSVYGHWSV GVMKRSERVL LGLAEKLLPF YAYRMGEVAP FSSMYPNIMM FRKAPTGFIP DERQRALKVM ILLDVVEYAK ERHGIEIKVD VVRGDWCELA VVERLKAYKF LKRRGYKVGK VDVDYYIEKQ FLG; VVLVDRRFRX1 ERRFFGRPTI ADIRYYMRYM EWAGVEEGFP VKTSDGREEV NSNGFDWPYL VGRANVDLYN IPGHKVYEYW LIQLSSVSGL NREEREYEPY KYNLSPDTYL AVLKHLVELR ANAMYGYLGW RLGIEVIYGD KDYERVLFTE KEVQLNVVEL DLDDLIIWKT GTTVGYVIVR VIPAALRIAE wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 160 P42X1 E778Q variant of Pyrobaculum aerophilum DNA polymerase MKFKLWPLDA RX1YFYADCPA RSFLKIVARV YMLDMGVVPC GFPPPLRVLA VEVFEASGRD PYLAERARAL LYNIVDEFPE EYWRDQGKRP SGLPLDQVAA EPYKGAIVLE TYLERGEPDP ELRKRVREEL TGWVGARWYK YGDTDSLFVK FTEAKKRYAG IELILTSRDV WKTLDKELDE VVKGGEKVSE IAEVIGIKEG TYSVVGGVPE CDPESVRSQL PEDVRKLREA SWNTVDAEAT FDIEVYNERG DRSVLRSFID GIPLKVDRVG IKLKTLDRVA LLRQYVIDDV ASVGNRVEWM PRPGLYSDVL PGGVYVAPEV KKYPPDSPEY KEVAESVTAF KSGDVEKLVK LLRDGRIDIV SEARQKVVKY YKAYPPHVHA RAVPYIFIDD DLKTGRSQRT VRIFGISESG GRVAPVEEVV AAALPGVSGV GEKLGNLPVY TPDPLRDPVI FVREFDPDVI GAPQQSVYGH EYFGVMKREE KSTYGLAEKL LLRYAYRLGE ALDFSSMYPN GHRFRREPPG RVLDERQRAL ARAILKDVIE YVEEKYGIDI GFEVVRGDWS VRGVIDKLRN AILLKKRGYK IEKIDLDYYV LLDFF; DRVVVVDRRF AVERRYLGRP YEADIRFYMR KVAEWGGVTE LLAVQASDGR VGYNSNQFDW WSVTGRANVD RVLVPGHKIY LPFLIQLSSV VAPNREEREY IMMKYNLSPD FIPLVLRQLI KIMANAMYGY YARKAGIVVI KIDKDYSTVL ELAKEVQLRV YEVDLDDLII VGKGTTIGYV ERQVIPAALR wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 161 Pyrococcus DNA polymerase sequence including exonuclease domain and catalytic domain, P36X1 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TKQTGL; EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 162 Pyrococcus DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36X1 MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME EGKPVIRLFK VKKITAERHG QDVPTIREKI G; KENGEFKIEH KIVRIVDAEK REHSAVVDIF DRTFRX1YIYA VEKKFLGRPI EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 163 Pfu DNA polymerase (GenBank Acc. No. WP_011011325.1) N-terminal domain comprising a uracil-binding pocket, P36X1 MILDVDYITE LLRDDSKIEE TVWKLYLEHP LIDKGLIPME EGKPVIRLFK VKKITGERHG QDVPTIREKV G; KENGKFKIEH KIVRIVDVEK REHPAVVDIF DRTFRX1YIYA VEKKFLGKPI EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 164 Deep Vent DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36X1 MILDADYITE LLKDDSQIDE EVWRLYFEHP LIDKGLIPME DGKPIIRIFK VRKITAERHG QDVPAIRDKI G; KENGEFKVEY KIVRIIDAEK REHSAVIDIF DRNFRX1YIYA VRKKFLGRPI EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 165 Thermococcus litoralis DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36X1 MILDTDYITK LLKDDSAIEE EVWKLIFEHP LIDKGLIPME DGKPIIRIFK IKAIKGERHG QDVPAMRGKI G; KENGEFKIEL KTVRVLDAVK REHPAVVDIY DPHFQX1YIYA VRKKFLGREV EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 166 Thermococcus gorgonarius DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36X1 MILDTDYITE LLKDDSAIED EVWKLYFTHP LIDKGLIPME DGKPVIRIFK VKKITAERHG QDVPAIRDKI G; KENGEFKIDY TTVRVVRAEK KEHPAVVDIY DRNFEX1YIYA VKKKFLGRPI EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 167 Thermococcus kodakarensis DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36X1 MILDTDYITE LLKDDSAIEE EVWKLYFTHP LIDKGLVPME DGKPVIRIFK VKKITAERHG QDVPAIRDKI G; KENGEFKIEY TVVTVKRVEK REHPAVIDIY DRTFEX1YFYA VQKKFLGRPV EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 168 Thermococcus species 9°N-7 DNA polymerase N-terminal domain comprising a uracil-binding pocket, P36X1 MILDTDYITE LLKDDSAIED EVWKLYFNHP LIDKGLIPME NGKPVIRVFK VKKVTAKRHG QDVPAIRDRI G; KENGEFKIEY TVVKVKRAEK RAHPAVVDIY DRTFEX1YFYA VQKKFLGRPI EYDIPFAKRY wherein X1 is any amino acid other than P; in some embodiments, X1 is selected from Q, N, H, S, T, Y, C, M, W, A, I, L, F, V, G; in some embodiments, X1 is H. 169 Pyrococcus DNA polymerase sequence including exonuclease domain and DNA binding domain, P36H MILDADYITE LLKDDSKIEE TVWRLYFEHP LIDKGLIPME SYADEEEAKV KDPDIIITYN MQRIGDMTAV AIFGKPKEKV ELGKEFFPME AYERNELAPN IVSLDFRALY KFCKDFPGFI DYRQRAIKIL YIEFVWKELE ALEFVDYINA EGKIITRGLE VRIVKEVTQK VAVAKRLAAK YDPRKHKYDA TKQTGLTSWL KKVWRVGKMI KQKK EGKPVIRLFK VKKITAERHG QDVPTIREKI GDEELKLLAF ITWKKIDLPY GDSFDLPYLA EVKGRIHFDL YADEIAKAWE AQLSRLVGQP KPDEREYERR PSIIITHNVS PSLLKRLLDE ANSYYGYYGY EKFGFKVLYI KLPGLLELEY IVRRDWSEIA LSKYEIPPEK GVKIKPGMVI EYYIENQVLP NIKKSGTGGG SFTYDEGGGK KENGEFKIEH KIVRIVDAEK REHSAVVDIF DIETLYHEGE VEVVSSEREM KRAEKLGIKL YHVIRRTINL TGEGLERVAK LWDVSRSSTG LRESYAGGFV PDTLNREGCR RQKIKTKMKA AKARWYCKEC DTDGLYATIP EGFYKRGFFV KETQARVLEA LAIYEQITRP GYIVLRGDGP AVLRILEGFG GATVKFKYKG TGRGAVSEKD DRTFRHYIYA VEKKFLGRPI EYDIPFAKRY EFGKGPIIMI IKRFLKIIRE TIGRDGSEPK PTYTLEAVYE YSMEDAKATY NLVEWFLLRK KEPEKGLWEN NYDVAPEVGH SQDPIEKIML AESVTAWGRE GGKSEEIKKK TKKKYALIDE ILKHGNVEEA LHEYKAIGPH ISNRAILAEE YRKEDLRWQK EEKEVDISKI APKELLQMLE

Claims

1-55. (canceled)

56. A nucleic acid comprising a sequence encoding a thermophilic DNA polymerase comprising a family B polymerase N-terminal domain comprising a uracil-binding pocket and a family B polymerase catalytic domain, the family B polymerase N-terminal domain comprising a uracil-binding pocket having an amino acid sequence in which the position corresponding to position 36 of SEQ ID NO: 1 is any amino acid other than P, and the family B polymerase catalytic domain having an amino acid sequence in which the position corresponding to position 762 of SEQ ID NO: 1 is a neutral amino acid residue,

wherein the thermophilic DNA polymerase comprises an amino acid sequence having at least 90%, 95%, 98%, 99%, or 100% identity to a sequence selected from SEQ ID NOs: 80 to 113 and 127 to 160, wherein X1 is any amino acid other than P and X2 is the neutral amino acid residue.

57. An expression vector comprising the nucleic acid of claim 56.

58. An isolated host cell comprising the expression vector of claim 57.

59. A method of producing a thermophilic DNA polymerase, comprising culturing at least one host cell comprising a the nucleic acid of claim 56, wherein the at least one host cell expresses the thermophilic DNA polymerase.

60. The method of claim 59, further comprising isolating the thermophilic DNA polymerase.

61. A composition comprising the nucleic acid of claim 56.

62. The composition of claim 61, comprising at least one hot start inhibitor.

63. The composition of claim 61, comprising at least two hot start inhibitors.

64. The composition of claim 62, wherein each hot start inhibitor is independently selected from an antibody, an Affibody®, a chemical modification, and an oligonucleotide.

65. The composition of claim 63, wherein the composition comprises at least two antibodies.

66. The composition of claim 63, wherein the composition comprises an antibody and an oligonucleotide.

67-104. (canceled)

105. An isolated host cell comprising the nucleic acid of claim 56.

106. The composition of claim 63, wherein each hot start inhibitor is independently selected from an antibody, an Affibody®, a chemical modification, and an oligonucleotide.

107. The composition of claim 64, wherein the composition comprises at least two antibodies.

108. The composition of claim 64, wherein the composition comprises an antibody and an oligonucleotide.

Patent History
Publication number: 20230357732
Type: Application
Filed: Apr 3, 2023
Publication Date: Nov 9, 2023
Applicant: Thermo Fisher Scientific Baltics UAB (Carlsbad, CA)
Inventors: Rasa Sukackaite (Vilnius), Skaiste Valinskyte (Vilnius)
Application Number: 18/295,101
Classifications
International Classification: C12N 9/12 (20060101);