Serpentine robotic crawler

- Raytheon Company

A serpentine robotic crawler capable of multiple movement moves is disclosed. The serpentine robotic crawler includes a plurality of frame units, coupled together by at least one actuated linkage. Each frame unit includes a continuous track, enabling forward movement of the serpentine robotic crawler. The at least one actuated linkage has at least 7 degrees of movement freedom, enabling the serpentine robotic crawler to adopt a variety of poses.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/985,323, filed Nov. 13, 2007, and entitled “Serpentine Robotic Crawler”, which claims the benefit of U.S. Provisional Patent Application No. 60/858,917, filed Nov. 13, 2006, each of which is incorporated by reference in its entirety herein.

FIELD OF THE INVENTION

The present invention relates to small, unmanned ground robotic vehicles. More particularly, the present invention relates to a serpentine robotic crawler having multiple tracked frame units interconnected through a high-degree of freedom actuated linkage.

BACKGROUND OF THE INVENTION AND RELATED ART

Robotics is an active area of research, and many different types of robotic vehicles have been developed for various tasks. For example, unmanned aerial vehicles have been quite successful in military aerial reconnaissance. Less success has been achieved with unmanned ground vehicles, however, in part because the ground environment is significantly more difficult to traverse than the airborne environment.

Unmanned ground vehicles face many challenges when attempting mobility. Terrain can vary widely, including for example, loose and shifting materials, obstacles, vegetation, limited width or height openings, steps, and the like. A vehicle optimized for operation in one environment may perform poorly in other environments.

There are also tradeoffs associated with the size of vehicle. Large vehicles can handle some obstacles better, including for example steps, drops, gaps, and the like. On the other hand, large vehicles cannot easily negotiate narrow passages or crawl inside pipes, and are more easily deterred by vegetation. Large vehicles also tend to be more readily spotted, and thus are less desirable for discrete surveillance applications. In contrast, while small vehicles are more discrete, surmounting obstacles becomes a greater navigational challenge.

A variety of mobility configurations have been adapted to traverse difficult terrain. These options include legs, wheels, and tracks. Legged robots can be agile, but use complex control mechanisms to move and achieve stability. Wheeled vehicles can provide high mobility, but provide limited traction and require width in order to achieve stability.

Tracked vehicles are known and have traditionally been configured in a tank-like configuration. While tracked vehicles can provide a high degree of stability in some environments, tracked vehicles typically provide limited maneuverability with very small vehicles. Furthermore, known tracked vehicles are unable to accommodate a wide variety of obstacles, particularly when the terrain is narrow and the paths are tortuous and winding.

SUMMARY OF THE INVENTION

The present invention includes a serpentine robotic crawler which helps to overcome problems and deficiencies inherent in the prior art. In one embodiment, the serpentine robotic crawler includes a first frame and a second frame, each frame having a continuous track rotatably supported therein. The first and second frame are coupled by an actuated linkage arm. The linkage arm has a pair of wrist-like actuated linkage at each end, coupled to respective frames, and an elbow-like actuated joint between the wrist-like actuated linkages.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings merely depict exemplary embodiments of the present invention they are, therefore, not to be considered limiting of its scope. It will be readily appreciated that the components of the present invention, as generally described and illustrated in the figures herein, can be arranged and designed in a wide variety of different configurations. Nonetheless, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 illustrates a perspective view of a serpentine robotic crawler according to a an exemplary embodiment of the present invention;

FIG. 2 illustrates a perspective view of a wrist-like actuated linkage in accordance with an embodiment of the present invention;

FIG. 3 illustrates a perspective view of an elbow-like actuated linkage in accordance with an embodiment of the present invention;

FIG. 4 illustrates a perspective view of a wrist-like actuated linkage in accordance with an embodiment of the present invention;

FIG. 5 illustrates a perspective view of a frame having a substantially enclosed continuous track with an exposed bottom portion in accordance with an embodiment of the present invention;

FIG. 6 illustrates a perspective view of a frame having a continuous track with an exposed top portion and an exposed bottom portion in accordance with an embodiment of the present invention;

FIG. 7 illustrates a perspective view of a serpentine robotic crawler in a tank-like configuration in accordance with an embodiment of the present invention;

FIG. 8 illustrates a perspective view of a serpentine robotic crawler in a snake-like configuration in accordance with an embodiment of the present invention;

FIG. 9 illustrates a perspective view of a serpentine robotic crawler in an outside-climbing configuration in accordance with an embodiment of the present invention;

FIGS. 10(a)-10(c) illustrate perspective views of a serpentine robotic crawler in different inside-climbing configurations in accordance with an embodiment of the present invention;

FIGS. 11(a)-11(e) illustrate a top view of a sequence of movements of a serpentine robotic crawler righting itself in accordance with an embodiment of the present invention;

FIGS. 12(a)-12(f) illustrate perspective views of various poses for a serpentine robotic crawler in accordance with an embodiment of the present invention;

FIG. 13 illustrates a schematic diagram of a control system in accordance with an embodiment of the present invention;

FIG. 14 illustrates a serpentine robotic crawler in accordance with an alternate embodiment of the present invention; and

FIG. 15 illustrates a serpentine robotic crawler in accordance with yet another alternate embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which form a part hereof and in which are shown, by way of illustration, exemplary embodiments in which the invention may be practiced. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art practice the invention, it should be understood that other embodiments may be realized and that various changes to the invention may be made without departing from the spirit and scope of the present invention. Thus, the following more detailed description of the embodiments of the present invention is not intended to limit the scope of the invention, as claimed, but is presented for purposes of illustration only and not limitation to describe the features and characteristics of the present invention, to set forth the best mode of operation of the invention, and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined solely by the appended claims.

The following detailed description and exemplary embodiments of the invention will be best understood by reference to the accompanying drawings, wherein the elements and features of the invention are designated by numerals throughout.

With reference to FIG. 1, shown is an illustration of a serpentine robotic crawler according to a first exemplary embodiment of the present invention. Specifically, FIG. 1 illustrates the serpentine robotic crawler 10 as including a first frame 12 and a second frame 14. Each frame includes a continuous track 16, 18 rotatably supported by the frame. The frames are coupled together by a multiple degree of freedom actuated linkage arm 20. The multiple degree of freedom linkage arm includes a first wrist-like actuated linkage 22 coupled to the first frame, a second wrist-like actuated linkage 24 coupled to the second frame, and an elbow-like actuated joint 26 coupled between the first and second wrist-like actuated linkage.

The wrist-like actuated linkages 22, 24, shown in further detail in FIG. 2, provide bending movement about two different lateral axes 28, 29 and rotational movement about a longitudinal axis 30. Longitudinal refers to a direction generally oriented along the actuated linkage, such that movement about a longitudinal axis corresponds to twisting or rotational movement. Lateral refers to a direction generally oriented perpendicularly or at an angle to the longitudinal axis, such that movement about a lateral axis corresponds to bending movement. The two different lateral axes can be, but are not limited to, being at right angles to each other. The elbow-like actuated joint, shown in further detail in FIG. 3, provides bending movement about a lateral axis 32.

The wrist-like actuated linkages 22, 24 can be configured in various ways. For example, the wrist-like actuated linkage can include a series coupled combination of a yaw bending joint, a pitch bending joint, and a rotational joint, with various arm linkages coupled between the joints and the frame. For example, as shown in FIG. 4, in accordance with an embodiment of the present invention, a wrist-like actuated linkage 40 can include a yaw arm 42 coupled to the frame 12,14 through a yaw bending joint 44 which provides yaw 46 bending about a lateral axis 28 orientated substantially vertically relative to the frame when the continuous track 16, 18 is in a nominal operating position and in contact with a substantially horizontal supporting surface. The wrist-like actuated linkage can also include a pitch arm 48 coupled to the yaw arm through a pitch bending joint 50 providing pitch 52 bending about a lateral axis 29 oriented substantially horizontally relative to the frame. The wrist-like actuated linkage can also include a rotary joint 54 providing roll 56 rotation about the longitudinal axis 30 of the pitch arm. References to vertical and horizontal refer to nominal directions relative to a substantially horizontal supporting surface on which the serpentine robotic crawler is operated and when the continuous track is in contact with the supporting surface. It will be appreciated that, when the serpentine robotic crawler is tipped over, the vertical direction relative to the serpentine robotic crawler is actually horizontal relative to the supporting surface.

Considering the frames 12, 14 and continuous tracks 16, 18 in further detail, the frame can be configured in various ways so that the continuous track is substantially enclosed so that only a bottom portion 60 is exposed as illustrated in FIG. 5, or so that the continuous track is partially enclosed so that a top portion 62 and bottom portion 60 of the continuous track 16, 18 are exposed as illustrated in FIG. 6. Note that, where both the top and bottom portion of the continuous track is exposed, the frame can be oriented with either side up and still provide locomotion. The benefits of this configuration will become more apparent as the operation of a serpentine robotic crawler is discussed further below. The frame can include a drive (not shown) coupled to the continuous track to drive the continuous track. Optionally, the drive can be configured to drive the continuous track in either direction (e.g., clockwise and counterclockwise) over a range of speeds. Various types of drives and coupling techniques for applying drive power to a continuous track are known and can be applied in embodiments of the present invention.

Referring back to FIG. 1, the combination of the high degree of freedom actuated linkage arm 20 with the dual single track frames 12, 14 makes the serpentine robotic crawler 10 capable of many different modes of movement as will now be described. Operating the serpentine robotic crawler can include articulating the actuated multi-degree of freedom linkage arm to establish a desired pose for the serpentine robotic crawler. Drive operation of the continuous tracks 16, 18 can be coordinated with articulation of the high degree of freedom actuated linkage arm to further control the pose and provide movement of the serpentine robotic crawler. When establishing a pose of the serpentine robotic crawler, torque and forces on the joints may be taken into account as discussed further herein.

A first pose will be referred to herein as the “tank” configuration, where the first frame 12 and second frame 14 are positioned side by side as illustrated in FIG. 7. The frames extend in the same direction from the actuated linkage arm 20, and can be, but need not be, parallel. The tank configuration provides lateral stability to the serpentine robotic crawler 10, for example when traversing a steep slope. The serpentine robotic crawler can be moved in a forward and reserve direction by driving the continuous tracks 16, 18 in the same direction, and turned by driving the continuous tracks in the opposite direction. In general, moving the serpentine robotic crawler in the tank-like configuration can involve applying different drive speeds (including opposite directions) to the continuous tracks.

A second pose, referred to herein as the “train” configuration, is where the first frame 12 and second frame 14 are aligned end-to-end as illustrated in FIG. 8. The frames can be, but need not be, parallel. The train configuration provides a smaller profile, allowing the serpentine robotic crawler 10 to enter small holes, pipes, tunnels, and the like. The train configuration also allows the serpentine robotic crawler to bridge gaps and holes. In the train configuration, forward and reverse motion is provided by driving the continuous tracks 16, 18. Note that, relative to the tank configuration, the direction sense of one of the continuous tracks is reversed. Turning of the serpentine robotic crawler can be provided by operation of the actuated linkage arm 20 to create an angle between the first frame and second frame.

The serpentine robotic crawler can also be configured for climbing the exterior of structure. As illustrated in FIG. 9, the serpentine robotic crawler 10 is wrapped around the structure 70 so that exposed portions 72, 74 of the continuous tracks face toward each other and contact opposite outer surfaces 76, 78 of the structure. The continuous tracks can be driven to move the serpentine robotic crawler up and down the structure. Many different structural geometries, including for example a pole, can be climbed in this outside-climbing configuration.

The serpentine robotic crawler can also be configured for climbing the interior of a structure. FIGS. 10(a) and 10(b) illustrate two different inside-climbing configurations. In an inside-climbing configuration, the serpentine robotic crawler 10 is configured so that exposed portions 72, 74 of the continuous tracks face away from each other and are in contact with opposite inner surfaces 80, 82 of the structure 70. The inside-climbing configuration can be useful for climbing pipes, chimneys, wall interiors, and the like.

It may also be possible for the serpentine robotic crawler to climb the interior of a structure 70 by facing exposed portions 72, 74 of the continuous tracks in the same direction, in contact with the same inner surface 80 of the structure, and placing a portion of the actuated linkage in contact with the opposite inner surface 82, as illustrated in FIG. 10(c).

Various articulated movements are also possible for the serpentine robotic crawler. For example, FIGS. 11(a)-11(e), illustrate one technique self-righting of an overturned serpentine robotic crawler in overhead view. The serpentine robotic crawler 10 is shown lying on its side in FIG. 11(a), with the exposed portions 72, 74 of the continuous track no longer in contact with the surface. In a first step, the actuated linkage 20 is activated to position the frames at an approximately 90-degree angle as shown in FIG. 11(b). This provides a stable configuration, at which point one of the wrist-like joints can be rotated to place one of exposed surfaces of a continuous track in contact with the surface as shown in FIG. 11(c). The other wrist-like joint is then rotated to similarly position the other frame as shown in FIG. 11(d). As this point, both continuous tracks are in contact with the surface. The linkage arm is then straightened so that the serpentine robotic crawler can continue on as shown in FIG. 11(e). Optionally, straightening the linkage arm can occur while the serpentine robotic crawler has begun moving forward. The serpentine robotic crawler can include systems such as track load sensors, inertial references, and the like to assist in determining and correcting its orientation. For example, commonly owned and co-pending U.S. Provisional Patent Application No. 60/858,805, entitled “Conformable Track Assembly for a Robotic Crawler”, filed Nov. 13, 2006 and incorporated herein by reference, describes a suspension system for an endless track which includes a deflector and a load-sensing element which can be used in embodiments of the present invention.

Other self-righting movement modes are also possible. For example, the serpentine robotic crawler 10 can be placed into an arched configuration by operating the actuated linkage arm 20 (as described further below) so the serpentine robotic crawler is substantially supported by only furthest apart ends of the tracks. This configuration can be unstable, allowing further actuation of the articulated linkage arm to cause the serpentine robotic crawler to tip over.

A serpentine robotic crawler in accordance with embodiments of the present invention is capable of a large number of poses and movement modes not possible with more conventional wheeled or tracked vehicles. Additional poses the serpentine robotic crawler 10 can adopt are illustrated in FIG. 12(a)-12(f). For example, the actuated linkage 20 can position the frames 12, 14 at an angle relative to each other. The serpentine robotic crawler can thus be arched in an up (FIG. 12(a)), down (FIG. 12(b)), left (FIG. 12(c)), or right (FIG. 12(d)) direction. Arching up and down can help to navigate uneven portions of terrain, such as dips and bumps. Arching left and right can help in turning and avoiding obstacles.

Another pose can be referred to as a zag configuration, where the frames are oriented in parallel lines but offset and extending in opposite directions from the actuated linkage arm, as shown in FIG. 12(e). Similar to the tank configuration, the zag configuration can provide additional stability to the serpentine robotic crawler.

While the various poses have been described in a static sense, it will be understood that the serpentine robotic crawler can dynamically vary its pose as it is operated. Moreover, modified versions of the above poses may also prove useful, depending on the environment in which the serpentine robotic crawler operates.

As discussed above, various dynamic movement modes are possible. While the foregoing discussion has principle focused on operation of the endless tracks to provide propulsion, it will be appreciated that operation of the actuated linkage can also assist in propulsion. For example, sudden jerky movements of the actuated linkage can help to provide traction or to free the serpentine robotic crawler when entangled. As another example, the spatial orientation of the tracks can be periodically or continuously adjusted by the actuated linkage to conform to a surface being traveled over. For example, FIG. 12(f) illustrates a twisted configuration.

Returning to the discussion of the articulated multi-degree of freedom linkage arm 20, various other configurations are also possible for embodiments of a serpentine robotic crawler. In general, the linkage arm includes at least seven actuated joints providing motion about seven different axes (although some of these axes may be aligned with each other at times). These joints can be uni-axial, bi-axial, or tri-axial joints. The linkage arm can include a series coupled combination of any of the following:

7 uni-axial joints

3 three uni-axial joints and 2 bi-axial joints

1 uni-axial joint and 2 tri-axial joints

2 bi-axial joints and 1 tri-axial joint

For example, the linkage arm can include a series combination of five actuated uni-axial bending joints and two actuated uni-axial rotary joints, wherein the bending joints provide at least two different joint axes. For example, four bending joints can be symmetrically disposed about a fifth bending joint located in the center of the linkage, two bending joints on each side of the center. The rotary joints can also be symmetrically disposed about the center. For example, the rotary joints can be located adjacent to the fifth (centered) bending joint (e.g., as illustrated in FIG. 7), located between the symmetrically disposed bending joints, or located adjacent to the frames.

Alternately, bi-axial joints, which provide the same degrees of freedom as two uni-axial joints in series, or tri-axial joints, which provide the same degrees of freedom as three uni-axial joints in series, can also be used. A bi-axial joint can, for example, provide bending in two axes. These axes can, but need not be, orthogonal. A tri-axial joint can, for example, provide bending in two lateral axes and rotation about a third longitudinal axis.

Joints need not be limited to revolute joints which provide bending or rotational movement. Prismatic joints which provide translational movement can also be included. Joints may incorporate both revolute and prismatic features to provide, for example, eccentric motions.

Control of the serpentine robotic vehicle 10 will now be discussed in further detail. As noted above, movement and pose of the serpentine robotic vehicle can be controlled through articulation of the actuated multiple degree of freedom linkage arm 20 and rotation of the continuous tracks 16, 18. Accordingly, as shown in schematic form in FIG. 13, the serpentine robotic crawler can include a control subsystem 90. The control subsystem is in communication with each of the actuated joints 92 of the linkage arm 20 to control the pose of the serpentine robotic crawler. The control system can also be in communication with the drive units 94, which are coupled to the first and second continuous track, to control the speed and direction of continuous track rotation to control movement of the serpentine robotic crawler. The control system can also include a communication network 96 configured to exchange communication between the control subsystem, the joints in the linkage arm, and the drive units.

Various implementations of the communications network are possible. For example, various communications protocols are known which allow a large number of nodes to communicate on a limited number of wires, including for example RS-485, RHAMIS, USB, Ethernet, and the like. Alternately, the communications network can include wireless components. For example, the communication network can include a wireless portion providing communication between the serpentine robotic crawler and a control system located remotely from the serpentine robotic crawler.

Various implementations of the control subsystem are possible. For example, in one embodiment, the control system can use a master replica for control of the serpentine robotic crawler. In a master replica control system, a master replica is located remotely from the serpentine robotic crawler. The master replica contains the same joints as the serpentine robotic crawler, and is manually manipulated into the desired poses. Sensors located at the joints sense the position of the joints, and these positions are communicated to the serpentine robotic crawler which actuates its joints to attempt to establish the same pose. Optionally, the joints in the serpentine robotic crawler can include force sensors, torque sensors, or both, allowing the force and/or torque on the joints to be measured. The joint forces and/or torques can optionally be communicated back to the replica master, providing force feedback into the control system. Various force feedback control systems are known which can be applied to embodiments of the present invention.

The control system may be integrated into the serpentine robotic crawler thereby allowing the crawler to operate autonomously. For example, the crawler may operate autonomously for an extended period of time. In an embodiment, the control system can include distributed joint and track controllers which locally control one or more closely associated joints. Distributed joint and track controllers can communicate with a master controller located within the crawler or located externally from the crawler.

In another embodiment, control of the serpentine robotic crawler can include control of a first frame, with other frames slaved to the first frame. For example, an operator can control the orientation and movement of the first frame. The other frames then follow the first frame. One particular control scheme can include automatically steering the other frames in following the first frame so as to minimize forces imposed on the actuated linkage arm.

As another example, control of the serpentine robotic crawler can include use of a joystick. For example, a two-dimensional joystick can be used to control a pose of the robot, for example by controlling motion of the actuated linkage via the joystick. Movement of the two-degrees of motion in the joystick can be translated into complex movements of the multi-degree of freedom actuated linkage via predefined primitives. As a particular example, movement of the joystick to the left or right can arch the serpentine robotic crawler to the left or right, with sustained holding of the joystick moving the serpentine robotic crawler between a tank-like configuration and a snake-like configuration. As another particular example, movement of the joystick to the front or back can arch the serpentine robotic crawler up or down, with sustained holding of the joystick forward or backward placing the serpentine robotic crawler into an inside- or outside-climbing configuration. Of course, a variety of mappings from a joystick to movements can be defined, as will be appreciated. Interface between an operator and the control system can be provided via a menu driven interface operational on a personal computer, laptop, personal data assistant, and the like, as is known.

The control system can also be configured to provide a degree of compliance in the joints. For example, forces applied to the joints by the environment of the flexible robotic crawler can be sensed and communicated to the control system. When certain force thresholds are exceeded, the joints can be allowed to move. For example, joints can include breakaway clutches, implemented either via mechanical systems, electronic systems, or hybrid electro-mechanical systems. Force limit thresholds can be made adjustable to provide variable compliance to the serpentine robotic crawler. For example, high thresholds to provide a stiff posture may prove useful in pushing through certain types of obstructions. Alternately, low thresholds may prove useful in bending around other types of obstructions.

As another example, the control system can be implemented using a processing system. Various movement primitives can be preprogrammed, including for example primitives to assume certain poses (e.g., tank, zag, arched, train, or climbing configurations), and primitives for movement (e.g., forward, backwards). Control can include feedback from joint force sensors and environmental sensors. Hybrid human and automated control can be combined. For example, high-level manual commands/primitives can be implemented using automated low-level feedback loops that execute the commands/primitives. Control function can be divided into subsystems, including for example, pose control, compliance control, movement control, force control, and hybrid combinations thereof.

An alternate configuration of a serpentine robotic crawler is illustrated in FIG. 14 in accordance with an embodiment of the present invention. The serpentine robotic crawler 100 includes a plurality of frame units 102, each having a continuous track rotatably supported therein. For example, the continuous track can have one or more exposed surfaces, as discussed above. At least one actuated multi-degree of freedom linkage arm 104 is coupled between the frame units. For example, with N frame units, N 1 linkage arms are used to intercouple the frames into a multi-frame train. The actuated multi-degree of freedom linkage arm includes at least seven joint axes, for example as described above. Optionally, the actuated multi-degree of freedom linkage arm can be removably connected between the frame units, to allow the multi-frame train to be reconfigured, for example into a number of individual frames, pairs of frames, or shorter multi-frame trains.

A serpentine robotic crawler can also include various sensors or tools positioned on the actuated multi-degree of freedom linkage arm and or the frame. For example, as illustrated in FIG. 15, a serpentine robotic crawler 110 can have cameras 116 disposed on one 112 of the frames. As another example, cameras can be disposed on both the leading and the trailing frame. For example, a front camera can be used primarily for scanning the environment, and a rear camera can be used for observing the pose of the serpentine robotic crawler for control purposes. Other sensors, including for example, radar, lidar, infrared detectors, temperature sensors, chemical sensors, force sensors, motion detectors, microphones, antennas, and the like can be disposed on the serpentine robotic crawler. As another example, tools, including for example, light sources, clamps, grippers, manipulators, cutters, drills, material samplers, and the like can also be disposed on the serpentine robotic crawler. As another example, the serpentine robotic crawler can include articulated arms disposed on the frame. Commonly owned and co-pending U.S. Provisional Patent Application No. 60/858,915, entitled “Tracked Robotic Vehicle with Articulated Arms,” filed Nov. 13, 2006, describes a serpentine robotic crawler having articulated arms, and is herein incorporated by reference.

Summarizing and reiterating to some extent, serpentine robotic crawlers in accordance with embodiments of the present invention can be deployed in a variety of applications and environments. For example, and not by way of limitation, applications can include search and rescue, military operations, and industrial operations. The serpentine robotic crawler can help to avoid the need to expose humans to hazardous environments, such as unstable buildings, military conflict situations, and chemically, biologically, or nuclear contaminated environments. The configurational flexibility of the serpentine robotic crawler provides multiple movement modes. For example, movement in a tank-like configuration can provide high stability. Movement in a snake-like configuration can provide access through narrow passages or pipes. Climbing the outside of structures, e.g., a pole, and climbing the inside of structures, e.g., inside a pipe, are also possible.

The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.

More specifically, while illustrative exemplary embodiments of the invention have been described herein, the present invention is not limited to these embodiments, but includes any and all embodiments having modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the foregoing detailed description. The limitations in the claims are to be interpreted broadly based the language employed in the claims and not limited to examples described in the foregoing detailed description or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.

Claims

1. A serpentine robotic crawler comprising:

a first frame having a first continuous track rotatably supported by the first frame;
a second frame having a second continuous track rotatably supported by the second frame; and
a linkage arm coupling the first and second frames together in tandem and being actuated about at least one lateral axis and at least two longitudinal axes, which longitudinal axes are oriented by the actuated bending movement of the linkage arm about the at least one lateral axis.

2. The robotic crawler of claim 1, wherein the linkage arm comprises:

a first actuated rotary joint operable with the first frame to provide a first longitudinal axis;
a second actuated rotary joint operable with the second frame to provide a second longitudinal axis;
an actuated bending joint operable between each of the first and second rotary joints to provide controlled bending about the lateral axis.

3. The robotic crawler of claim 2, wherein the linkage arm further comprises at least one additional actuated bending joint operable with each of the first and second frames, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.

4. The robotic crawler of claim 2, wherein the linkage arm further comprises an additional pair of actuated bending joints positioned between the first and second actuated rotary joints and each of the first and second frames, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.

5. The robotic crawler of claim 4, wherein the lateral axes of each additional pair of actuated bending joints are at substantially right angles to each other.

6. The robotic crawler of claim 2, wherein each of the first and second frames further comprises a drive coupled to the continuous track.

7. The robotic crawler of claim 6, further comprising a control subsystem in communication with each drive and with each rotary and bending joint in the linkage arm and configured to selectively actuate each drive, rotary joint and bending joint to control the pose of robotic crawler.

8. A serpentine robotic crawler comprising:

at least two frame units each having a continuous track rotatably supported thereon; and
at least one multi-degree of freedom actuated linkage arm coupled between the frame units, the linkage arm comprising: at least three actuated bending joints, each providing bending about a lateral axis; and at least two actuated rotary joints, each providing rotation about a longitudinal axis, wherein the linkage arm comprises a series-coupled combination of at least five actuated joints.

9. The robotic crawler of claim 8, wherein the linkage arm further comprises at least one additional actuated bending joint operable with each of the frame units, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.

10. A serpentine robotic crawler comprising:

a first frame having a first continuous track rotatably supported by the first frame;
a first actuated linkage coupled to the first frame wherein the first actuated linkage provides rotational movement about a longitudinal axis;
an elbow-like actuated joint coupled to the first actuated linkage wherein the elbow-like actuated joint provides bending movement about a lateral axis;
a second actuated linkage coupled to the elbow-like actuated joint wherein the second actuated linkage provides rotational movement about a longitudinal axis; and
a second frame coupled to the second actuated linkage and having a second continuous track rotatably supported by the second frame.

11. The robotic crawler of claim 10, further comprising at least one additional elbow-like actuated joint coupled between each of the first and second actuated linkages and the first and second frames, wherein each additional elbow-like joint provides bending movement about an additional lateral axis.

12. A method of operating a serpentine robotic crawler comprising:

obtaining a first frame and a second frame, each frame having a drivable continuous track, the first and second frames being coupled together with an actuated multi-degree of freedom linkage arm having a series-coupled combination of actuated joints, the linkage arm comprising: at least two actuated rotary joints, each providing rotation of one of the first and second frames about a longitudinal axis; and at least one actuated bending joint that provides bending about a lateral axis; and
articulating the actuated multi-degree of freedom linkage to establish a desired pose for the serpentine robotic crawler, wherein the longitudinal axes are oriented by the actuated manipulation of the linkage arm about the lateral axis.

13. The method of claim 12, further providing at least one additional actuated bending joint operable with each of the first and second frames, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.

14. A method of operating a serpentine robotic crawler comprising:

providing a first frame and a second frame, each frame having a drivable continuous track;
coupling the first frame to the second frame with an actuated multi-degree of freedom linkage arm that actuates about at least one lateral axis and at least two longitudinal axes, wherein the actuated multi-degree of freedom linkage arm comprises a series-coupled combination of at least seven actuated joints to form the serpentine robotic crawler; and
articulating the actuated multi-degree of freedom linkage arm to establish a desired pose for the serpentine robotic crawler.

15. The method of claim 14 further comprising coordinating drive operation of the drivable continuous tracks with articulation of the actuated multi-degree of freedom linkage arm to further control the pose of the serpentine robotic crawler.

16. The method of claim 15 further comprising positioning the first frame and the second frame in a tank-like configuration where the first frame and the second frame are side-by-side and extend in a same direction relative to the actuated multi-degree of freedom linkage arm.

17. The method of claim 15 further comprising positioning the first frame and the second frame in a train-like configuration where the first frame and the second frame are aligned end to end.

18. The method of claim 15 further comprising positioning the first frame and the second frame in a outside-climbing configuration where the first frame and the second frame are oriented with exposed portions of the continuous tracks facing toward each other and in contact with opposite outer surfaces of a structure to be climbed.

19. The method of claim 15 further comprising positioning the first frame and the second frame in an inside-climbing configuration where the first frame and the second frame are oriented with exposed portions of the continuous tracks facing away from each other and in contact with opposite inner surfaces of a structure to be climbed.

20. The method of claim 15 further comprising positioning the first frame and the second frame in a zag configuration where the first frame and the second frame are side-by-side and extend in opposite directions relative to the actuated multi-degree of freedom linkage arm.

Referenced Cited
U.S. Patent Documents
1107874 August 1914 Appleby
1112460 October 1914 Leavitt
1515756 November 1924 Roy
1975726 October 1934 Martinage
2025999 December 1935 Myers
2082920 June 1937 Aulmont
2129557 September 1938 Beach
2311475 February 1943 Schmeiser
2312072 February 1943 Broadwater
2329582 September 1943 Bishop
2345763 April 1944 Mayne
2701169 February 1955 Cannon
2850147 September 1958 Hill
2933143 April 1960 Robinson
2967737 January 1961 Moore
3037571 June 1962 Zelle
3060972 October 1962 Sheldon
3166138 January 1965 Dunn, Jr.
3190286 June 1965 Stokes
3215219 November 1965 Forsyth et al.
3223462 December 1965 Dalrymple
3266059 August 1966 Stelle
3284964 November 1966 Saito
3311424 March 1967 Taylor
3362492 January 1968 Hansen
3387896 June 1968 Sobota
3489236 January 1970 Goodwin
3497083 February 1970 Anderson
3565198 February 1971 Ames
3572325 March 1971 Bazell
3609804 October 1971 Morrison
3650343 March 1972 Helsell
3700115 October 1972 Johnson
3707218 December 1972 Payne
3712481 January 1973 Harwood
3715146 February 1973 Robertson
3757635 September 1973 Hickerson
3808078 April 1974 Snellman
3820616 June 1974 Juergens
3841424 October 1974 Purcell
3864983 February 1975 Jacobsen
3933214 January 20, 1976 Guibord
3934664 January 27, 1976 Pohjola
3974907 August 17, 1976 Shaw
4051914 October 4, 1977 Pohjola
4059315 November 22, 1977 Jolliffe
4068905 January 17, 1978 Black
4107948 August 22, 1978 Maolaug
4109971 August 29, 1978 Black
4132279 January 2, 1979 Van der Lende
4218101 August 19, 1980 Thompson
4260053 April 7, 1981 Onodera
4332317 June 1, 1982 Bahre
4332424 June 1, 1982 Thompson
4339031 July 13, 1982 Densmore
4393728 July 19, 1983 Larson
4396233 August 2, 1983 Slaght
4453611 June 12, 1984 Stacy, Jr.
4483407 November 20, 1984 Iwamoto et al.
4489826 December 25, 1984 Dubson
4494417 January 22, 1985 Larson
4551061 November 5, 1985 Olenick
4589460 May 20, 1986 Albee
4621965 November 11, 1986 Wilcock
4636137 January 13, 1987 Lemelson
4646906 March 3, 1987 Wilcox, Jr.
4661039 April 28, 1987 Brenhold
4700693 October 20, 1987 Lia
4706506 November 17, 1987 Lestelle
4712969 December 15, 1987 Kimura
4714125 December 22, 1987 Stacy, Jr.
4727949 March 1, 1988 Rea
4736826 April 12, 1988 White et al.
4752105 June 21, 1988 Barnard
4756662 July 12, 1988 Tanie
4765795 August 23, 1988 Rebman
4784042 November 15, 1988 Paynter
4796607 January 10, 1989 Allred, III
4806066 February 21, 1989 Rhodes
4815319 March 28, 1989 Clement
4815911 March 28, 1989 Bengtsson
4818175 April 4, 1989 Kimura
4828339 May 9, 1989 Thomas
4848179 July 18, 1989 Ubhayakar
4862808 September 5, 1989 Hedgcoxe
4878451 November 7, 1989 Siren
4900218 February 13, 1990 Sutherland
4909341 March 20, 1990 Rippingale et al.
4924153 May 8, 1990 Toru et al.
4932491 June 12, 1990 Collins, Jr.
4932831 June 12, 1990 White et al.
4936639 June 26, 1990 Pohjola
4997790 March 5, 1991 Woo
5018591 May 28, 1991 Price
5021798 June 4, 1991 Ubhayakar
5022812 June 11, 1991 Coughlan
5046914 September 10, 1991 Holland et al.
5080000 January 14, 1992 Bubic
5130631 July 14, 1992 Gordon
5142932 September 1, 1992 Moya
5174168 December 29, 1992 Takagi
5174405 December 29, 1992 Carra
5186526 February 16, 1993 Pennington
5199771 April 6, 1993 James
5205612 April 27, 1993 Sugden et al.
5214858 June 1, 1993 Pepper
5219264 June 15, 1993 McClure et al.
5252870 October 12, 1993 Jacobsen
5297443 March 29, 1994 Wentz
5317952 June 7, 1994 Immega
5337732 August 16, 1994 Grundfest
5350033 September 27, 1994 Kraft
5354124 October 11, 1994 James
5363935 November 15, 1994 Schempf et al.
5386741 February 7, 1995 Rennex
5413454 May 9, 1995 Movsesian
5426336 June 20, 1995 Jacobsen
5428713 June 27, 1995 Matsumaru
5435405 July 25, 1995 Schempf et al.
5440916 August 15, 1995 Stone et al.
5443354 August 22, 1995 Stone et al.
5451135 September 19, 1995 Schempf
5465525 November 14, 1995 Mifune
5466056 November 14, 1995 James
5469756 November 28, 1995 Feiten
5516249 May 14, 1996 Brimhall
5551545 September 3, 1996 Gelfman
5556370 September 17, 1996 Maynard
5562843 October 8, 1996 Yasumoto
5567110 October 22, 1996 Sutherland
5570992 November 5, 1996 Lemelson
5573316 November 12, 1996 Wankowski
5588688 December 31, 1996 Jacobsen
5672044 September 30, 1997 Lemelson
5697285 December 16, 1997 Nappi
5712961 January 27, 1998 Matsuo
5749828 May 12, 1998 Solomon
5770913 June 23, 1998 Mizzi
5816769 October 6, 1998 bauer
5821666 October 13, 1998 Matsumoto
5842381 December 1, 1998 Feiten
RE36025 January 5, 1999 Suzuki
5878783 March 9, 1999 Smart
5888235 March 30, 1999 Jacobsen
5902254 May 11, 1999 Magram
5906591 May 25, 1999 Dario
5984032 November 16, 1999 Gremillion
5996346 December 7, 1999 Maynard
6016385 January 18, 2000 Yee
6030057 February 29, 2000 Fikse
6056237 May 2, 2000 Woodland
6107795 August 22, 2000 Smart
6109705 August 29, 2000 Courtemanche
6113343 September 5, 2000 Goldenberg et al.
6132133 October 17, 2000 Muro et al.
6138604 October 31, 2000 Anderson
6162171 December 19, 2000 Ng
6186604 February 13, 2001 Fikse
6203126 March 20, 2001 Harguth
6260501 July 17, 2001 Agnew
6263989 July 24, 2001 Won
6264293 July 24, 2001 Musselman
6264294 July 24, 2001 Musselman et al.
6281489 August 28, 2001 Tubel et al.
7843431 November 30, 2010 Robbins et al.
6325749 December 4, 2001 Inokuchi et al.
6333631 December 25, 2001 Das et al.
6339993 January 22, 2002 Comello
6380889 April 30, 2002 Herrmann et al.
6394204 May 28, 2002 Haringer
6405798 June 18, 2002 Barrett et al.
6408224 June 18, 2002 Okamoto
6411055 June 25, 2002 Fujita
6422509 July 23, 2002 Yim
6430475 August 6, 2002 Okamoto
6431296 August 13, 2002 Won
6446718 September 10, 2002 Barrett et al.
6450104 September 17, 2002 Grant et al.
6484083 November 19, 2002 Hayward
6488306 December 3, 2002 Shirey et al.
6505896 January 14, 2003 Boivin
6512345 January 28, 2003 Borenstein
6523629 February 25, 2003 Buttz et al.
6529806 March 4, 2003 Licht
6540310 April 1, 2003 Cartwright
6557954 May 6, 2003 Hattori
6563084 May 13, 2003 Bandy
6574958 June 10, 2003 MacGregor
6576406 June 10, 2003 Jacobsen et al.
6595812 July 22, 2003 Haney
6610007 August 26, 2003 Tartaglia et al.
6619146 September 16, 2003 Kerrebrock
6651804 November 25, 2003 Thomas
6652164 November 25, 2003 Stiepel et al.
6668951 December 30, 2003 Won
6708068 March 16, 2004 Sakaue
6715575 April 6, 2004 Karpik
6772673 August 10, 2004 Seto
6773327 August 10, 2004 Felice
6774597 August 10, 2004 Borenstein
6799815 October 5, 2004 Krishnan
6820653 November 23, 2004 Schempf et al.
6831436 December 14, 2004 Gonzalez
6835173 December 28, 2004 Couvillon, Jr.
6837318 January 4, 2005 Craig
6840588 January 11, 2005 Deland
6866671 March 15, 2005 Tierney
6870343 March 22, 2005 Borenstein et al.
6917176 July 12, 2005 Schempf et al.
6923693 August 2, 2005 Borgen
6936003 August 30, 2005 Iddan
6959231 October 25, 2005 Maeda
7020701 March 28, 2006 Gelvin et al.
7040426 May 9, 2006 Berg
7044245 May 16, 2006 Anhalt et al.
7069124 June 27, 2006 Whittaker et al.
7090637 August 15, 2006 Danitz
7137465 November 21, 2006 Kerrebrock
7144057 December 5, 2006 Young et al.
7171279 January 30, 2007 Buckingham et al.
7188473 March 13, 2007 Asada
7188568 March 13, 2007 Stout
7228203 June 5, 2007 Koselka et al.
7235046 June 26, 2007 Anhalt et al.
7331436 February 19, 2008 Pack et al.
7387179 June 17, 2008 Anhalt et al.
7415321 August 19, 2008 Okazaki et al.
7546912 June 16, 2009 Pack et al.
7600592 October 13, 2009 Goldenberg et al.
7645110 January 12, 2010 Ogawa et al.
7654348 February 2, 2010 Ohm et al.
7775312 August 17, 2010 Maggio
7860614 December 28, 2010 Reger
20010037163 November 1, 2001 Allard
20020128714 September 12, 2002 Manasas et al.
20020140392 October 3, 2002 Borenstein
20030000747 January 2, 2003 Sugiyama
20030069474 April 10, 2003 Couvillon, Jr.
20030097080 May 22, 2003 Esashi
20030110938 June 19, 2003 Seto
20030223844 December 4, 2003 Schiele
20040030571 February 12, 2004 Solomon
20040099175 May 27, 2004 Perrot et al.
20040103740 June 3, 2004 Townsend
20040168837 September 2, 2004 Michaud
20040216931 November 4, 2004 Won
20040216932 November 4, 2004 Giovanetti
20050007055 January 13, 2005 Borenstein et al.
20050027412 February 3, 2005 Hobson
20050085693 April 21, 2005 Belson et al.
20050107669 May 19, 2005 Couvillon, Jr.
20050166413 August 4, 2005 Crampton
20050168068 August 4, 2005 Courtemanche et al.
20050168070 August 4, 2005 Dandurand
20050225162 October 13, 2005 Gibbins
20050235898 October 27, 2005 Hobson
20050235899 October 27, 2005 Yamamoto
20050288819 December 29, 2005 de Guzman
20060000137 January 5, 2006 Valdivia y Alvarado
20060005733 January 12, 2006 Rastegar et al.
20060010702 January 19, 2006 Roth
20060070775 April 6, 2006 Anhalt
20060156851 July 20, 2006 Jacobsen
20060225928 October 12, 2006 Nelson
20060229773 October 12, 2006 Peretz
20070029117 February 8, 2007 Goldenberg et al.
20070156286 July 5, 2007 Yamauchi
20070193790 August 23, 2007 Goldenberg et al.
20070260378 November 8, 2007 Clodfelter
20080115687 May 22, 2008 Gal et al.
20080136254 June 12, 2008 Jacobsen
20080164079 July 10, 2008 Jacobsen
20080167752 July 10, 2008 Jacobsen
20080168070 July 10, 2008 Naphade
20080215185 September 4, 2008 Jacobsen
20080217993 September 11, 2008 Jacobsen
20080272647 November 6, 2008 Hirose et al.
20080281231 November 13, 2008 Jacobsen et al.
20080281468 November 13, 2008 Jacobsen et al.
20080284244 November 20, 2008 Hirose et al.
20090025988 January 29, 2009 Jacobsen et al.
20090030562 January 29, 2009 Jacobsen et al.
20090035097 February 5, 2009 Loane
20090171151 July 2, 2009 Choset et al.
20100030377 February 4, 2010 Unsworth
20100174422 July 8, 2010 Jacobsen et al.
20100201185 August 12, 2010 Jacobsen et al.
20100201187 August 12, 2010 Jacobsen
20100317244 December 16, 2010 Jacobsen et al.
20100318242 December 16, 2010 Jacobsen et al.
Foreign Patent Documents
2512299 September 2004 CA
1603068 April 2005 CN
2774717 April 2006 CN
1970373 May 2007 CN
3025840 February 1982 DE
3626238 February 1988 DE
19617852 October 1997 DE
19714464 October 1997 DE
19704080 August 1998 DE
10018075 January 2001 DE
102004010089 September 2005 DE
0105418 April 1984 EP
0818283 January 1998 EP
0924034 June 1999 EP
1444043 August 2004 EP
1510896 March 2005 EP
1832501 September 2007 EP
1832502 September 2007 EP
2638813 May 1990 FR
2850350 July 2004 FR
1199729 July 1970 GB
52 57625 May 1977 JP
58-89480 May 1983 JP
60015275 January 1985 JP
60047771 March 1985 JP
60060516 April 1985 JP
60139576 July 1985 JP
61001581 January 1986 JP
61089182 May 1986 JP
63306988 December 1988 JP
04092784 March 1992 JP
05147560 June 1993 JP
06-115465 April 1994 JP
03535508 June 2004 JP
2005111595 April 2005 JP
WO 97/26039 July 1997 WO
WO 00/10073 February 2000 WO
WO 02/16995 February 2002 WO
WO 03/30727 April 2003 WO
WO 0337515 May 2003 WO
WO 2005/018428 March 2005 WO
WO 2006068080 June 2006 WO
WO 2008/049050 April 2008 WO
WO 2008/076194 June 2008 WO
WO 2008/135978 November 2008 WO
WO 2009/009673 January 2009 WO
Other references
  • U.S. Appl. No. 12/171,144; filed Jul. 10, 2008; Stephen C. Jacobsen; office action mailed Jan. 13, 2011.
  • U.S. Appl. No. 12/694,996; filed Jan. 27, 2010; Stephen C. Jacobsen; office action mailed Jan. 26, 2011.
  • PCT Application PCT/US2010/038339; filed Jun. 11, 2010; Stephen C. Jacobsen; ISR mailed Feb. 9, 2011.
  • U.S. Appl. No. 12/694,996, filed Jan. 27, 2010; Stephen C. Jacobsen; Office Action Issue Sep. 30, 2010.
  • U.S. Appl. No. 12/151,730, filed May 7, 2008; Stephen C. Jacobsen; Office Action Issued Nov. 15, 2010.
  • U.S. Appl. No. 12/171,144, filed Jul. 10, 2008; Stephen C. Jacobsen; Office Action Issued Aug. 11, 2010.
  • U.S. Appl. No. 11/985,324, filed Nov. 13, 2007; Stephen C. Jacobsen; Office Action Issued Nov. 1, 2010.
  • PCT/US10/38331; filed Jun. 11, 2009; Stephen C. Jacobsen; ISR Issued Dec. 1, 2010.
  • U.S. Appl. No. 12/820,881; filed Jun. 22, 2010; Stephen C. Jacobsen; office action issued Nov. 30, 2010.
  • Arnold, Henry, “Cricket the robot documentation.” online manual available at http://www.parallaxinc.com, 22 pages.
  • Iagnemma, Karl et al., “Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers.” International Journal of Robotics Research, Oct.-Nov. 2004, pp. 1029-1040, vol. 23, No. 10-11.
  • Hirose, et al., “Snakes and strings; new robotic components for rescue operations,” International Journal of Robotics Research, Apr.-May 2004, pp. 341-349, vol. 23, No. 4-5.
  • Paap et al., “A robot snake to inspect broken buildings,” IEEE, 2000, pp. 2079-2082, Japan.
  • Braure, Jerome, “Participation to the construction of a salamander robot: exploration of the morphological configuration and the locomotion controller”, Biologically Inspired Robotics Group, master thesis, 02/17/04, pp. 1-46.
  • Jacobsen, et al., Advanced intelligent mechanical sensors (AIMS), Proc. IEEE Trandsucers 1991, Jun. 24-27, abstract only, San Fransico, CA.
  • Jacobsen, et al., “Research robots for applications in artificial intelligence, teleoperation and entertainment”, International Journal of Robotics Research, 2004, pp. 319-330, vol. 23.
  • Jacobsen, et al., “Multiregime MEMS sensor netwoorks for smart structures,” Procs. SPIE 6th Annual Inter. Conf. on Smart Structues and Materials, Mar. 1-5, 1999, pp. 19-32, vol. 3673, Newport Beach CA.
  • MaClean et al., “A digital MEMS-based strain gage for structural health monitoring,” Procs, 1997 MRS Fall Meeting Symposium, Nov. 30-Dec. 4, 1997, pp. 309-320, Boston Massachusetts.
  • Berlin et al., “MEMS-based control of structural dynamic instability”, Journal of Intelligent Material Systems and Structures, Jul. 1998 pp. 574-586, vol. 9.
  • Goldfarb, “Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots,” IEEE Transactions On Mechatronics, Jun. 2003, vol. 8 No. 2.
  • Dowling, “Limbless Locomotion: Learning to crawl with a snake robot,” The Robotics Institute at Carnegie Mellon University, Dec. 1997, pp. 1-150.
  • Matthew Heverly & Jaret Matthews: “A wheel-on-limb rover for lunar operation” Internet article, Nov. 5, 2008, pp. 1-8, http://robotics.estec.esa.int/i-SAIRAS/isairas2008/Proceedings/SESSION%2026/m116-Heverly.pdf.
  • NASA: “Nasa's newest concept vehicles take off-roading out of this world” Internet article, Nov. 5, 2008, http://www.nasa.gov/missionpages/constellation/main/lunartruck.html.
  • Revue Internationale De defense, “3-D vision and urchin” Oct. 1, 1988, p. 1292, vol. 21, No. 10, Geneve CH.
  • Advertisement, International Defense review, Jane's information group, Nov. 1, 1990, p. 54, vol. 23, No. 11, Great Britain.
  • Ren Luo “Development of a multibehavior-based mobile robot for remote supervisory control through the internet” IEEE/ ASME Transactions on mechatronics, IEEE Service Center, Piscataway NY, Dec. 1, 2000, vol. 5, No. 4.
  • Nilas Sueset et al., “A PDA-based high level human-robot interaction” Robotics, Automation and Mechatronics, IEEE Conference Singapore, Dec. 1-3, 2004, vol. 2, pp. 1158-1163.
  • U.S. Appl. No. 12/765,618; filed Apr. 22, 2010; Stephen C. Jacobsen; office action issued Apr. 06, 2011.
  • U.S. Appl. No. 11/985,320; filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Apr. 12, 2011.
  • U.S. Appl. No. 11/985,324; filed Nov. 13, 2007; Stephen C. Jacobsen; notice of allowance issued Apr. 18, 2011.
  • U.S. Appl. No. 12/151,730; filed May 07, 2008; Stephen C. Jacobsen; notice of allowance issued Apr. 15, 2011.
  • U.S. Appl. No. 11/985,336; filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Jun. 14, 2011.
  • U.S. Appl. No. 11/985,320; filed Nov. 13, 2007; Stephen C. Jacobsen; office action issued Aug. 17, 2011.
Patent History
Patent number: 8042630
Type: Grant
Filed: Jun 22, 2010
Date of Patent: Oct 25, 2011
Patent Publication Number: 20100258365
Assignee: Raytheon Company (Waltham, MA)
Inventor: Stephen C. Jacobsen (Salt Lake City, UT)
Primary Examiner: Anne Marie Boehler
Assistant Examiner: Michael Stabley
Attorney: Thorpe North & Western LLP
Application Number: 12/820,881