Micro-transfer-printed light-emitting diode device

- X-Celeprint Limited

A compound light-emitting diode (LED) device includes a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate. Two or more electrically conductive circuit connection pads are formed in or on the semiconductor substrate and are electrically connected to the active electronic circuit. One or more micro-transfer printed LEDs each have at least two LED electrodes or connection pads and a fractured LED tether. An adhesive layer is disposed between the semiconductor substrate and each LED to adhere the semiconductor substrate to the LED. Two or more electrical conductors electrically connect one of the electrodes or LED connection pads to one of the circuit connection pads.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
PRIORITY APPLICATION

This application claims priority to and benefit of U.S. Patent Application No. 62/344,148, filed Jun. 1, 2016, entitled Micro-Transfer-Printed Light-Emitting Diode Device, the content of which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to integrated heterogeneous structures, and more particularly to light-emitting diode micro-devices, including displays.

BACKGROUND OF THE INVENTION

Micro-displays are small displays, typically having a display diameter of only a few centimeters intended for viewing by only one person at a time. Often, micro-displays are found in head-mounted virtual reality or augmented reality systems and include a separate micro-display mounted in front of each of a viewer's eyes. Typical micro-display systems include projected or direct-view displays based on liquid crystal or organic light-emitting diode devices.

Micro-displays are typically near-to-eye displays that have very high resolution, for example 2500 dpi or a pitch of approximately 10 microns. Most flat-panel displays have much lower resolution, for example less than 300 dpi and rely on thin-film transistors formed on a flat-panel substrate to operate the liquid crystals or organic light-emitting diodes. However, an organic light-emitting diode display using a micro-transfer printed active-matrix controller chips for each pixel was described in AMOLED displays with transfer-printed integrated circuits published in the Journal of the SID 1071-90922/11/1904-0335 in 2011. Inorganic light-emitting diode displays are also known. U.S. Patent Application Publication No. 2015/0327388 para. [0110] describes micro-transfer printed active components forming pixels in a display that include a controller controlling light-emitting diodes. However, the controller chips can have a size as large as or larger than the high-resolution pixels in a micro-display, making it difficult to maintain a very high resolution.

For some applications, particularly augmented reality applications in outdoor conditions, bright displays are necessary to provide adequate contrast for a user to view projected information. However, LCD devices and OLED devices can have inadequate brightness. Although increased power provided to such devices can increase brightness, increased power can reduce display and battery lifetime. There is a need, therefore, for a micro-display system with improved brightness, display lifetime, and battery life.

SUMMARY OF THE INVENTION

In embodiments of the present invention, a compound light-emitting diode (LED) device includes a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate. Two or more electrically conductive circuit connection pads are formed in or on the semiconductor substrate and electrically connect to the active electronic circuit. One or more LEDs have at least two LED electrodes or connection pads and a fractured LED tether. An adhesive layer is disposed between the semiconductor substrate and each LED. Each LED is micro-transfer printed on the adhesive layer and the adhesive layer adheres the semiconductor substrate to the LED. Two or more electrical conductors each electrically connect one of the electrodes or LED connection pads to one of the circuit connection pads. The active electronic circuit can be located at least partially between the LED and the semiconductor substrate and can be an active-matrix control circuit for the LEDs.

The one or more LEDs can be horizontal or vertical, top emitting or bottom emitting with the connection pads on the same side or on opposite sides. The electrodes can be transparent. The LEDs can be different and therefore emit different colors in a display color pixel.

A method of making a compound light-emitting diode (LED) device comprises providing a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate and two or more electrically conductive circuit connection pads formed on the semiconductor substrate, the active electronic circuit electrically connected to the two or more circuit connection pads, providing one or more LEDs, each LED having at least two LED connection pads and a fractured LED tether, disposing an adhesive layer between the semiconductor substrate and each LED, disposing each LED on the adhesive layer and the adhesive layer adheres the semiconductor substrate to the LED, and forming two or more electrical conductors, each electrical conductor electrically connecting one of the LED connection pads to one of the circuit connection pads. The one or more LEDs can be micro-transfer printed from a source wafer to the semiconductor substrate.

Embodiments of the present invention provide improved brightness, resolution, device lifetime, and battery lifetime in a micro-display. By integrating active control electronic circuits in the semiconductor substrate rather than in a separate controller chip, LEDs can be disposed on or over the active electronic circuits, reducing the area needed for micro-transfer printed devices in the display and increasing the display resolution.

In one aspect, the disclosed technology includes a compound light-emitting diode (LED) device, including: a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate; two or more electrically conductive circuit connection pads formed in or on the semiconductor substrate, the active electronic circuit electrically connected to the two or more circuit connection pads; one or more LEDs, each LED having at least two LED electrodes or connection pads and a fractured LED tether; an adhesive layer disposed between the semiconductor substrate and each LED, wherein each LED is micro-transfer printed on the adhesive layer and the adhesive layer adheres the semiconductor substrate to the LED; and two or more electrical conductors, each electrical conductor electrically connecting one of the electrodes or LED connection pads to one of the circuit connection pads.

In certain embodiments, the active electronic circuit is located at least partially between the LED and the semiconductor substrate.

In certain embodiments, the LED has an opposite side opposite the semiconductor substrate and at least two of the LED connection pads are located on the opposite side.

In certain embodiments, the LED has an adjacent side adjacent to the semiconductor substrate and at least two of the LED connection pads are located on the adjacent side.

In certain embodiments, the LED has an opposite side opposite the semiconductor substrate and an adjacent side adjacent to the semiconductor substrate and at least one of the LED connection pads is located on the adjacent side and at least one of the LED connection pads is located on the opposite side.

In certain embodiments, the active electronic circuit is a control circuit that controls the one or more LEDs.

In certain embodiments, the compound LED device includes three LEDs, each LED having a different material, crystalline structure, or color of light emission.

In certain embodiments, the compound LED device includes a plurality of groups of three different LEDs, the groups arranged in an array over the semiconductor substrate.

In certain embodiments, the active electronic circuit is an active-matrix circuit.

In certain embodiments, the semiconductor substrate is a silicon substrate and each LED includes a compound semiconductor.

In certain embodiments, the compound LED device includes two or more connection posts, each connection post electrically connected to a circuit connection pad or an LED connection pad.

In certain embodiments, the semiconductor substrate is a display substrate and the one or more LEDs form a display.

In certain embodiments, the display is a color display.

In certain embodiments, each LED is directly or indirectly adhered to the semiconductor substrate with an adhesive layer.

In certain embodiments, the adhesive is a cured adhesive.

In certain embodiments, the semiconductor substrate has a process side, the electronic circuit is formed on or in the process side, and the LED is micro-transfer printed on the process side.

In certain embodiments, the semiconductor substrate or one or more LEDs has at least one of a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm, a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm, and a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm.

In certain embodiments, the compound LED device includes a reflective structure around each LED that reflects light emitted by the LED out of the compound LED device.

In another aspect, the disclosed technology includes a method of making a compound light-emitting diode (LED) device, including: providing a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate and two or more electrically conductive circuit connection pads formed on the semiconductor substrate, the active electronic circuit electrically connected to the two or more circuit connection pads; providing one or more LEDs, each LED having at least two LED connection pads and a fractured LED tether; disposing an adhesive layer between the semiconductor substrate and each LED; disposing each LED on the adhesive layer and the adhesive layer adheres the semiconductor substrate to the LED; and forming two or more electrical conductors, each electrical conductor electrically connecting one of the LED connection pads to one of the circuit connection pads.

In certain embodiments, the method includes micro-transfer printing the one or more LEDs from a source wafer to the semiconductor substrate.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:

FIG. 1A is a schematic plan view of an illustrative embodiment of the present invention;

FIG. 1B is a cross section of an illustrative embodiment of the present invention taken across the cross section line A of FIG. 1A;

FIG. 2 is a perspective of an illustrative embodiment of the present invention;

FIGS. 3 and 4 are cross sections of alternative illustrative embodiments of the present invention;

FIG. 5 is a cross section of another illustrative embodiment of the present invention;

FIG. 6 is a flow diagram illustrating an exemplary method of the present invention;

FIG. 7 is a cross section of an illustrative embodiment of the present invention; and

FIGS. 8A and 8B are micrographs of an array of micro-LEDs formed in a micro-display.

The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not drawn to scale at least because the variation in size of various elements in the Figures is too great to permit depiction to scale.

DETAILED DESCRIPTION OF THE INVENTION

Referring to the schematic plan view of FIG. 1A, the schematic cross section of FIG. 1B taken across cross section line A of FIG. 1A, and the perspective of FIG. 2, in an embodiment of the present invention, a compound LED device 10 includes a semiconductor substrate 20. The semiconductor substrate 20 can be a silicon substrate. The semiconductor substrate 20 includes an active electronic circuit 22, for example a CMOS transistor circuit, formed in or on the semiconductor substrate 20, for example, using photolithographic methods and materials found in the integrated circuit industry. The active electronic circuit 22 can be, for example, an active-matrix circuit for driving one or more LEDs 60 in a display. The semiconductor substrate 20 or active electronic circuit 22 includes two or more electrically conductive circuit connection pads 24, formed in or on the semiconductor substrate 20, for providing control, power, or ground signals to the active electronic circuit 22 or receiving such signals from the active electronic circuit 22.

One or more LEDs 60 each have at least two LED connection pads 34 and a fractured LED tether 94 (as shown in FIG. 2). The LED 60 can include LED semiconductor material 30, such as a compound semiconductor material that emits light when electrically stimulated. A compound semiconductor material can have a layered structure, such as a single-quantum-well or multi-quantum-well structure. Two or more electrodes 32 are in electrical contact with the LED 60 through the LED connection pads 34 and insulated from the LED 60 elsewhere by the dielectric structure 52 (as shown in FIG. 1B). The LED 60 is micro-transfer printed on, over, or in an adhesive layer 50 between the semiconductor substrate 20 and the LED 60. Thus, the active electronic circuit 22 can be located at least partially between the LED 60 and the semiconductor substrate 20.

LED connection pads 34 are in electrical contact with the electrodes 32 and are electrically connected with electrical conductors 40, such as wires, to the circuit connection pads 24. The LED connection pads 34 can be the electrodes 32, a portion of the electrodes 32, or a separate electrically conductive structure or patterned layer. The electrodes 32 can be, or can be a part of, the electrical conductors 40. The LED connection pads 34, the electrodes 32, and the electrical conductors 40 can be a common electrically conductive element formed in a common step or in a common process. The LED connection pads 34 need not be a distinct element from the electrical conductors 40 or electrodes 32. Alternatively, the LED connection pads 34, the electrodes 32, or the electrical conductors 40 can be made in separate steps of different materials. Connection pads are also known as contact pads for making electrical contact with a conductor to form an electrical connection.

The adhesive layer 50 can be a layer formed on the semiconductor substrate 20 or on the LED 60, or a layer disposed between the semiconductor substrate 20 and the LED 60. The adhesive layer 50 can be patterned and need not be uniformly present over the semiconductor substrate 20. For example, the adhesive layer 50 can be present only in locations where the LEDs 60 are intended and can cover only a portion of the LED area. The adhesive layer 50 can be coated, provided as a laminate, or deposited (e.g., inkjet deposited) either on the semiconductor substrate 20 or the LED 60. Inkjet deposition can provide a pattern of drops, for example drops whose location corresponds to the location of the LEDs 60. The LED 60 can include a substrate that is separate, distinct, and independent from the semiconductor substrate 20. The circuit connection pads 24 can be connected to the active electronic circuit 22, if present, and the active electronic circuit 22 is a control circuit that can, at least in part, control the LED 60. Additional conductive elements such as wires can be provided on the semiconductor substrate 20, for example electrically connected to the circuit connection pads 24 forming a circuit, such as a passive circuit, or connected to the active electronic circuit 22. As intended herein, the semiconductor substrate 20 can include layers of materials other than semiconductor materials, for example patterned conductors, dielectrics, and other circuit elements found in integrated circuits.

The compound LED device 10 is a compound device because it incorporates two different structures (e.g., the semiconductor substrate 20 and the LED semiconductor material 30). In certain embodiments, the semiconductor substrate 20 and the LED semiconductor material 30 include, incorporate, or are two different materials. The two different materials can have different attributes, can be processed separately, and can be photolithographic-process incompatible.

One or more electrical conductors 40 electrically connect one or more of the circuit connection pads 24 to one or more of the electrodes 32 through the LED connection pads 34. The active electronic circuit 22 or additional conductive elements on the semiconductor substrate 20, if present, are thus electrically connected to the electrodes 32 and can provide signals to electrically stimulate and operate the LEDs 60. The semiconductor substrate 20 can have a process side 26 over which the LED 60 is micro-transfer printed. The LED 60 can have an area over the semiconductor substrate 20 that is smaller than the area of the active electronic circuit 22.

Referring to FIG. 2, an array of LEDs 60 is disposed over the active electronic circuit 22 on, over, or in the semiconductor substrate 20. The active electronic circuit 22 likewise has an array of circuit connection pads 24 electrically connected by electrical conductors 40 to the LEDs 60. In some embodiments of the present invention, the LEDs 60 include different LEDs 60 for example red LEDs 60R that emit red light, green LEDs 60G that emit green light, and blue LEDs 60B that emit blue light. Each LED 60 can have a different material, crystalline structure, or color of light emission and can be driven with different voltages and currents.

The red, green, and blue LEDs 60R, 60G 60B can form an array of pixels each having one red, green, and blue LED 60R, 60G, 60B in a color display 12. The LEDs 60 can be micro-transfer printed so that each LED 60 has a fractured tether 94.

As shown in FIG. 1B, a compound LED device 10 of the present invention can have the two or more electrodes 32 formed on a common side of the LED 60 that is opposite the semiconductor substrate 20 and at least two of the LED connection pads 34 are located on the side of the LED 60 opposite the semiconductor substrate 20. Alternatively, referring to FIG. 3, a compound LED device 10 can have the two or more electrodes 32 formed on a common side of the LED 60 that is adjacent to the semiconductor substrate 20 and at least two of the LED connection pads 34 are located on the adjacent side. In yet another embodiment, referring to FIG. 4, at least one of the LED connection pads 34 is located on the opposite side of the LED 60 and at least one of the LED connection pads 34 is located on the adjacent side of the LED 60. The structures illustrated in FIGS. 1A, 1B, and 3 having LED connection pads 34 on a common side of the LED 60 are horizontal LEDs 60 and typically emit light from the side of the LED 60 opposite the LED connection pads 34. Horizontal LEDs 60 can include a conductive layer in an extended portion of the LED 60 that conducts current from one of the LED connection pads 34 to a recombination portion of the LED 60 adjacent to another LED connection pad 34. The conductive layer can be transparent. In other embodiments, the LED connection pads 34 or electrodes can be transparent. In the embodiment of FIG. 4, the LED 60 is a vertical LED 60. In a vertical embodiment, one of the LED connection pads 34 or at least a portion of the electrode 32 or electrical conductor 40 can be a transparent electrical conductor, such as ITO, allowing light to escape from the LED 60.

As shown in FIGS. 1B and 2, the LED 60 can be micro-transfer printed on or in combination with the adhesive layer 50 and adhered directly to the semiconductor substrate 20, layers formed on the semiconductor substrate 20, or on the active electronic circuit 22 or additional conductive elements formed on or in the semiconductor substrate 20, if present. In some embodiments, the active electronic circuit 22 or additional conductive elements are a part of the semiconductor substrate 20 or form layers on the semiconductor substrate 20. The semiconductor substrate 20 can include semiconductor material 25 or non-semiconductor material or layers, for example conductive, patterned conductive layers, dielectric layers, or patterned dielectric layers. For example, a dielectric layer can be disposed between portions of the active electronic circuit 22 and at least some portions of the LED 60. As used herein, “micro-transfer printing on or over” can include a step of adhering to after a micro-transfer printing operation.

A micro-transfer printed LED 60 can include at least a portion of a tether 94 from a native source wafer on which the LED 60 originates. Portions of a tether 94 result from fracturing a tether 94 on a source wafer 29 by pressing a stamp against the LED 60 during the micro-transfer printing process. The tethers 94 can be formed from one or more layers of the LED 60 or other layers disposed on the source wafer, for example an encapsulation layer. In some embodiments, the active electronic circuit 22 can be located at least partially between the LED 60 and the semiconductor substrate 20 (as shown, for example, in FIG. 1B). This arrangement can efficiently use the available area of the semiconductor substrate 20. Alternatively, the active electronic circuit 22 can be located to one or more of the sides of the LED 60 or LED 60 (not shown). In another embodiment, the active electronic circuit 22 has open areas in which the LED 60 is disposed (not shown), for example so that a bottom emitter can emit light through the open areas of an at least partially transparent semiconductor substrate 20.

To facilitate securing the LED 60 to the semiconductor substrate 20, an adhesive layer 50 or pattern of adhesive is provided between the LED 60 and the semiconductor substrate 20. The adhesive can be curable, for example, responsive to heat or electromagnetic radiation to cure and adhere the LED 60 to the semiconductor substrate 20. The adhesive can be a polymer or resin. For example, the adhesive can be SU8, photoresist, epoxy, viscous polymer, or a silicone. The adhesive can be coated on the semiconductor substrate 20 or the LED 60, or provided as a laminate between the semiconductor substrate 20 and the LED 60, or pattern-wise inkjet deposited on the semiconductor substrate 20 or the LEDs 60. The adhesive can be a solder that is reflowed to make an electrical connection and can be patterned over the circuit connection pads 24. In some embodiments, the adhesive layer 50 has an extent or area over the semiconductor substrate 20 that is different (i.e., larger or smaller) from the extent or area of the LED. The extent is taken in a plane parallel to the process side 26 of the semiconductor substrate 20 on which the LED 60 or LED 60 is micro-transfer printed. The adhesive can be patterned and materials and techniques for patterning curable adhesives are known.

In some embodiments of the present invention, the semiconductor substrate 20 can have two relatively flat and substantially parallel opposing sides and can be any structure having a process side 26 suitable for the deposition, processing, and patterning of active or passive electronic structures useful in forming patterned conductors or an active electronic circuit 22 and on which the LED 60 can be micro-transfer printed. Such structures include, but are not limited to, transistors, diodes, conductors, capacitors, and resistors and include patterned semiconductor structures, doped semiconductor structures, dielectrics such as silicon oxides and silicon nitrides, and conductors such as aluminum, copper, gold, silver, titanium, tantalum, and tin or alloys of such materials. The semiconductor substrate 20 can be glass, polymer, plastic, ceramic, semiconductor, or metal and can be rigid or flexible. For example, photolithographic processes for making integrated circuits or processing substrates can be employed with suitable semiconductor substrates 20. The semiconductor substrates 20 can include semiconductor materials such as silicon or compound semiconductor materials composed of two or more elements from different groups of the periodic table such as a III-V or II-VI semiconductor substrate 20. In some embodiments, the semiconductor substrate 20 is a crystalline semiconductor substrate 20, such as a crystalline silicon semiconductor in which circuits, such as CMOS circuits, can be formed using photolithographic processes. In certain embodiments, by using a crystalline semiconductor substrate 20, better performance is achieved than, for example, might be found in a structure using amorphous or polycrystalline semiconductor materials.

According to some embodiments of the present invention, the LEDs 60 are micro-transfer printed onto the semiconductor substrate 20. The LEDs 60 can be, for example, unpackaged bare die LEDs that are directly adhered to the semiconductor substrate 20. As also intended herein, reference to an LED 60 being micro-transfer printed on a semiconductor substrate 20 encompasses an LED 60 being micro-transfer printed on or over the active electronic circuit 22 or additional conductive elements on or in the semiconductor substrate 20 or a layer on the active electronic circuit 22, for example the adhesive layer 50. To be micro-transfer printed on or adhered to the active electronic circuit 22 means that the LED 60 is micro-transfer printed on or adhered to any of the elements of the active electronic circuit 22 or semiconductor substrate 20, for example upon a semiconductor layer, a patterned or doped semiconductor layer or structure, a conductor layer or patterned conductor, a dielectric layer, a patterned dielectric layer, a protective layer, or any other element of the active electronic circuit 22.

In contrast, as intended herein, a layer formed on a semiconductor substrate 20, for example by evaporation, sputtering, or ion beam exposure, whether patterned or not or annealed or not, is not micro-transfer printed upon or adhered to the semiconductor substrate 20 but rather is fused or welded to the underlying layer. Such a structure does not include separate, independent, and distinct substrates, one mounted upon the other, and is therefore distinct and different from a micro-transfer printed structure. As used herein, separate, independent, and distinct substrates are separately constructed, optionally at different times and at different locations using at least some different processes or on different wafers. After they are constructed, the separate, independent, and distinct substrates can be transported and stored separately and independently. Methods disclosed herein comprise micro-transfer printing one substrate (e.g., the LED 60) onto another separate, independent, and distinct substrate (e.g., the semiconductor substrate 20) and electrically interconnecting them with the electrical conductors 40. The substrates remain separate, independent, and distinct after they are combined into a common structure, since the substrates themselves both remain present in the combined structure.

The active electronic circuit 22 is a circuit that includes at least one active component or element, for example a transistor, a diode, an amplifier, an oscillator, or a switch. Passive components such as conductors, patterned conductors, resistors, capacitors, and inductors can also be included in the active electronic circuit 22. Elements of the active electronic circuit 22 are electrically connected to circuit connection pads 24. The circuit connection pads 24 are portions of the active electronic circuit 22 that are also available to make electrical connections with electrical devices external to the active electronic circuit 22, for example such as controllers, power supplies, ground, or signal connections. Similarly, the LED connection pads 34 are portions of the electrodes 32 or electrically conductive areas electrically connected to the electrodes 32. The circuit connection pads 24 or LED connection pads 34 can be, for example, rectangular or circular areas of electrically conductive materials such as the conductors listed above, accessible or exposed to external elements such as wires or conductors, including the electrical conductors 40 or electrodes 32. The circuit connection pads 24 or LED connection pads 34 can have any shape conducive to the formation of electrical connections.

Electrical connections to the circuit connection pads 24 can be made, for example, using solder and solder methods, photolithographic processes, conductive ink deposition by inkjet, or by contacting and, optionally, penetrating the circuit connection pads 24 with electrically conductive protrusions or spikes, such as connection posts 44, formed in or on a device with another substrate separate, distinct, and independent from the semiconductor substrate 20 and connected to electrodes 32 in the other substrate (as shown in FIG. 5). Thus, the connection posts 44 are electrically connected to both the LED connection pads 34 and the circuit connection pad 24. The other substrate can be the LED 60 and the electrically conductive protrusions or spikes can be the electrical conductors 40. Electrical connections between conductors or an active circuit on a substrate (e.g., the active electronic circuit 22 on the semiconductor substrate 20) and electrodes 32 on the LED 60 can be made by mechanically pressing conductive protrusions on the LED semiconductor material 30 in alignment against, into, onto, or through circuit connection pads 24 on the semiconductor substrate 20 to form electrical interconnections without photolithographic processing and are described in U.S. patent application Ser. No. 14/822,864 entitled “Chiplets with Connection Posts,” the disclosure of which is hereby incorporated by reference herein in its entirety. In some embodiments, the LED connection pads 34 can be the base of the electrically conductive protrusions or spikes.

As intended herein, the electrically conductive protrusions or spikes pressed into, onto, or through the circuit connection pads 24 are adhered to the circuit connection pads 24 since the friction provided between the conductive protrusions or spikes and the circuit connection pads 24 causes them to adhere. The layer in which the conductive protrusions or spikes are pressed into, onto, or through the circuit connection pads 24 is therefore an adhesive layer 50. Furthermore, in some embodiments, an additional adhesive layer 50, or a portion or pattern of the adhesive layer 50 can be provided in combination with the conductive protrusions or spikes to adhere the semiconductor substrate 20 to the LED 60, as shown in FIG. 5.

The LED 60 can be any substrate or layer having light-emitting properties and on or in which electrodes 32 can be formed. For example, the LED 60 can be or include one or more of any of a semiconductor, a compound semiconductor, a III-V semiconductor, a II-VI semiconductor, GaN, AlGaN, GaAs, AlGaAs, GaAsP, AlGaP, AlGaInP, GaP, InGaN, and ZnSe. The LED 60 can be processed using photolithographic methods to form the electrodes 32 and can have two relatively flat and substantially parallel opposing sides. Alternatively, other methods such as micro-embossing and inkjet deposition can be used to form structures on the LED 60. The LED 60 can be crystalline. In some embodiments, the processing materials and methods of the LED 60 and electrodes 32 are at least partially different from and incompatible with the processing materials and methods of the semiconductor substrate 20 or active electronic circuit 22.

The semiconductor substrate 20 and the LED 60 can take a variety of forms, shapes, sizes, and materials. In some embodiments, the LED 60 is thicker than the semiconductor substrate 20. In other embodiments, the LED 60 is thinner than the semiconductor substrate 20. The LED 60 and the semiconductor substrate 20 can have the same thickness. In certain embodiments, the semiconductor substrate 20 has a thickness less than 20 microns, less than 10 microns, or less than 5 microns. In certain embodiments, the LED 60 has a thickness less than 10 microns, less than 5 microns, or less than 1 micron. Alternatively, in certain embodiments, the LED 60 has a thickness greater than 0.5 microns, greater than 1 micron, greater than 2 microns, or greater than 5 microns. Such a variety of sizes can enable highly integrated and small structures useful in a corresponding variety of electronic systems.

In some embodiments of the present invention, as illustrated in FIG. 2, a plurality of LEDs 60R, 60G, 60B, each a separate, distinct, and independent LED 60 having two or more electrodes 32, is micro-transfer printed onto or over the semiconductor substrate 20, for example in a common print step. The electrodes 32 of each of the LEDs 60 are connected to corresponding circuit connection pads 24 and LED connection pads 34 with one or more of the electrical conductors 40.

In some embodiments of the present invention, all of the LEDs 60 are substantially identical. In other embodiments, some of the LEDs 60 are different from others. For example, a first LED 60 of the plurality of LEDs 60 has one or more first attributes, a second LED 60 of the plurality of LEDs 60 has one or more second attributes and at least one of the first attributes is different from at least one of the second attributes. Attributes can include LED semiconductor material 30, crystal lattice structure, light output efficiency, or size, such as thickness, length, or width. Attributes can also include placement of electrodes, electrode material, electrode material composition or structure, or electrode size, such as thickness, length, or width.

In some embodiments of the present invention, the different LEDs 60 are formed on a common LED source wafer, for example using photolithographic processes, or from a plurality of substantially identical LED native source wafers. In another embodiment, multiple, different LED source wafers are provided having different LEDs 60 on them. For example, a first red LED wafer has first red LEDs 60R, a second green LED wafer has second green LEDs 60G, and both the first and second LEDs 60R, 60G from the respective first and second LED wafers are micro-transfer printed onto the adhesive layer 50. The LED source wafers can be different and the LEDs 60 from the different LED source wafers can be different, for example having different materials, crystal lattice structures, sizes, or electrodes, as discussed above.

In some embodiments of the present invention the LEDs 60 are chiplets. Chiplets can be small integrated circuits or processed substrates, for example bare die, that are integrated into a compound device structure using micro-transfer printing. In various embodiments, one or more LEDs 60 have a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm. In various embodiments, one or more LEDs 60 have a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm. In various embodiments, at least one of the semiconductor substrate 20 and the one or more LEDs 60 have a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm. In certain embodiments, such small structures provide a high degree of integration and consequently reduced manufacturing costs and improved performance.

In some embodiments of the present invention, the semiconductor substrate 20 includes thermal dissipation layers, for example, on a side of the semiconductor layer 20 opposite the process side 26, beneath the active electronic circuit 22, or over the active electronic circuit 22 with vias for the circuit connection pads 24. The thermal dissipation layers, for example metal or metal mesh layers, can distribute heat generated by the active electronic circuit 22 and the LEDs 60, thereby improving performance and lifetime of the compound LED device 10.

Referring to FIG. 6, a method of making a compound LED device 10 includes providing a semiconductor substrate 20 in step 100. The active electronic circuit 22 is formed in or on the semiconductor substrate 20 in step 110. In some embodiments, the semiconductor substrate 20 is a semiconductor substrate 20 with active electronic components. In some embodiments, the semiconductor substrate 20 also includes passive components, for example including electrical conductors, wires, resistors, and connection pads. Alternatively, in step 105 a semiconductor substrate 20 is provided with an active electronic circuit 22 already formed in or on the semiconductor substrate 20.

The active electronic circuit 22 includes one or more circuit connection pads 24 connected to the active electronic circuit 22 for providing signals to the active electronic circuit 22 or receiving signals from the active electronic circuit 22. An LED source wafer separate, distinct, and independent from the semiconductor substrate 20 is provided in step 120 and LEDs and electrodes 32 are formed in or on the LED source wafer in step 130 to form micro-transfer printable LEDs 60. In some embodiments, the micro-transfer printable LED 60 and electrodes 32 already formed in or on a source wafer are provided in a single step 125.

A layer 50 of adhesive is disposed between the LED 60 and the semiconductor substrate 20 in step 140, for example on the LED 60, on the semiconductor substrate 20, or with a laminate located between the LED 60 and the semiconductor substrate 20. The adhesive can be a patterned layer 50 of adhesive, for example inkjet-deposited adhesive material, provided by coating, or patterned using photolithography. The LED(s) 60 are disposed on the semiconductor substrate 20 in step 150 by micro-transfer printing. In some embodiments, step 150 is repeated to provide a plurality of LED(s) 60 micro-transfer printed on the semiconductor substrate 20 (e.g., corresponding to the structure of FIG. 2) that can be printed from one or multiple different native source wafers. The adhesive can be a curable adhesive and in step 160 the adhesive layer 50 is cured to adhere the LED 60 to the semiconductor substrate 20. The adhesive layer 50 can be patterned after it is cured.

In step 170, one or more electrodes 32 are connected to the circuit connection pads 24 or the active electronic circuit 22 or additional conductive elements on the semiconductor substrate 20 (if present) through the LED connection pads 34, electrical conductors 40, and circuit connection pads 24 in step 170 to construct a compound LED device 10. This step can be provided using photolithographic deposition and patterning of conductive materials or patterned deposition of conductive materials.

Alternatively, the step 170 of connecting the circuit connection pads 34 (or active electronic circuit 22, if present) to the LED connection pads 34 and electrodes 32 can be performed in a common step with the micro-transfer step 150 using the conductive protrusions or spikes, as illustrated in FIG. 5 and described above, so that step 150 and step 170 are performed simultaneously in a common step. In these embodiments, the electrical conductors 40 include electrically conductive protrusions or spikes extending from the one or more LEDs 60 and the step 150 of micro-transfer printing the one or more LEDs 60 onto the semiconductor substrate 20 includes pressing the electrically conductive protrusions or spikes against, onto, into, or through the circuit connection pads 24 to form an electrical connection between the electrodes 32 and the circuit connection pads 24. As noted above, an adhesive layer 50 or patterned adhesive layer 50 can be used in combination with the conductive protrusions or spikes to provide electrical connections and adhesion between the LED 60 and semiconductor substrate 20.

Referring to FIG. 7, in some embodiments of the present invention, reflective layers 54 are formed on patterned dielectric structures 52 disposed between the LEDs 60 to reflect light that can be emitted horizontally to the semiconductor substrate 20 out of the compound LED device 10. FIG. 7 is a cross section; in some embodiments, the reflective layers 54 and dielectric structure 52 surround each LED 60 to form a well in which the LED 60 is disposed, for example by micro-transfer printing. A transparent electrical conductor 56 provides power to the top LED connection pad 34.

Referring to FIGS. 8A and 8B, an array of red-light-emitting vertical LEDs 60 (corresponding to structures shown in FIG. 4) were constructed and micro-transfer printed onto an Au/Sn circuit connection pad 24 with a transparent conducting oxide (ITO) electrically connecting the top electrode 32. The red-light-emitting vertical LEDs 60 had a length of approximately 10 microns and were printed with a pitch of approximately 20 microns. The LEDs 60 emitted light when provided with electrical power, as shown in FIG. 8B.

In operation, the compound LED device 10 or heterogeneous device 10 is operated by providing electrical signals from an external display controller (not shown) through circuit connection pads 24 to activate the active electronic circuit 22 on the semiconductor substrate 20. The active electronic circuit 22 can further process the signals or communicate the signals, or both, to the electrodes 32 on the LED semiconductor material 30 through the circuit connection pads 24, the electrical conductor 40, and the LED connection pads 34. The electrodes 32 provide signals to the LEDs 60 to cause them to emit light.

U.S. patent application Ser. No. 14/743,981, filed Jun. 18, 2015, entitled Micro Assembled Micro LED Displays and Lighting Elements, describes micro-transfer printing structures and processes useful with the present invention, the disclosure of which is hereby incorporated by reference herein. For a discussion of micro-transfer printing techniques that can be used or adapted for use with methods disclosed herein, see U.S. Pat. Nos. 8,722,458, 7,622,367 and 8,506,867, the disclosure of which is hereby incorporated by reference in its entirety. Micro-transfer printing using compound micro assembly structures and methods can also be used with the present invention, for example, as described in U.S. patent application Ser. No. 14/822,868, filed Aug. 10, 2015, entitled Compound Micro-Assembly Strategies and Devices, the disclosure of which is hereby incorporated by reference in its entirety.

As is understood by those skilled in the art, the terms “over”, “under”, “above”, “below”, “beneath”, and “on” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present invention. For example, a first layer on a second layer, in some embodiments means a first layer directly on and in contact with a second layer. In other embodiments, a first layer on a second layer can include one or more layers there between. Additionally, “on” can mean “on” or “in.” As additional non-limiting examples, a sacrificial layer or sacrificial portion 28 is considered “on” a substrate when a layer of sacrificial material or sacrificial portion 28 is on top of the substrate, when a portion of the substrate itself is the sacrificial layer 28, or when the sacrificial layer or sacrificial portion 28 comprises material on top of the substrate and a portion of the substrate itself.

Having described certain embodiments, it will now become apparent to one of skill in the art that other embodiments incorporating the concepts of the disclosure may be used. Therefore, the invention should not be limited to the described embodiments, but rather should be limited only by the spirit and scope of the following claims.

Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.

It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances can be conducted simultaneously. The invention has been described in detail with particular reference to certain embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

PARTS LIST

  • A cross section line
  • 10 compound LED device
  • 12 display
  • 20 semiconductor substrate
  • 22 active electronic circuit
  • 24 circuit connection pad
  • 25 semiconductor material
  • 26 process side
  • 30 LED semiconductor material
  • 32 electrode
  • 34 LED connection pad
  • 40 electrical conductor
  • 44 connection posts
  • 50 adhesive layer
  • 52 patterned dielectric structure
  • 54 reflective layer
  • 56 transparent electrical conductor
  • 60 LED
  • 60R red LED
  • 60G green LED
  • 60B blue LED
  • 94 tether
  • 100 provide substrate step
  • 105 provide semiconductor substrate with electronic circuit step
  • 110 form electronic circuit on semiconductor substrate step
  • 120 provide source wafer step
  • 125 provide LED on source wafer step
  • 130 form LED on source wafer step
  • 140 dispose adhesive material step
  • 150 micro-transfer print LED on semiconductor substrate step
  • 160 optional cure adhesive layer step
  • 170 connect electronic circuit to LED step

Claims

1. A compound light-emitting diode (LED) device, comprising:

a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate;
two or more electrically conductive circuit connection pads formed in or on the semiconductor substrate, the active electronic circuit electrically connected to the two or more circuit connection pads;
one or more LEDs, each LED having at least two LED electrodes or connection pads and a fractured LED tether;
an adhesive layer disposed between the semiconductor substrate and each LED, wherein each LED is micro-transfer printed on the adhesive layer and the adhesive layer adheres the semiconductor substrate to the LED; and
two or more electrical conductors, each electrical conductor electrically connecting one of the electrodes or LED connection pads to one of the circuit connection pads.

2. The compound LED device of claim 1, wherein the active electronic circuit is located at least partially between the LED and the semiconductor substrate.

3. The compound LED device of claim 1, wherein the LED has an opposite side that is opposite the semiconductor substrate and at least two of the LED connection pads are located on the opposite side.

4. The compound LED device of claim 1, wherein the LED has an adjacent side that is adjacent to the semiconductor substrate and at least two of the LED connection pads are located on the adjacent side.

5. The compound LED device of claim 1, wherein the LED has an opposite side opposite the semiconductor substrate and an adjacent side adjacent to the semiconductor substrate and at least one of the LED connection pads is located on the adjacent side and at least one of the LED connection pads is located on the opposite side.

6. The compound LED device of claim 1, wherein the active electronic circuit is a control circuit that controls the one or more LEDs.

7. The compound LED device of claim 1, comprising three LEDs, each LED having a different material, crystalline structure, or color of light emission.

8. The compound LED device of claim 1, comprising a plurality of groups of three different LEDs, the groups arranged in an array over the semiconductor substrate.

9. The compound LED device of claim 1, wherein the active electronic circuit is an active-matrix circuit.

10. The compound LED device of claim 9, wherein the semiconductor substrate has a process side, the electronic circuit is formed on or in the process side, and the LED is micro-transfer printed on the process side.

11. The compound LED device of claim 1, wherein the semiconductor substrate is a silicon substrate and each LED includes a compound semiconductor.

12. The compound LED device of claim 1, comprising two or more connection posts, each connection post electrically connected to a circuit connection pad or an LED connection pad.

13. The compound LED device of claim 1, wherein the semiconductor substrate is a display substrate and the one or more LEDs form a display.

14. The compound LED device of claim 13, wherein the display is a color display.

15. The compound LED device of claim 1, wherein each LED is directly or indirectly adhered to the semiconductor substrate with an adhesive layer.

16. The compound LED device of claim 15 wherein the adhesive is a cured adhesive.

17. The compound LED device of claim 1, wherein the semiconductor substrate or one or more LEDs has at least one of a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm, a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm, and a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm.

18. The compound LED device of claim 1, comprising a reflective structure around each LED that reflects light emitted by the LED out of the compound LED device.

19. A method of making a compound light-emitting diode (LED) device, comprising:

providing a semiconductor substrate having an active electronic circuit formed in or on the semiconductor substrate and two or more electrically conductive circuit connection pads formed on the semiconductor substrate, the active electronic circuit electrically connected to the two or more circuit connection pads;
providing one or more LEDs, each LED having at least two LED connection pads and a fractured LED tether;
disposing an adhesive layer between the semiconductor substrate and each LED;
disposing each LED on the adhesive layer and the adhesive layer adheres the semiconductor substrate to the LED; and
forming two or more electrical conductors, each electrical conductor electrically connecting one of the LED connection pads to one of the circuit connection pads.

20. The method of claim 19, comprising micro-transfer printing the one or more LEDs from a source wafer to the semiconductor substrate.

Referenced Cited
U.S. Patent Documents
4746202 May 24, 1988 Perilloux et al.
5060027 October 22, 1991 Hart et al.
5550066 August 27, 1996 Tang et al.
5621555 April 15, 1997 Park
5625202 April 29, 1997 Chai
5748161 May 5, 1998 Lebby et al.
5815303 September 29, 1998 Berlin
5994722 November 30, 1999 Averbeck et al.
6025730 February 15, 2000 Akram et al.
6084579 July 4, 2000 Hirano
6087680 July 11, 2000 Gramann et al.
6143672 November 7, 2000 Ngo et al.
6169294 January 2, 2001 Biing-Jye et al.
6184477 February 6, 2001 Tanahashi
6278242 August 21, 2001 Cok et al.
6288824 September 11, 2001 Kastalsky
6340999 January 22, 2002 Masuda et al.
6392340 May 21, 2002 Yoneda et al.
6403985 June 11, 2002 Fan et al.
6410942 June 25, 2002 Thibeault et al.
6466281 October 15, 2002 Huang et al.
6504180 January 7, 2003 Heremans et al.
6577367 June 10, 2003 Kim
6650382 November 18, 2003 Sumida et al.
6660457 December 9, 2003 Imai et al.
6703780 March 9, 2004 Shiang et al.
6717560 April 6, 2004 Cok et al.
6756576 June 29, 2004 McElroy et al.
6812637 November 2, 2004 Cok et al.
6828724 December 7, 2004 Burroughes
6933532 August 23, 2005 Arnold et al.
6969624 November 29, 2005 Iwafuchi et al.
6975369 December 13, 2005 Burkholder
7009220 March 7, 2006 Oohata
7012382 March 14, 2006 Cheang et al.
7091523 August 15, 2006 Cok et al.
7098589 August 29, 2006 Erchak et al.
7127810 October 31, 2006 Kasuga et al.
7129457 October 31, 2006 McElroy et al.
7195733 March 27, 2007 Rogers et al.
7259391 August 21, 2007 Liu et al.
7288753 October 30, 2007 Cok
7402951 July 22, 2008 Cok
7417648 August 26, 2008 Credelle
7420221 September 2, 2008 Nagai
7466075 December 16, 2008 Cok et al.
7521292 April 21, 2009 Rogers et al.
7557367 July 7, 2009 Rogers et al.
7586497 September 8, 2009 Boroson et al.
7605053 October 20, 2009 Couillard et al.
7614757 November 10, 2009 Nesterenko et al.
7622367 November 24, 2009 Nuzzo et al.
7629955 December 8, 2009 Asao et al.
7662545 February 16, 2010 Nuzzo et al.
7687812 March 30, 2010 Louwsma et al.
7704684 April 27, 2010 Rogers et al.
7791271 September 7, 2010 Cok et al.
7799699 September 21, 2010 Nuzzo et al.
7816856 October 19, 2010 Cok et al.
7834541 November 16, 2010 Cok
7872722 January 18, 2011 Kimura
7893612 February 22, 2011 Cok
7898734 March 1, 2011 Coleman et al.
7919342 April 5, 2011 Cok
7927976 April 19, 2011 Menard
7932123 April 26, 2011 Rogers et al.
7943491 May 17, 2011 Nuzzo et al.
7948172 May 24, 2011 Cok et al.
7969085 June 28, 2011 Cok
7972875 July 5, 2011 Rogers et al.
7982296 July 19, 2011 Nuzzo et al.
7990058 August 2, 2011 Cok et al.
7999454 August 16, 2011 Winters et al.
8004758 August 23, 2011 Coleman et al.
8029139 October 4, 2011 Ellinger et al.
8039847 October 18, 2011 Nuzzo et al.
8058663 November 15, 2011 Fan et al.
8198621 June 12, 2012 Rogers et al.
8207547 June 26, 2012 Lin
8243027 August 14, 2012 Hotelling et al.
8261660 September 11, 2012 Menard
8288843 October 16, 2012 Kojima et al.
8334545 December 18, 2012 Levermore et al.
8394706 March 12, 2013 Nuzzo et al.
8440546 May 14, 2013 Nuzzo et al.
8450927 May 28, 2013 Lenk et al.
8470701 June 25, 2013 Rogers et al.
8502192 August 6, 2013 Kwak et al.
8506867 August 13, 2013 Menard
8536584 September 17, 2013 Yao
8581827 November 12, 2013 Park et al.
8596846 December 3, 2013 Yankov et al.
8619011 December 31, 2013 Kimura
8664699 March 4, 2014 Nuzzo et al.
8686447 April 1, 2014 Tomoda et al.
8722458 May 13, 2014 Rogers et al.
8735932 May 27, 2014 Kim et al.
8754396 June 17, 2014 Rogers et al.
8766970 July 1, 2014 Chien et al.
8791474 July 29, 2014 Bibl et al.
8794501 August 5, 2014 Bibl et al.
8803857 August 12, 2014 Cok
8817369 August 26, 2014 Daiku
8836624 September 16, 2014 Roberts et al.
8854294 October 7, 2014 Sakariya
8860051 October 14, 2014 Fellows et al.
8877648 November 4, 2014 Bower et al.
8884844 November 11, 2014 Yang et al.
8889485 November 18, 2014 Bower
8895406 November 25, 2014 Rogers et al.
8902152 December 2, 2014 Bai et al.
8912020 December 16, 2014 Bedell et al.
8946760 February 3, 2015 Kim
8987765 March 24, 2015 Bibl et al.
9048449 June 2, 2015 Kim et al.
9105813 August 11, 2015 Chang
9153171 October 6, 2015 Sakariya et al.
9178123 November 3, 2015 Sakariya et al.
9202996 December 1, 2015 Orsley et al.
9277618 March 1, 2016 Odnoblyudov et al.
9308649 April 12, 2016 Golda et al.
9329430 May 3, 2016 Erinjippurath et al.
9343042 May 17, 2016 Miller et al.
9368683 June 14, 2016 Meitl et al.
9412977 August 9, 2016 Rohatgi
9437782 September 6, 2016 Bower et al.
9444015 September 13, 2016 Bower et al.
9520537 December 13, 2016 Bower et al.
9537069 January 3, 2017 Bower et al.
9626908 April 18, 2017 Sakariya et al.
9698308 July 4, 2017 Bower et al.
9705042 July 11, 2017 Bower et al.
9716082 July 25, 2017 Bower et al.
20010022564 September 20, 2001 Youngquist et al.
20020096994 July 25, 2002 Iwafuchi et al.
20040080483 April 29, 2004 Chosa
20040180476 September 16, 2004 Kazlas et al.
20040212296 October 28, 2004 Nakamura et al.
20040227704 November 18, 2004 Wang et al.
20040252933 December 16, 2004 Sylvester et al.
20050006657 January 13, 2005 Terashita
20050012076 January 20, 2005 Morioka
20050116621 June 2, 2005 Bellmann et al.
20050140275 June 30, 2005 Park
20050168987 August 4, 2005 Tamaoki et al.
20050202595 September 15, 2005 Yonehara et al.
20050264472 December 1, 2005 Rast
20050275615 December 15, 2005 Kahen et al.
20050285246 December 29, 2005 Haba et al.
20060051900 March 9, 2006 Shizuno
20060063309 March 23, 2006 Sugiyama et al.
20060273862 December 7, 2006 Shimmura
20060289972 December 28, 2006 Nishimura et al.
20070035340 February 15, 2007 Kimura
20070077349 April 5, 2007 Newman et al.
20070182809 August 9, 2007 Yarid et al.
20070201056 August 30, 2007 Cok et al.
20080108171 May 8, 2008 Rogers et al.
20080211734 September 4, 2008 Huitema et al.
20090045420 February 19, 2009 Eng et al.
20090146921 June 11, 2009 Takahashi
20090278142 November 12, 2009 Watanabe et al.
20090295706 December 3, 2009 Feng
20090315054 December 24, 2009 Kim et al.
20100060553 March 11, 2010 Zimmerman et al.
20100078670 April 1, 2010 Kim et al.
20100123134 May 20, 2010 Nagata
20100123268 May 20, 2010 Menard
20100148198 June 17, 2010 Sugizaki et al.
20100149117 June 17, 2010 Chien et al.
20100186883 July 29, 2010 Tomoda
20100190293 July 29, 2010 Maeda et al.
20100201253 August 12, 2010 Cok et al.
20100207852 August 19, 2010 Cok
20100214245 August 26, 2010 Hirota
20100214247 August 26, 2010 Tang et al.
20100248484 September 30, 2010 Bower et al.
20100258710 October 14, 2010 Wiese et al.
20100270912 October 28, 2010 Ko
20100289115 November 18, 2010 Akiyama et al.
20100317132 December 16, 2010 Rogers et al.
20100321414 December 23, 2010 Muroi et al.
20100328268 December 30, 2010 Teranishi et al.
20110043435 February 24, 2011 Hebenstreit et al.
20110069013 March 24, 2011 Rabenstein et al.
20110108800 May 12, 2011 Pan
20110120678 May 26, 2011 Palm
20110205448 August 25, 2011 Takata
20110211348 September 1, 2011 Kim
20110242027 October 6, 2011 Chang
20120056835 March 8, 2012 Choo et al.
20120105518 May 3, 2012 Kang et al.
20120119249 May 17, 2012 Kim et al.
20120126229 May 24, 2012 Bower
20120141799 June 7, 2012 Kub et al.
20120206428 August 16, 2012 Cok
20120206499 August 16, 2012 Cok
20120223636 September 6, 2012 Shin et al.
20120223875 September 6, 2012 Lau et al.
20120228669 September 13, 2012 Bower et al.
20120236022 September 20, 2012 Homma et al.
20120256163 October 11, 2012 Yoon et al.
20120274669 November 1, 2012 Neal
20120281028 November 8, 2012 Orlick et al.
20120314388 December 13, 2012 Bower et al.
20120320566 December 20, 2012 Namekata
20130006524 January 3, 2013 Sasaki et al.
20130010405 January 10, 2013 Rothkopf et al.
20130015483 January 17, 2013 Shimokawa et al.
20130016494 January 17, 2013 Speier et al.
20130036928 February 14, 2013 Rogers et al.
20130069275 March 21, 2013 Menard et al.
20130088416 April 11, 2013 Smith et al.
20130196474 August 1, 2013 Meitl et al.
20130207964 August 15, 2013 Fleck et al.
20130221355 August 29, 2013 Bower et al.
20130248889 September 26, 2013 Lin
20130257264 October 3, 2013 Tamaki et al.
20130273695 October 17, 2013 Menard et al.
20130278513 October 24, 2013 Jang
20140014960 January 16, 2014 Yamazaki et al.
20140082934 March 27, 2014 Cok
20140084482 March 27, 2014 Hu et al.
20140085214 March 27, 2014 Cok
20140104157 April 17, 2014 Burns et al.
20140104243 April 17, 2014 Sakariya et al.
20140111442 April 24, 2014 Cok et al.
20140146273 May 29, 2014 Kim et al.
20140159043 June 12, 2014 Sakariya et al.
20140175498 June 26, 2014 Lai
20140183446 July 3, 2014 Nago et al.
20140198373 July 17, 2014 Ray
20140217448 August 7, 2014 Kim et al.
20140231839 August 21, 2014 Jeon et al.
20140231851 August 21, 2014 Tsai et al.
20140240617 August 28, 2014 Fukutome et al.
20140264763 September 18, 2014 Meitl et al.
20140267683 September 18, 2014 Bibl et al.
20140306248 October 16, 2014 Ahn et al.
20140339495 November 20, 2014 Bibl et al.
20140340900 November 20, 2014 Bathurst et al.
20140367633 December 18, 2014 Bibl et al.
20140367705 December 18, 2014 Bibl et al.
20150003040 January 1, 2015 Bessho et al.
20150021632 January 22, 2015 Taghizadeh et al.
20150135525 May 21, 2015 Bower
20150137153 May 21, 2015 Bibl et al.
20150169011 June 18, 2015 Bibl et al.
20150179453 June 25, 2015 Cheng et al.
20150263066 September 17, 2015 Hu et al.
20150280066 October 1, 2015 Fujimura et al.
20150280089 October 1, 2015 Obata et al.
20150296580 October 15, 2015 Kim et al.
20150308634 October 29, 2015 Van De Ven et al.
20150327388 November 12, 2015 Menard et al.
20150362165 December 17, 2015 Chu et al.
20150370130 December 24, 2015 Lin
20150371585 December 24, 2015 Bower et al.
20150371974 December 24, 2015 Bower et al.
20150372051 December 24, 2015 Bower et al.
20150372052 December 24, 2015 Bower et al.
20150372053 December 24, 2015 Bower et al.
20150372187 December 24, 2015 Bower et al.
20150373793 December 24, 2015 Bower et al.
20160004123 January 7, 2016 Tanabe
20160005721 January 7, 2016 Bower et al.
20160018094 January 21, 2016 Bower et al.
20160064363 March 3, 2016 Bower et al.
20160085120 March 24, 2016 Xu
20160093600 March 31, 2016 Bower et al.
20160131329 May 12, 2016 Park et al.
20160260388 September 8, 2016 Yata et al.
20160266697 September 15, 2016 Cheng et al.
20160343772 November 24, 2016 Bower et al.
20160351539 December 1, 2016 Bower et al.
20160364030 December 15, 2016 Peana et al.
20170005244 January 5, 2017 Bower et al.
20170025075 January 26, 2017 Cok et al.
20170025484 January 26, 2017 Forrest et al.
20170047393 February 16, 2017 Bower et al.
20170048976 February 16, 2017 Prevatte et al.
20170061842 March 2, 2017 Cok et al.
20170068362 March 9, 2017 Den Boer et al.
20170092863 March 30, 2017 Bower et al.
20170102797 April 13, 2017 Cok
20170122502 May 4, 2017 Cok et al.
20170133818 May 11, 2017 Cok
20170167703 June 15, 2017 Cok
20170186740 June 29, 2017 Cok et al.
20170187976 June 29, 2017 Cok
20170206845 July 20, 2017 Sakariya et al.
20170250219 August 31, 2017 Bower et al.
20170256521 September 7, 2017 Cok et al.
20170256522 September 7, 2017 Cok et al.
20170287882 October 5, 2017 Cok et al.
Foreign Patent Documents
1662301 May 2006 EP
2078978 July 2009 EP
2148264 January 2010 EP
2 610 314 July 2013 EP
2703969 March 2014 EP
2 496 183 May 2013 GB
11-142878 May 1999 JP
WO-2006/027730 March 2006 WO
WO-2006/099741 September 2006 WO
WO-2008/103931 August 2008 WO
WO-2010/032603 March 2010 WO
WO-2010/111601 September 2010 WO
WO-2010/132552 November 2010 WO
WO-2013/064800 May 2013 WO
WO-2014/121635 August 2014 WO
WO-2014/149864 September 2014 WO
WO-2015/088629 June 2015 WO
WO-2015/193434 December 2015 WO
WO-2016/030422 March 2016 WO
WO-2016/046283 March 2016 WO
WO-2017/042252 March 2017 WO
WO-2017/060487 April 2017 WO
WO-2017/149067 September 2017 WO
Other references
  • Choi, H. W. et al., Efficient GaN-based Micro-LED Arrays, Mat. Res. Soc. Symp. Proc. 743:L6.28.1-L6.28.6 (2003).
  • Cok, R. S. et al., AMOLED displays with transfer-printed integrated circuits, Journal of SID 19/(4):335-341(2011).
  • Hamer et al., 63.2: AMOLED Displays Using Transfer-Printed Integrated Circuits, SID 09 Digest, 40(2):947-950 (2009).
  • Johnson, K. et al., Advances in Red VCSEL Technology, Advances in Optical Technologies, 2012:569379, 13 pages (2012).
  • Kasahara, D. et al, Nichia reports first room-temperature blue/‘green’ VCSELs with current injection, Appl. Phys. Express, 4(7):3 pages (2011).
  • Koma, N. et al., 44.2: Novel Front-light System Using Fine-pitch Patterned OLED, SID, 08:655-658 (2008).
  • Lee, S. H. etal, Laser Lift-Offof GaN Thin Film and its Application to the Flexible Light Emitting Diodes, Proc. of SPIE 8460:846011-1-846011-6 (2012).
  • Matioli, E. et al., High-brightness polarized light-emitting diodes, Light: Science & Applicaitons, 1:e22:1-7 (2012).
  • Poher, V. et al., Micro-LED arrays: a tool for two-dimensional neuron stimulation, J. Phys. D: Appl. Phys. 41:094014 (2008).
  • Roscher, H., VCSEL Arrays with Redundant Pixel Designs for 10Gbits/s 2-D Space-Parallel MMF Transmission, Annual Report, optoelectronics Department, (2005).
  • Seurin, J.F. et al, High-power red VCSEL arrays, Proc. of SPIE 8639:1-9 (2013).
  • Yaniv et al., A 640 x 480 Pixel Computer Display Using Pin Diodes with Device Redundancy, 1988 International Display Research Conference, IEEE, CH-2678-1/88:152-154 (1988).
  • Yoon, J. et al., Heterogeneously Integrated Optoelectronic Devices Enabled by MicroTransfer Printing, Adv. Optical Mater. 3:1313-1335 (2015).
Patent History
Patent number: 9997501
Type: Grant
Filed: May 30, 2017
Date of Patent: Jun 12, 2018
Patent Publication Number: 20170352646
Assignee: X-Celeprint Limited (Cork)
Inventors: Christopher Bower (Raleigh, NC), Ronald S. Cok (Rochester, NY)
Primary Examiner: David Vu
Application Number: 15/608,672
Classifications
International Classification: H01L 25/16 (20060101); H01L 25/075 (20060101); H01L 33/62 (20100101); H01L 33/60 (20100101); H01L 27/12 (20060101);