Magnetic dendrometer

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is supported by the USDA National Institute of Food and Agriculture, Hatch project NI18HFPXXXXXG055 and the National. Science Foundation award #1832170. The Government may have some interest in this application.

FIG. 1 illustrates a top isometric view of a magnetic dendrometer, showing a 3D view of the design.

FIG. 2 illustrates a top orthogonal view thereof.

FIG. 3 illustrates a bottom orthogonal view thereof.

FIG. 4 illustrates a back orthogonal view thereof.

FIG. 5 illustrates a side orthogonal view thereof; and,

FIG. 6 illustrates a front orthogonal view thereof.

The described article is a dendrometer for measuring and quantifying water stress in agricultural, horticultural and wild plants. The described dendrometer employs a movable magnet and a stationary magnetic sensor for determining plant stem expansion and contraction.

Claims

The ornamental design for a magnetic dendrometer, as shown and described.

Referenced Cited
U.S. Patent Documents
466986 January 1892 Van Roden
D30194 February 1899 Bristol
911729 February 1909 Jones
1385139 July 1921 MacDougal
1978682 October 1934 Marvin
2191808 February 1940 Schramm
2236443 March 1941 Oboler
2416664 February 1947 Ruge
D158239 April 1950 Wills
2815424 December 1957 Painter
2924019 February 1960 Verner
3303572 February 1967 Vreeland, Jr.
3937212 February 10, 1976 Fletcher
4290311 September 22, 1981 Brewer
4549355 October 29, 1985 Sauer
5067246 November 26, 1991 Hesske
5774999 July 7, 1998 Smith
5809660 September 22, 1998 Bitterlich
6009631 January 4, 2000 Gensler
7398602 July 15, 2008 Cohen Amar
9149009 October 6, 2015 Edgington
9377288 June 28, 2016 DeLucia et al.
20060123647 June 15, 2006 Amar
20140360037 December 11, 2014 DeLucia
20150116092 April 30, 2015 Yang
20230175830 June 8, 2023 Clonch
Other references
  • High precision zero-friction magnetic dendrometer; Cameron Clonch, et al.; sciencedirect.com; Jun. 2, 2021; Accessed Jun. 23, 2023; URL:<https://www.sciencedirect.com/science/article/pii/S246806722100078X> (Year: 2021).
  • “Dendrometers.” Edaphic Scientific. https://www.edaphic.com.au/products/Dendrometers/ (accessed Jun. 21, 2020).
  • “Dex Fruit Dendrometers” ICT International. https://ictinternational.com/products/dex-fruit-dendrometers/dex-fruit-dendrometers/ (accessed Nov. 2021).
  • “Home of the Point Dendrometers” Natkon. https://natkon.ch/ (accessed Jun. 20, 2020).
  • AS5311 High Resolution Magnetic Linear Encoder, 13th ed., AMS, Premstaetten, Austria. Available: https://www.mouser.com/datasheet/2/588/AS5311_DS000200_2-00-263458.pdf (33 pages).
  • “Coefficients of Linear Thermal Expansion.” Engineering Toolbox. https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html (accessed Dec. 12, 2020).
  • Conesa, M. et al., “Maximum daily trunk shrinkage and daily stem water potential reference equations for irrigation scheduling in table grapes,” in Agricultural Water Management vol. 172(1), pp. 51-61, Jul. 2016. Available: http://dx.doi.org/10.1016/j.agwat.2016.04.011.
  • Dong, C. et al., “Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry,” Optics Express, vol. 25(1), pp. 531-543 (2018). Available: https://doi.org/10.1364/OE.26.000531.
  • Fernandez, J. et al., “Irrigation scheduling from stem diameter variations: A review,” in Agricultural and Forest Meteorology (Elsevier), vol. 150, Issue 2, Feb. 15, 2010, pp. 135-151. Nov. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.agrformet.2009.11.006.
  • Gambetta et al., “The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance,” Journal of Experimental Botany, vol. 71, Issue 16, Aug. 6, 2020, pp. 4658-4676, https://doi.org/10.1093/jxb/eraa245.
  • Global Tree Growth Project, “Dendrometer observations of short-term tree growth” Smithsonian Environmental Research Center. https://serc.si.edu/research/projects/global-tree-growth-project (accessed Feb. 19, 2021).
  • ICT International, Large Stem Point Dendrometer. Available: https://www.ictinternational.com/products/large-stem-point-dendrometer/large-stem-point-dendrometer/ Accessed Nov. 12, 2021, 4 pages.
  • Intrigliolo, D. et al., “Evaluation of grapevine water status from trunk diameter variations” in Irrigation Science, vol. 26, Issue 1, pp. 49-59, Sep. 2007. [Online]. Available: http://dx.doi.org/10.1007/s00271-007-0071-2.
  • Levin, A., “Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)” in Agricultural Water Management vol. 221 pp. 422-429, Jul. 20, 2019. Available: doi: 10.1016/j.agwat.2019.03.026.
  • Matthews, M. et al., “Dependence of Wine Sensory Attributes on Vine Water Status”. 2019. Journal of the Science of Food and Agriculture, vol. Issue 3, pp. 321-335. Available: https://doi.org/10.1002/jsfa.2740510305.
  • McCutchan, H., et al. “Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv. French)” in Journal of the American Society for Horticultural Science. vol. 117)4), pp. 607-611 (5 pages). 1992. Available: https://doi.org/10.21273/JASHS.117.4.607v.
  • Pearsall, K. et al., “Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions”. 2014. Functional Plant Biology, vol. 41(8), pp. 874-883. Available: doi: 10.1071/FP13156.
  • Santesteban, L. et al., “Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.)” in Agricultural Water Management vol. 221, pp. 202-210, Jul. 20, 2019. Available: doi: 10.1016/j.agwat.2019.04.020.
  • Temnani, A. et al., “Irrigation Protocols in Different Water Availability Scenarios for ‘Crimson Seedless’ Table Grapes under Mediterranean Semi-Arid Conditions,” Water 2021, vol. 13, Issue 1, p. 22. Available: https://dx.doi.org/10.3390/w13010022.
  • Wang, J. et al., “New Inexpensive Dendrometers for Monitoring Crop Tree Growth” Irrigation Toolbox. Nov. 2008, 24 pages. Available: http://irrigationtoolbox.com/ReferenceDocuments/TechnicalPapers/IA/2008/2124translated.pdf.
  • Williams, L. et al., “Relationship among Ambient Temperature and Vapor Pressure Deficit and Leaf and Stem Water Potentials of Fully Irrigated, Field-Grown Grapevines” in American Journal of Enology and Viticulture, vol. 58(2), 10 pages. Jun. 2007.
  • WSL, (28) Point dendrometer. Available: https://www.wsl.ch/en/about-wsl/instrumented-field-sites-and-laboratories/lwf-demonstration-site/20-vegetation-and-biodiversity/28-point-dendrometer.html. Accessed Nov. 12, 2021. 2 pages.
Patent History
Patent number: D1021580
Type: Grant
Filed: Dec 2, 2021
Date of Patent: Apr 9, 2024
Inventors: Cameron Clonch (Corvallis, OR), Bryson Goto (Corvallis, OR), Mark Huynh (Corvallis, OR), John Selker (Corvallis, OR), Chet Udell (Corvallis, OR)
Primary Examiner: Vy N Koenig
Assistant Examiner: Benjamin D. Wannemacher
Application Number: 29/817,677
Classifications
Current U.S. Class: Volume, Flow Or Rate (D10/96)