Low-cost circuit board materials and processes for area array electrical interconnections over a large area between a device and the circuit board

An electronic device and coupled flexible circuit board and method of manufacturing. The electronic device is coupled to the flexible circuit board by a plurality of Z-interconnections. The electronic device includes a substrate with electronic components coupled to it. The substrate also has a plurality of device electrical contacts coupled to its back surface that are electrically coupled to the electronic components. The flexible circuit board includes a flexible substrate having a front surface and a back surface and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate. The plurality of circuit board electrical contacts correspond to plurality of device electrical contacts. Each Z-interconnection is electrically and mechanically coupled to one device electrical contact and a corresponding circuit board electrical contact.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/379,456, filed May 10, 2002, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

This invention is in the field of electronic device circuit boards and interconnections, and specifically relates to the use of Z-interconnections with flexible circuit boards.

BACKGROUND OF THE INVENTION

The use of short interconnection normal to the surfaces of circuit boards (Z-interconnections) is one method to desirably create space saving multi-layer circuit board configurations. For example, in sufficiently complex devices, the number and complexity of the desired interconnections may make the use of a multiple layer circuit board design desirable. Matrix array devices, such as are often found in pixel-based detector and display applications, may also desirably include multiple circuit board configurations coupled using Z-interconnections.

Area array electrical Z-interconnections over relatively large areas (squares of 4 to 6 inches per side) may be particularly desirable to build display modules that could be utilized in the construction of large-area seamless displays, or relatively large area, high-resolution detector arrays. For seamless integration, it is desirable for all electrical connections from the display panel (device in this application) to the circuit board to be made within the space between the device and the circuit board, because the device is covered with display elements almost all the way to the edges. There may be insufficient inactive area at the edges of the device for electrical connections.

Therefore, low cost circuit board materials and processes for forming substantially identical Z-interconnections throughout the large area module are desirable. Achieving high yields and long-term reliability of those interconnections are also desirable.

For example, in the current fabrication of displays based on organic light emitting diode (OLED) as the active element, it is sometimes considered necessary to hermetically seal the circuit board to the device. This is because the primary passivation on the device provided by some device manufacturers are not adequate. Therefore, display module manufacturers use more expensive rigid inorganic circuit board materials such as multi-layer alumina ceramic board that can provide a hermetic cover to the device. A sequential screen printing of conducting (noble metal) layers and insulating layers on a pre-fired, laser-drilled alumina ceramic is used to achieve the circuit precision needed for large area circuits. Due to the relatively lower circuit density of these boards, several layers of metallization may be needed to accomplish the needed circuit routing. These factors result in high materials and production cost in making these circuit boards for back panel applications.

SUMMARY OF THE INVENTION

One embodiment of the present invention is an electronic device and coupled flexible circuit board. The electronic device is coupled to the flexible circuit board by a plurality of Z-interconnections. The electronic device includes a substrate with electronic components coupled to it. The substrate also has a plurality of device electrical contacts coupled to its back surface that are electrically coupled to the electronic components. The flexible circuit board includes a flexible substrate having a front surface and a back surface and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate. The plurality of circuit board electrical contacts correspond to plurality of device electrical contacts. Each Z-interconnection is electrically and mechanically coupled to one device electrical contact and a corresponding circuit board electrical contact.

Another embodiment of the present invention is a method of manufacturing the exemplary an electronic device and coupled flexible circuit board. The exemplary method includes providing the electronic device and the flexible circuit board. A plurality of conductive bumps are formed on at least one of the electronic device and the flexible circuit board. For each device electrical contact, a conductive bump is formed on that device electrical contact, the corresponding circuit board electrical contact, or both. The plurality of device electrical contacts of the electronic device and the corresponding plurality of circuit board electrical contacts are aligned and the electronic device and the flexible circuit board are bonded together such that the conductive bumps contact the corresponding conductive bumps or electrical contact. The conductive bumps are then cured to form Z-interconnections, electrically and mechanically coupling the device electrical contacts to the corresponding circuit board electrical contacts.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following figures:

FIG. 1A is a side cut-away drawing of an exemplary electronic device and coupled flexible circuit board, cut along line 1A-1A of FIG. 1B.

FIG. 1B is a top plan drawing of the exemplary electronic device and coupled flexible circuit board of FIG. 1A.

FIG. 2 is a top plan drawing of an exemplary flexible circuit board layout for the flexible circuit board of FIGS. 1A and 1B.

FIGS. 3A, 3B, and 3C are side cut-away drawings illustrating exemplary advantages of a flexible circuit board, cut along line 1A—1A of FIG. 1B.

FIG. 4 is a flowchart illustrating an exemplary method of manufacture of the exemplary electronic device and coupled flexible circuit board of FIGS. 1A and 1B.

FIGS. 5A-C are side cut-away drawings of alternative exemplary electronic device and coupled flexible circuit boards during manufacture according to the flowchart of FIG. 4, cut along line 1A—1A of FIG. 1B.

FIGS. 6, 7, 9, 10A and 10B are side cut-away drawing of alternative exemplary electronic devices and coupled flexible circuit boards, cut along line 1A—1A of FIG. 1B.

FIG. 8 is a side plan drawing of an additional exemplary electronic device and coupled flexible circuit board.

DETAILED DESCRIPTION OF THE INVENTION

The present invention involves low cost circuit board materials and processes for achieving high yields and long-term reliability of electrical interconnections between a large-area device and a circuit board.

High interest in OLED displays has led to considerable R & D activity in this area. Some of this effort has been directed towards hermetic integral passivations on the front panel. Such a passivation is desirable to allow the use of non-hermetic back panel materials. Among the possible non-hermetic back panel materials low cost organic-based circuit board materials offer a number of advantages, such as improved processes for forming substantially identical interconnections throughout the large area module and achieving high yields and long-term reliability of those interconnections. Flexible circuit boards based on polyimide (for example Kapton from DuPont), polyester (for example Mylar from DuPont), and various laminated structures of these families of materials may be particularly desirable. Laminate materials with built-in gas (moisture, oxygen) barrier layers, such as DuPont Mylar 250 SBL 300, may be used in applications where having this barrier is desirable for the back panel.

FIGS. 1A and 1B illustrate an exemplary electronic device 100 and flexible circuit board 102 according the present invention. Substrate 104 of electronic device 100 is not shown in FIG. 1B for illustration purposes. Although exemplary electronic device 100 shown in these Figures, as well as in FIGS. 5A-C, 6, 7, 8, 9, 10A and 10B, is shown as an exemplary six pixel electro-optic array, this in merely illustrative of a possible electronic device and should not be construed as a limitation. Other electro-optic arrays or electronic devices, such as those shown in FIGS. 3A and 3B including a plurality of electronic components 302 mounted on drilled substrate 300, may be used as well.

The exemplary electro-optic device shown in FIGS. 1A, 1B, 5A-C, 6, 7, 8, 9, 10A, and 10B includes substrate 104, column electrode 106, active material 110, passivation layer 111, and row electrodes 120. Device electrical contacts 112 are arranged on the back surface of the device to allow electrical coupling of the row and column electrodes to the flexible circuit board. These device electrical contacts may be directly coupled to the row electrodes and may be electrically coupled to the column electrodes through passivation layer 111 by vias 108.

Desirably substrate 104 is formed of a substantially transparent material such as float glass, quartz, sapphire, acrylic, polyester, polyimide or a laminate of these materials. Column electrodes 106 desirably include a substantially transmissive, conductive material such as indium tin oxide, thin gold, polyaniline, or a combination. Row electrodes 120, device electrical contacts 112, and vias 108 are desirably formed of a conductive material such as aluminium, aluminum-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, germanium, polyaniline, polyamide, polysilicon, or a combination thereof. It may be desirable for row electrodes 120, device electrical contacts 112, and vias 108 to be formed of the same material. Active material 110 may be formed of semiconductor layers and/or organic polymer layers to form the light emitting or absorbing portion of electro-optic pixel components, such as liquid crystal displays, OLED's, light emitting diodes, and photodetectors.

Flexible circuit board 102 includes flexible substrate 118, circuit board contacts 116, and a number of electrical traces formed on the front surface of flexible substrate 118. These electrical traces include column electrical traces 122 and row electrical traces 124, 126, and 128. In one exemplary embodiment, the row electrical traces 124, 126, and 128 may be used to provide operational power for different colors of pixels. For example, row electrical traces 124 may be coupled to red pixels, row electrical traces 126 may be coupled to blue pixels, and row electrical traces 128 may be coupled to green pixels.

Flexible substrate 118 may desirably be formed of a flexible organic substrate material such as polyester, polyimide or a laminate of these materials. Electrical traces 122, 124, 126, and 128 and circuit board electrical contacts 116 are desirably formed of a conductive material such as aluminum, aluminum-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, germanium, polyaniline, polyamide, polysilicon, or a combination thereof. It may be desirable for electrical traces 122, 124, 126, and 128 and circuit board electrical contacts 116 to be formed of the same material.

In this exemplary embodiment, electronic device 100 and flexible circuit board 102 are electrically and mechanical coupled together by Z-interconnections 114. These Z-interconnections are desirably formed of an electrically conductive material such as indium, a conductive solder, a conductive thermally-curable epoxy, a conductive radiation-curable epoxy, a conductive thermoplastic, and/or a conductive elastomer.

In addition to electrically and mechanically coupling electronic device 100 and flexible circuit board 102, Z-interconnections 114 desirably thermally couple electronic device 100 and flexible circuit board 102. Flexible substrate 118 may desirably be very thin <10 mils, therefore, even though the thermal conductivity of many flexible substrate materials may be low, thermal transfer from the front to back surfaces of the flexible substrate may be quite high, but lateral diffusion of heat may be poor. The relatively high thermal conductivity of the electrical traces may help with lateral diffusion of heat.

FIG. 2 illustrates an alternative exemplary embodiment of flexible circuit board 102, which includes front side thermal conductivity layer 200 to assist the lateral heat diffusion of the flexible circuit board. This thermal conductivity layer may desirably be formed of the same material as electrical traces 122, 124, 126, and 128. It is also possible to form a back side thermal conductivity layer on the back surface of flexible substrate 118 to accomplish spreading of heat. This back side thermal conductivity layer may cover the entire back surface of the flexible substrate, or it may be patterned to allow additional electrical traces on this side of flexible circuit board 102 and or to channel heat to certain regions of the flexible circuit board.

FIGS. 3A-C illustrates some of the advantages that may be derived from the present invention. In the exemplary embodiments of FIGS. 3A and 3B, electronic device 100 includes drilled substrate 300 with vias 108 extending from it front surface to its back surface. This substrate may be formed of any standard substrate material such as glass, alumina, epoxy resin, fiberglass, polyester, and polyimide. Electronic components 302 are mounted on the front surface of drilled substrate 300 and electrically coupled to electrical contacts 112 formed on the back surface of drilled substrate 300 through vias 108. These electronic components may include electrical traces, separate components such as resistors, capacitor, and transistors, or integrated circuitry.

FIG. 3A illustrates how exemplary flexible circuit board 102 may desirably allow for reliable Z-interconnections 114 even in the face of camber or unevenness in the back surface of the electronic device. This ability to overcome camber may allow for less restrictive tolerances in selection of substrates for electronic device 100, possibly lowering the cost of manufacturing and improving yield of these devices.

Also, this relative insensitivity to camber means that Z-interconnections 114 may desirably be smaller. With a rigid circuit board, the Z-interconnections should be large enough to compensate for the anticipated camber. In locations where the camber of both the rigid circuit board and the electronic device lead to large gaps, the Z-interconnection is desirably formed from a material with a sufficient thickness to cross the gap. When the Z-interconnections are made using deformable solder bumps, for example, it is desirable for the deformable bumps from which the Z-interconnections are formed to be at least as large as the largest expected gap, which constrains the minimum separation for the Z-interconnections. In locations where the combined cambers lead to a narrower gap, the deformable bumps may have too much material and expand laterally when deformed, further enlarging the minimum separation of the Z-interconnections. The issue may be further accentuated for large area arrays, as larger substrates tend to have larger cambers.

As FIG. 3A illustrates, this problem is greatly reduced by using exemplary flexible circuit board 102. This means that the overall thickness of the Z-interconnections may be reduced and that the density of the Z-interconnections may be greatly increased. Shorter Z-interconnections have less resistance and may lead to a thinner final device. Fine-pitch interconnections are practical with flex circuit back panels because flex circuits offer high density circuitry, and the interconnections can be made very small in cross-section. Minimum separations between the centers of Z-interconnections of <10 mils, or even <2 mils, may be achieved for large area arrays by using a flexible circuit board.

FIG. 3B illustrates the related problem of unevenly sized Z-interconnections. It may be difficult to precisely control the size of the deformable bumps from which Z-interconnections 114 are formed, but differently sized bumps lead to differently sized Z-interconnections. A rigid substrate may cause particularly large deformable bumps to expand too much laterally, possibly leading to shorts and may not form the Z-interconnections of particularly small deformable bumps. Additionally it is noted that it may be desirable to intentionally vary the size of the Z-interconnections. These issues may be addressed by using exemplary flexible circuit board 102 as shown in FIG. 3B.

FIG. 3C illustrate the use of exemplary flexible circuit board 102 when electronic device 100 includes non-planar substrate 304. It is noted that although non-planar substrate 304 is shown as substantially spherically concave, it could be convex, non-spherically curved, or bent at an angle as well. Such non-planar substrates may be particularly desirable for use in curved displays or detector, or the fit in particular spaces within a larger device. Alignment of the circuit board electrical connections to the device electrical connections to form the Z-interconnections may be significantly easier for a flexible circuit board, as the flexible circuit board may be aligned in stages to maintain the alignment across a large area.

Overall weight reduction of the completed device may also be possible because flex circuit is thinner and weights less than an equivalent ceramic, glass, or rigid organic circuit board.

FIG. 4 illustrates an exemplary method of manufacturing an electronic device and coupled flexible substrate according to the present invention. The method begins with electronic device 100 and flexible circuit board 102, step 400. Conductive bumps, or balls, 500 are formed on at least one of the device electrical contact 112 or the circuit board electrical contact 116 associated with each Z-interconnection 114, step 402. These conductive bumps may be formed of indium, a conductive solder, a conductive thermally-curable epoxy, a conductive radiation-curable epoxy, a conductive thermoplastic, and/or a conductive elastomer. Conductive bumps 500 may be formed on each device electrical contact 112 and each circuit board electrical contact 116 as shown in FIG. 5A, each circuit board electrical contact 116 as shown in FIG. 5B, each device electrical contact 112 as shown in FIG. 5C, or some device electrical contacts 112 and some circuit board electrical contacts 116 (not shown) as long as at least one conductive bump is formed for each Z-interconnection to be formed. Conductive bumps 500 may be formed using standard deposition or screen printing techniques, including sputtering, vaporization, and ink jet methods. It may be desirable to apply flux to conductive bumps formed of conductive solder.

It may be desirable to form the solder bumps on one side of each Z-interconnection and an organic conductor, such as a conductive thermally-curable epoxy, a conductive radiation-curable epoxy, a conductive thermoplastic, or a conductive elastomer, on the other side. This method may provide better yield than organic conductor bumps alone. It may also be desirable to use the exemplary embodiment of FIG. 5A with conductive bumps 500 on all of the electrical contacts when forming indium or other cold welded Z-interconnections.

As an alternative embodiment, a non-conductive fill layer may also be formed on the back surface of electronic device 100, the front surface of flexible circuit board 102, or both, alternative step 404. The non-conductive fill layer is desirably formed on a portion of the facing surfaces on which there are no Z-interconnections. This non-conductive fill layer may desirably be formed of a non-conductive (electrically) organic material such as a non-conductive epoxy, a non-conductive thermoplastic, and a non-conductive elastomer. Electrically conductive organic materials such as conductive epoxies, conductive thermoplastics, and conductive elastomers, are often formed by suspending metal particles in an organic matrix. The non-conductive organic material of the non-conductive fill layer may include thermally (but not electrically) conductive particle within its organic matrix to enhance its thermal conductivity. It may be desirable for conductive bumps 500 and the non-conductive fill layer to include the same organic matrix, but different suspended particles to simplify the curing process of step 410.

The non-conductive fill layer may desirably provide for addition thermal and mechanical coupling of electronic device 100 and flexible circuit board 102. This layer may also assist in forming a hermetic seal around electronic components, such as active material 110, coupled to the back surface of device substrate 104. Device substrate 104 and/or flexible substrate 118 may also form part of this hermetic seal.

Following either step 402 or step 404, the plurality of device electrical contacts 112 and the corresponding plurality of circuit board electrical contacts 116 are aligned with one another, step 406. FIGS. 5A-C show exemplary devices at this stage of manufacture according to the method of FIG. 4. The different embodiments are based on the locations in which conductive bumps 500 are formed in step 402.

Electronic device 100 and flexible circuit board 102 are then pressed together until each conductive bump contacts either the corresponding conductive bump (the exemplary embodiment of FIG. 5A) or electrical contact (the exemplary embodiments of FIGS. 5B and 5C), step 408. To ensure proper contact between the conductive bumps and the corresponding conductive bump or electrical contact, flexible circuit board 102 may be pressed using a surface, such as a rubber sheet over a hard surface, with sufficient elasticity to allow relatively even pressure over the surface even as flexible circuit board 102 flexes to desirably conform to the back surface of electronic device 100. Alternatively, an isostatic lamination method may be used to press electronic device 100 and flexible circuit board 102 together, using a flexible compressing membrane and a pressurized liquid, such as water. Isostatic lamination may be particularly useful exemplary embodiments in which the back surface of electronic device 100 is significantly non-planar, and/or significant deformation of the conductive bumps is desirable.

Conductive bumps 500 are then “cured” to form the Z-interconnections 114, step 410. The non-conductive fill layer may also be “cured” to form non-conductive fill 800, as shown in FIG. 8, at this step if alternative step 404 is used. The means of “curing” the conductive bumps (and possibly non-conductive fill layer) depends on the material from which they are formed, and may include, for example, heating or irradiating at least the conductive bumps.

It is contemplated that steps 406, 408, and 410 may be performed in stages with only a subset of the Z-interconnections being aligned, contacted, and cured at one time. This “piece meal” method may allow for improved yield of large area array devices, by allowing alignment corrections between sequential operations across the large surface area and numerous Z-interconnections.

For indium, or other cold welded Z-interconnections, the curing process involves applying sufficient pressure to electronic device 100 and flexible circuit board 102 to deform and cold weld conductive bumps 500 into Z-interconnections 114. This pressure may be applied uniformly or a pressor such as a roller may move across the back surface of the flexible substrate. This moving pressor method may be particular useful when large camber and/or non-uniformity of Z-interconnection size is expected, or a non-planar substrate is used.

Conductive bumps formed on conductive solder may be cured into Z-interconnections by using standard solder reflow techniques. It is noted that although a solder interconnection may be preferred to achieve high electrical conductivity, the desirable use of flux to facilitate solder wetting and the relatively high temperatures needed for solder reflow may be detrimental to the device. Therefore it may be desirable in some applications to combine a conductive solder bump on electrical contact with a conductive organic material on the other electrical contact to form a hybrid Z-interconnection. These exemplary hybrid Z-interconnections are cured according to the type of conductive organic material used.

To cure conductive bumps formed of conductive epoxies or elastomers it is desirable to press electronic device 100 and flexible circuit board 102 together to desirably deform the conductive epoxy or elastomer bumps into the shape of the Z-interconnections. For radiation-curable conductive epoxy, the deformed bumps are then irradiated with the appropriate light, i.e. UV for UV-curable epoxies, to harden the epoxy. Thermally-curable conductive epoxy bumps are heated to their curing temperature and allowed to harden. Conductive elastomer Z-interconnections are held in place until the elastomer material has set.

Conductive thermoplastic bumps are cured by heating the bumps to above the softening temperature of the thermoplastic. Electronic device 100 and flexible circuit board 102 are then desirably pressed together to desirably deform the conductive thermoplastic bumps into the shape of the Z-interconnections. The Z-interconnections are then cooled to below the softening temperature to harden the Z-interconnection.

If a non-conductive fill layer was formed in alternative step 404, this layer may be cured using the same method as the corresponding conductive bump material. If identical organic matrices are used, the curing parameters may be almost identical, greatly simplifying the curing process.

With the possible exception of the embodiment using conductive solder Z-interconnections, which may require high reflow temperatures, this method does not introduce any stresses to the glass device panel during assembly. In addition, when the module is thermal cycled, thermal expansion mismatch between the glass front panel and the flex circuit does not lead to significant stresses because of the relatively low elastic modulus of the flex circuit.

It is noted that, flexible substrate 118 may have a thermal expansion coefficient which is significantly different from the thermal expansion coefficient of electronic device 100 and they may be at different temperatures, which may lead to large differences in thermal expansion. Differences in the thermal expansion of the electronic device and a rigid circuit board are largely absorbed by the elasticity of the Z-interconnections, but this may lead to failure of some of the Z-interconnections. The relatively much larger elasticity of flexible circuit board 102 compared to standard rigid circuit boards results in less strain on the Z-interconnections due to thermal expansion differences.

FIG. 8 illustrates two additional alternative features to reduce mechanical strain on the Z-interconnections due to thermal cycling. Non-conductive fill 800 may desirably improve thermal coupling between electronic device 100 and flexible circuit board 102, thereby decreasing their thermal gradients. Non-conductive fill 800 may be formed as described above in relation to the exemplary method of FIG. 4, or it may be formed by using a back fill technique after Z-interconnections 114 have been cured. It is noted that the Z-interconnections and non-conductive fill may alternatively be formed together using an anisotropic conductive adhesive disposed between electronic device 100 and flexible circuit 102.

The second alternative exemplary feature shown in FIG. 8 is laminated substrate 802. Desirably, laminated substrate 802 has a thermal expansion coefficient approximately equal to the thermal expansion coefficient of device substrate 104. This substrate may desirably be laminated to flexible substrate 118 before or after the curing of Z-interconnections 114, depending on the interconnection tolerance and density desired. Laminated substrate 802 may reduce strain on Z-interconnections 114 and electronic device 100 by reducing differences in lateral thermal expansion between electronic device 100 and flexible circuit board 102. Also, laminated substrate 802 may improve the lateral diffusion of heat in flexible substrate 118.

FIGS. 6, 7, 10A and 10B illustrate several alternative exemplary embodiments of flexible circuit board 102. In FIG. 6 exemplary flexible circuit board 102 includes extended flexible substrate 600 and heat sinks 604. Extended flexible substrate 600 may include a connector portion 602 that extends beyond the edge of electronic device 100. Electrical traces 122, 124, 126, and 128 may be extended along this portion of the flexible substrate to provide easily accessible connections to the flexible substrate from off of the device. This feature may be particularly useful for tiled optical display applications in which it is desirable for electronic device (display element array) 100 to butt directly up to an adjacent tile. Because of its flexibility, connector portion 60 of extended flexible substrate 600 may extend behind the adjacent tile and allow connection to off-device circuitry without interfering with the adjacent tiles.

Heat sinks 604 may be mounted on the back surface of the flexible substrate to assist with heat dissipation. Due to high heat transfer through the relatively thin, flexible substrate these heat sink may have a significant effect.

FIG. 7 illustrates two more alternative features that may be added to flexible circuit board 102, dual-sided flexible substrate 700 with electrical traces on both the front and back surfaces and back surface mounted electronics 704. A subset of front surface electrical traces 122, 124, 126, and 128 may be electrically coupled to a subset of the back surface electrical traces by wirebond 702 and or vias in the flexible substrate (not shown). Back surface mounted electronics 704 are desirably electrically coupled to the backside electrical traces. Exemplary back surface mounted electronics may include integrated circuits, memory circuitry, power supply circuitry to provide operational power for the electronic components of electronic device 100, control circuitry to control the electronic components, and analysis circuitry to analyze output signals from the electronic components.

FIGS. 9, 10A and 10B include the additional feature of a flexible circuit board with an elevated portion which may be used to mount additional circuit board electronic components 904 similar to back surface mounted electronics 704 of FIG. 7. Exemplary flexible circuit board 102 of FIG. 9 includes Y-shaped flexible circuit board 900. Circuit board electronic components 904 may desirably be mounted to elevated portion 902 to provide a degree of thermal, and possibly electrical and electromagnetic, isolation from the rest of Y-shaped flexible circuit board 900. Thermal isolation may be improved by lengthening this elevated portion. Heat sinks may be added to elevated portion 902 to remove heat directly from electronic components 904.

Exemplary dual-sided folded flexible substrate 1000 in FIG. 10A and exemplary single-sided folded flexible substrate 1002 in FIG. 10B achieve this isolation by folding the flexible substrate away from electronic device 100 and then back between at least a pair of Z-interconnections to create folded elevated portion 1004. These folded flexible substrates may desirably be formed using the alternative “piece meal” method of manufacturing described above with reference to FIG. 4.

Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.

Claims

1. An electronic device and coupled flexible circuit board comprising:

the electronic device, including; a substrate having a back surface; a plurality of electronic components coupled to the substrate; and a plurality of device electrical contacts coupled to the back surface of the substrate and electrically coupled to the plurality of electronic components;
the flexible circuit board including; a flexible substrate having a front surface and a back surface; and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate corresponding to plurality of device electrical contacts;
a plurality of Z-interconnections, each Z-interconnection electrically and mechanically coupling one device electrical contact to a corresponding circuit board electrical contact; and
a fill layer mechanically coupling a portion of the back surface of the electronic device to a corresponding portion of the front surface of the flexible substrate.

2. The electronic device end and coupled flexible circuit board of claim 1, wherein the plurality of electronic components of the electronic device are sized and arranged to form a matrix array of electronic components.

3. The electronic device and coupled flexible circuit board of claim 1, wherein the plurality of electronic components of the electronic device are at least one of liquid crystal devices, light emitting diodes, organic light emitting diodes, and or optical detectors.

4. The electronic device and coupled flexible circuit board of claim 1, wherein a substrate material of the substrate of the electronic device includes at least one of glass, alumina, epoxy resin, fiberglass, polyester, and or polyimide.

5. The electronic device and coupled flexible circuit board of claim 1, wherein a flexible substrate material of the flexible substrate of the flexible circuit board includes at least one of polyester and or polyimide.

6. The electronic device and coupled flexible circuit board of claim 1, wherein;:

the plurality of device electrical contacts formed on the back surface of the substrate are formed of at east least one conductor selected from a group consisting of aluminum, aluminium-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, germanium, polyaniline, polyamide, and polysilicon; and
the an electrical trace and the plurality of circuit board electrical contacts formed on the front surface of the flexible substrate are formed of at least one conductor selected from a group consisting of aluminum, aluminum-calcium, gold, sliver silver, copper, nickel, titanium, tungsten, platinum, germanium, polyaniline, polyamide, and polysilicon.

7. The electronic device and coupled flexible circuit board of claim 1, wherein the plurality of Z-interconnections are formed of at least one conductor selected from a group consisting of indium, a conductive solder, a conductive thermally-curable epoxy, a conductive radiation-curable epoxy, a conductive thermoplastic, and a conductive elastomer.

8. The electronic device and coupled flexible circuit board of claim 1, further comprising:

a rigid substrate laminated to the flexible circuit board;
wherein the substrate of the electronic device has a first thermal expansion coefficient and the rigid substrate has second thermal expansion coefficient, which is approximately equal to the first thermal expansion coefficient.

9. The electronic device and coupled flexible circuit board of claim 1, wherein the back surface of the substrate of the electronic device is non-planar.

10. The electronic device and coupled flexible circuit board of claim 1, wherein:

a connection portion of the front surface of the flexible substrate of the flexible circuit board extends past an edge of the back surface of the substrate of the electronic device; and
a connector portion the of an electrical trace is formed on the connection portion of the front surface of the flexible substrate.

11. The electronic device and coupled flexible circuit board of claim 1, wherein the flexible circuit board further includes:

a backside electrical trace formed on the back surface of the flexible substrate, the backside electrical trace electrically coupled to at least one of plurality of electrical contacts formed on the front surface of the flexible substrate; and
at least one circuit board electronic component coupled to the back surface of the flexible substrate and electrically coupled to the backside electrical trace.

12. The electronic device and coupled flexible circuit board of claim 1, wherein the fill layer is formed of an organic material including at least one of a non-conductive epoxy, a non-conductive thermoplastic, and or a non-conductive elastomer.

13. The electronic device and coupled flexible circuit board of claim 12, wherein the fill layer further includes a plurality of thermally conductive, non-electrically conductive particles within the organic material.

14. An electronic device and coupled flexible circuit board comprising:

the electronic device including: a substrate having a back surface; a plurality of electronic components coupled to the substrate; and a plurality of device electrical contacts coupled to the back surface of the substrate and electrically coupled to the plurality of electronic components;
the flexible circuit board including: a flexible substrate having a front surface and a back surface; and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate corresponding to plurality of device electrical contacts;
a plurality of Z-interconnections, each Z-interconnection electrically and mechanically coupling one device electrical contact to a corresponding circuit board electrical contact;
wherein the flexible substrate of the flexible circuit board includes an elevated portion which extends away from the back surface of the substrate of the electronic device, and none of the plurality of circuit board electrical contacts is formed on the elevated portion of the flexible substrate of the flexible circuit board.

15. The electronic device and coupled flexible circuit board of claim 14, wherein the flexible circuit board further includes a circuit board electronic component coupled to the elevated portion of the flexible substrate and electrically coupled to at least one of the plurality of electrical contacts formed on the front surface of the flexible substrate.

16. An electronic device and coupled flexible circuit board comprising:

the electronic device including: a substrate having a back surface; a plurality of electronic components coupled to the substrate; and a plurality of device electrical contacts coupled to the back surface of the substrate and electrically coupled to the plurality of electronic components;
the flexible circuit board including; a flexible substrate having a front surface and a back surface; and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate corresponding to plurality of device electrical contacts;
a plurality of Z-interconnections, each Z-interconnection electrically and mechanically coupling one device electrical contact to a corresponding circuit board electrical contact;
wherein:
the flexible circuit board further includes a thermal conduction thermally conductive coating formed on at least a portion of the front surface of the flexible substrate; and
the thermal conduction thermally conductive coating is not electrically coupled to the plurality of electrical contacts formed on the front surface of the flexible substrate.

17. The electronic device and coupled flexible circuit board of claim 16, wherein the thermal conduction thermally conductive coating is formed of at least one of aluminum, aluminum-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, and or germanium.

18. An electronic device and coupled flexible circuit board comprising:

the electronic device, including; a substrate having a back surface; a plurality of electronic components coupled to the substrate; and a plurality of device electrical contacts coupled to the back surface of the substrate and electrically coupled to the plurality of electronic components;
the flexible circuit board including; a flexible substrate having a front surface and a back surface; and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate corresponding to plurality of device electrical contacts; and
a plurality of Z-interconnections, each Z-interconnection electrically and mechanically coupling one device electrical contact to a corresponding circuit board electrical contact;
wherein the flexible circuit board further includes a thermal conduction thermally conductive coating formed on at least a portion of the back surface of the flexible substrate.

19. An electronic device and coupled flexible circuit board comprising:

the electronic device including: a substrate having a back surface; a plurality of electronic components coupled to the substrate; and a plurality of device electrical contacts coupled to the back surface of the substrate and electrically coupled to the plurality of electronic components;
the flexible circuit board including; a flexible substrate having a front surface and a back surface; and a plurality of circuit board electrical contacts coupled to the front surface of the flexible substrate corresponding to plurality of device electrical contacts;
a plurality of Z-interconnections, each Z-interconnection electrically and mechanically coupling one device electrical contact to a corresponding circuit board electrical contact;
wherein the flexible circuit board further includes a heat sink coupled to the back surface of the flexible substrate.

20. The electronic device and coupled flexible circuit board of claim 1, wherein the flexible circuit board is substantially spherically concave, substantially spherically convex, or bent at an angle.

21. An apparatus, comprising:

a first substrate having a front surface and a back surface;
a plurality of electrical contacts coupled to the front surface of the first substrate and corresponding to a plurality of device electrical contacts coupled to an electronic device;
a plurality of Z-interconnections, wherein the individual Z-interconnections are configured to couple an electrical contact to a corresponding device electrical contact coupled to the electronic device; and
a fill layer configured to couple the front surface of the first substrate to a corresponding portion of a back surface of the electronic device, wherein the fill layer comprises a plurality of thermally conductive, non-electrically conductive particles within an organic material.

22. The apparatus of claim 21, wherein the first substrate comprises a flexible substrate.

23. The apparatus of claim 21, wherein the plurality of electrical contacts are formed of at least one conductor selected from the group consisting of aluminum, aluminum-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, germanium, polyaniline, polyamide, and polysilicon.

24. The apparatus of claim 21, wherein the plurality of Z-interconnections are formed of at least one conductor selected from a group consisting of indium, a conductive solder, a conductive thermally-curable epoxy, a conductive radiation-curable epoxy, a conductive thermoplastic, and a conductive elastomer.

25. The apparatus of claim 21, wherein the electronic device comprises:

a second substrate; and
a plurality of electronic components coupled both to the second substrate and to the plurality of device electrical contacts, wherein the plurality of device electrical contacts are coupled to the back surface of the second substrate.

26. The apparatus of claim 25, wherein the plurality of electronic components are sized and arranged to form a matrix.

27. The apparatus of claim 25, wherein the plurality of electronic components comprises at least one liquid crystal devices, light emitting diodes, organic light emitting diodes, or optical detectors.

28. The apparatus of claim 25, wherein the second substrate comprises at least one of glass, alumina, epoxy resin, fiberglass, polyester, or polyimide.

29. The apparatus of claim 25, wherein the plurality of device electrical contacts are formed of at least one conductor selected from a group consisting of aluminum, aluminum-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, germanium, polyaniline, polyamide, and polysilicon.

30. The apparatus of claim 24, wherein:

the first substrate is a flexible substrate;
the apparatus further comprises a rigid substrate coupled to the flexible substrate;
wherein the second substrate has a first thermal expansion coefficient; and
the rigid substrate has a second thermal expansion coefficient approximately equal to the first thermal expansion coefficient.

31. The apparatus of claim 25, wherein:

the first substrate is a flexible substrate; and
the back surface of the second substrate is non-planar.

32. The apparatus of claim 25, wherein:

a connection portion of the front surface of the first substrate extends past an edge of the back surface of the second substrate; and
a connector portion of an electrical trace is formed on the connection portion of the front surface of the first substrate.

33. The apparatus of claim 25, further comprising:

a backside electrical trace formed on the back surface of the first substrate, wherein the backside electrical trace electrically couples to at least one of the plurality of electrical contacts formed on the front surface of the first substrate; and
at least one electronic component coupled to the back surface of the first substrate and electrically coupled to the backside electrical trace.

34. The apparatus of claim 21, wherein the fill layer is formed of an organic material comprising at least one of a non-conductive epoxy, a non-conductive thermoplastic, or a non-conductive elastomer.

35. The apparatus of claim 21, wherein the Z-interconnections comprise a plurality of electrically conductive particles within an organic material.

36. The apparatus of claim 35, wherein the organic material in the fill layer and the organic material in the Z-interconnections are the same material.

37. An apparatus, comprising:

a flexible substrate having a front surface and a back surface;
a plurality of electrical contacts coupled to the front surface of the flexible substrate and corresponding to a plurality of device electrical contacts coupled to a device substrate of an electronic device; and
a plurality of Z-interconnections, wherein the individual Z-interconnections are configured to couple an electrical contact to a corresponding device electrical contact in the electronic device, wherein the flexible substrate comprises an elevated portion extending away from a back surface of the device substrate and none of the plurality of electrical contacts is formed on the elevated portion of the flexible substrate.

38. The apparatus of claim 37, further comprising an electronic component coupled to the elevated portion of the flexible substrate and electrically coupled to at least one of the plurality of electrical contacts formed on the front surface of the flexible substrate.

39. The apparatus of claim 37, wherein the electronic device further comprises a plurality of electronic components coupled to a front surface of the device substrate and coupled to the plurality of device electrical contacts, and wherein the plurality of device electrical contacts are coupled to a back surface of the device substrate.

40. The apparatus of claim 39, wherein the plurality of electronic components comprises at least one of liquid crystal devices, light emitting diodes, organic light emitting diodes, or optical detectors.

41. An apparatus comprising:

a first substrate having a front surface and a back surface;
a thermally conductive coating formed on at least a portion of the first substrate and configured for lateral heat diffusion;
a plurality of electrical contacts coupled to the front surface of the first substrate and corresponding to a plurality of device electrical contacts coupled to an electronic device; and
a plurality of Z-interconnections, wherein the individual Z-interconnections are configured to couple an electrical contact to a corresponding device electrical contact of the electronic device.

42. The apparatus of claim 41, wherein the thermally conductive coating is formed on at least a portion of the front surface of the first substrate, and wherein the thermally conductive coating is not electrically coupled to the plurality of electrical contacts coupled to the front surface of the first substrate.

43. The apparatus of claim 41, wherein the thermally conductive coating is formed on at least a portion of the back surface of the first substrate.

44. The apparatus of claim 41, wherein the thermally conductive coating is formed of at least one aluminum, aluminum-calcium, gold, silver, copper, nickel, titanium, tungsten, platinum, or germanium.

45. The apparatus of claim 41, wherein the electronic device comprises:

a second substrate; and
a plurality of electronic components coupled both to a front surface of the second substrate and to the plurality of device electrical contacts, wherein the plurality of device electrical contacts is coupled to a back surface of the second substrate.

46. The apparatus of claim 45, wherein the plurality of electronic components comprises at least one of liquid crystal devices, light emitting diodes, organic light emitting diodes, or optical detectors.

47. An electronic device, comprising:

a substrate having a surface;
a plurality of electrical contacts coupled to the surface of the substrate;
a plurality of Z-interconnections coupled to the electrical contacts; and
a thermally conductive, non-electrically conductive fill layer around the Z-interconnections;
wherein the fill layer comprises thermally conductive, non-electrically conductive particles in an organic matrix and the Z-interconnections comprise electrically conductive particles in an organic matrix.

48. The electronic device of claim 47, wherein the organic matrix of the fill layer and the organic matrix of the Z-interconnections comprise the same organic material.

Referenced Cited
U.S. Patent Documents
3966302 June 29, 1976 Mikoda et al.
4015166 March 29, 1977 Ohshima et al.
4137481 January 30, 1979 Hilsum et al.
4139261 February 13, 1979 Hilsum
4170772 October 9, 1979 Bly
4209735 June 24, 1980 Yoshida
4225005 September 30, 1980 Okabayashi
4403831 September 13, 1983 Amano
4431270 February 14, 1984 Funada et al.
4474839 October 2, 1984 Takamatsu et al.
4482212 November 13, 1984 Takamatsu et al.
4487480 December 11, 1984 Nonomura et al.
4549174 October 22, 1985 Funada et al.
4573766 March 4, 1986 Bournay et al.
4580877 April 8, 1986 Washo
4650288 March 17, 1987 White
4666254 May 19, 1987 Itoh et al.
4670690 June 2, 1987 Ketchpel
4672264 June 9, 1987 Higton
4690510 September 1, 1987 Takamatsu et al.
4690511 September 1, 1987 Watanabe
4710680 December 1, 1987 Nakatani et al.
4716341 December 29, 1987 Oida et al.
4718751 January 12, 1988 Kamijo et al.
4719385 January 12, 1988 Barrow et al.
4760389 July 26, 1988 Aoki et al.
4775861 October 4, 1988 Saito
4778258 October 18, 1988 Parks et al.
4802873 February 7, 1989 Barrow et al.
4812017 March 14, 1989 Piper
4828363 May 9, 1989 Yamazaki
4859904 August 22, 1989 Higton et al.
4862153 August 29, 1989 Nakatani et al.
4906071 March 6, 1990 Takahara et al.
4914348 April 3, 1990 Kameyama et al.
4916308 April 10, 1990 Meadows
4917474 April 17, 1990 Yamazaki et al.
4943143 July 24, 1990 Yamashita
4963788 October 16, 1990 King et al.
4985663 January 15, 1991 Nakatani
4988168 January 29, 1991 Dickerson et al.
4999539 March 12, 1991 Coovert et al.
5036249 July 30, 1991 Pike-Biegunski et al.
5069534 December 3, 1991 Hirai
5084961 February 4, 1992 Yoshikawa
5106197 April 21, 1992 Ohuchida et al.
5122870 June 16, 1992 Takeda et al.
5142386 August 25, 1992 Ishihara
5149671 September 22, 1992 Koh et al.
5150238 September 22, 1992 Vogeley et al.
5173839 December 22, 1992 Metz, Jr.
5179459 January 12, 1993 Plesinger
5182489 January 26, 1993 Sano
5184235 February 2, 1993 Sukegawa
5189539 February 23, 1993 Suzuki
5233448 August 3, 1993 Wu
5235451 August 10, 1993 Bryan
5260818 November 9, 1993 Wu
5272553 December 21, 1993 Yamamoto et al.
5293262 March 8, 1994 Adachi et al.
5295008 March 15, 1994 Mizobata et al.
5302468 April 12, 1994 Namiki et al.
5304895 April 19, 1994 Ujihara
5342477 August 30, 1994 Cathey
5367390 November 22, 1994 Scheffer et al.
5377027 December 27, 1994 Jelley et al.
5386341 January 31, 1995 Olson et al.
5412495 May 2, 1995 Kim
5422747 June 6, 1995 Wakita
5457356 October 10, 1995 Parodos
5461400 October 24, 1995 Ishii et al.
5493075 February 20, 1996 Chong et al.
5514933 May 7, 1996 Ward et al.
5515191 May 7, 1996 Swirbel
5523873 June 4, 1996 Bradford et al.
5525867 June 11, 1996 Williams
5532906 July 2, 1996 Hanari et al.
5537233 July 16, 1996 Miura et al.
5563621 October 8, 1996 Silsby
5565885 October 15, 1996 Tamanoi
5585695 December 17, 1996 Kitai
5592193 January 7, 1997 Chen
5596246 January 21, 1997 Budzilek et al.
5608551 March 4, 1997 Biles et al.
5612798 March 18, 1997 Tuli
5634265 June 3, 1997 Difrancesco
5646480 July 8, 1997 Carroll et al.
5654731 August 5, 1997 Stewart et al.
5654781 August 5, 1997 Izumi
5668058 September 16, 1997 Tanioka et al.
5668617 September 16, 1997 Na
5670980 September 23, 1997 Kuga
5703437 December 30, 1997 Komaki
5710071 January 20, 1998 Beddingfield et al.
5712528 January 27, 1998 Barrow et al.
5714841 February 3, 1998 Miyazaki
5729317 March 17, 1998 Izumi
5729896 March 24, 1998 Dalal et al.
5742371 April 21, 1998 Izumi
5754267 May 19, 1998 Izumi
5757443 May 26, 1998 Kobayashi
5760855 June 2, 1998 Nakase et al.
5774107 June 30, 1998 Inou
5777705 July 7, 1998 Pierson et al.
5790219 August 4, 1998 Yamagishi et al.
5796452 August 18, 1998 Pierson
5800232 September 1, 1998 Miyazaki
5803579 September 8, 1998 Turnbull et al.
5808710 September 15, 1998 Pierson
5812226 September 22, 1998 Izumi et al.
5821456 October 13, 1998 Wille et al.
5838405 November 17, 1998 Izumi et al.
5847783 December 8, 1998 Hiramoto et al.
5847785 December 8, 1998 Izumi
5854663 December 29, 1998 Oh et al.
5856856 January 5, 1999 Malhi
5875011 February 23, 1999 Pierson et al.
5880705 March 9, 1999 Onyskevych et al.
5880795 March 9, 1999 Nagata et al.
5891753 April 6, 1999 Akram
5903325 May 11, 1999 Ilcisin et al.
5905557 May 18, 1999 Yaniv
5909260 June 1, 1999 Ilcisin et al.
5914562 June 22, 1999 Khan et al.
5929562 July 27, 1999 Pichler
5929959 July 27, 1999 Iida et al.
5932967 August 3, 1999 Chikazawa
5936600 August 10, 1999 Ohashi et al.
5940157 August 17, 1999 Nakamura et al.
5946063 August 31, 1999 Izumi
5959710 September 28, 1999 Yaniv
5965907 October 12, 1999 Huang et al.
5977718 November 2, 1999 Christensen
6005649 December 21, 1999 Krusius et al.
6019654 February 1, 2000 Kim
6025893 February 15, 2000 Kadowaki et al.
6034657 March 7, 2000 Tokunaga et al.
6051928 April 18, 2000 Choi et al.
6055030 April 25, 2000 Izumi
6064153 May 16, 2000 Ilcisin et al.
6064454 May 16, 2000 Kim et al.
6066512 May 23, 2000 Hashimoto
6067143 May 23, 2000 Tomita
6069446 May 30, 2000 Kim
6072274 June 6, 2000 Jondrow
6075504 June 13, 2000 Stoller
6091194 July 18, 2000 Swirbel et al.
6091468 July 18, 2000 Kim et al.
6097609 August 1, 2000 Kabadi
6100584 August 8, 2000 Noritake et al.
6108029 August 22, 2000 Lo
6133689 October 17, 2000 Watkins et al.
6140765 October 31, 2000 Kim et al.
6144438 November 7, 2000 Izumi
6147666 November 14, 2000 Yaniv
6147739 November 14, 2000 Shibatani
6157355 December 5, 2000 Ide
6184968 February 6, 2001 Taylor-Smith
6188459 February 13, 2001 Kim
6198518 March 6, 2001 Kuga
6218784 April 17, 2001 Jang et al.
6252564 June 26, 2001 Albert et al.
6268843 July 31, 2001 Arakawa
6271598 August 7, 2001 Vindasius et al.
6274978 August 14, 2001 Roach et al.
6275220 August 14, 2001 Nitta
6275279 August 14, 2001 Asuma et al.
6275280 August 14, 2001 Kajita et al.
6285433 September 4, 2001 Kawasaki
6320312 November 20, 2001 Kim et al.
6329752 December 11, 2001 Choi
6337672 January 8, 2002 Inoguchi et al.
6344714 February 5, 2002 Su et al.
6346973 February 12, 2002 Shibamoto et al.
6359235 March 19, 2002 Hayashi
6366269 April 2, 2002 Watkins et al.
6369792 April 9, 2002 Kikinis
6370019 April 9, 2002 Matthies et al.
6373142 April 16, 2002 Hoang
6384529 May 7, 2002 Tang et al.
6400428 June 4, 2002 Izumi
6404412 June 11, 2002 Van Asma
6410415 June 25, 2002 Estes et al.
6410841 June 25, 2002 Oh et al.
6417898 July 9, 2002 Izumi
6420830 July 16, 2002 Youn
6437505 August 20, 2002 Baret et al.
6439731 August 27, 2002 Johnson et al.
6462803 October 8, 2002 Kumagai et al.
6466294 October 15, 2002 Yamagishi et al.
6479945 November 12, 2002 Buzak et al.
6483482 November 19, 2002 Kim
6495958 December 17, 2002 Moon
6498592 December 24, 2002 Matthies
6501528 December 31, 2002 Hamada
6541919 April 1, 2003 Roach et al.
6624570 September 23, 2003 Nishio et al.
6683665 January 27, 2004 Matthies
6785144 August 31, 2004 Akram
20020008463 January 24, 2002 Roach
20020012096 January 31, 2002 Uchiyama
20030011300 January 16, 2003 Pslanisamy et al.
20030011302 January 16, 2003 Palanisamy
Foreign Patent Documents
WO 99/41732 August 1999 WO
Other references
  • Office Action issued for U.S. Appl. No. 11/825,328 mailed Apr. 3, 2009.
  • International Search Report for PCT/US2003/23755 mailed on Mar. 17, 2004.
  • International Search Report for PCT/US2003/23855 mailed on Aug. 27, 2004.
  • Horowitz, Paul et al., “The ““Mylar” or photoplot”, The Art of Electronics, 1989 (2nd edition), p. 833, New York, New York.
  • Non-Final Office Action issued in U.S. Appl. No. 11/825,328 and mailed Feb. 1, 2010.
  • Non-Final Office Action issued in U.S. Appl. No. 11/900,009 and mailed on Jan. 27, 2010.
  • Non-final office Action issued in U.S. Appl. No. 11/900,009 and mailed on Jun. 3, 2010.
Patent History
Patent number: RE41669
Type: Grant
Filed: Jan 26, 2007
Date of Patent: Sep 14, 2010
Inventor: Ponnusamy Palanisamy (Lansdale, PA)
Primary Examiner: Steven J Fulk
Application Number: 11/699,322