Row-clearing unit for agricultural implement

- Dawn Equipment Company

An agricultural row-clearing unit for use with an agricultural row unit attached to a towing frame hitched to a tractor comprises an attachment frame adapted to be rigidly connected to the towing frame, a support element having a leading end pivotally connected to the attachment frame for vertical pivoting movement relative to the attachment frame, at least one agricultural tool mounted on the trailing end of the support element, and a hydraulic cylinder connected between the attachment frame and the support element for pivoting the support element around the pivotal connection to the attachment frame. The hydraulic cylinder includes a movable rod coupling the cylinder to the support element, a cavity within the cylinder for receiving pressurized hydraulic fluid for advancing the rod in a direction that pivots the support element downwardly toward the soil, and an energy storage device coupled to the rod and the cylinder to apply a retracting force to the rod to bias the support element in a direction that urges the agricultural tool(s) upwardly away from the soil.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to agricultural implements and, more particularly, to an agricultural row-clearing unit for use with agricultural implements such as planting row units.

SUMMARY OF THE INVENTION

In one embodiment, an agricultural row clearing unit for use with an agricultural planter row unit attached to a towing frame hitched to a tractor comprises an attachment frame adapted to be rigidly connected to the towing frame, a support element having a leading end pivotally connected to the attachment frame for vertical pivoting movement relative to the attachment frame, at least one agricultural tool mounted on the trailing end of the support element, and a hydraulic cylinder connected between the attachment frame and the support element for pivoting the support element around the pivotal connection to the attachment frame. The hydraulic cylinder includes a movable rod coupling the cylinder to the support element, a cavity within the cylinder for receiving pressurized hydraulic fluid for advancing the rod in a direction that pivots the support element downwardly, and an energy storage device coupled to the rod and the cylinder to apply a retracting force to the rod to bias the support element in a direction that urges the agricultural tool(s) upwardly away from the soil.

One implementation also includes an accumulator having a fluid chamber containing a diaphragm. The portion of the chamber on one side of the diaphragm is connected to the hydraulic-fluid cavity in said hydraulic cylinder, and the portion of the chamber on the other side of the diaphragm contains a pressurized gas.

In one particular implementation, the energy storage device is a compressed coil spring disposed around a portion of the movable rod with one end of the spring coupled to said rod and the other end of the spring coupled to the cylinder so that the spring continuously biases the movable rod in a retracting direction relative to the cylinder.

In modified embodiments, the row-clearing wheels may be replaced with other agricultural tools, such as fertilizer openers or rollers to firm loose soil. With the row-clearing wheels or any other agricultural tools, the unit may be used without a planting row unit, or any other row unit, and the frame element may be connected directly to the towing frame.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a side elevation of a planting row unit and a row-clearing unit, both attached to a towing frame, with the row-clearing unit in a lowered position.

FIG. 2 is the same side elevation shown in FIG. 1 with the row-clearing unit in a raised position.

FIG. 3 is an enlarged perspective of the row-clearing unit shown in FIGS. 1 and 2.

FIGS. 4, 5 and 6 are side elevations of the main components of the row-clearing unit shown in FIGS. 1-3 in three different vertical positions.

FIGS. 7, 8 and 9 are side elevations of the hydraulic cylinder of the row-clearing unit shown in FIGS. 1-6 with the cylinder rod in three different positions corresponding to the positions shown in FIGS. 5, 6 and 4, respectively.

FIG. 10 is a schematic diagram of a first hydraulic control system for use in the row-clearing unit shown in FIGS. 1-6.

FIG. 11 is a schematic diagram of a second hydraulic control system for use in the row-clearing unit shown in FIGS. 1-6.

FIG. 12 is a diagram illustrating one application of the hydraulic control system of FIG. 11.

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.

Turning now to the drawings, the illustrative implement includes a row-clearing unit 10 mounted in front of a planting row unit 11. A common elongated hollow towing frame 12 (typically hitched to a tractor by a draw bar) is rigidly attached to the front frame 13 of a four-bar linkage assembly 14 that is part of the row unit 11. The four-bar (sometimes referred to as “parallel-bar”) linkage assembly 14 is a conventional and well known linkage used in agricultural implements to permit the raising and lowering of tools attached thereto.

As the planting row unit 11 is advanced by the tractor, a coulter wheel 15 works the soil and then other portions of the row unit part the cleared soil to form a seed slot, deposit seed in the seed slot and fertilizer adjacent to the seed slot, and close the seed slot by distributing loosened soil into the seed slot with a closing wheel 18. A gauge wheel 19 determines the planting depth for the seed and the height of introduction of fertilizer, etc. Bins 16 and 17 on the row unit carry the chemicals and seed which are directed into the soil. The planting row unit 11 is urged downwardly against the soil by its own weight. If it is desired to have the ability to increase this downward force, or to be able to adjust the force, a hydraulic or pneumatic cylinder and/or one or more springs may be added between the front frame 13 and the linkage 14 to urge the row unit downwardly with a controllable force. Such a hydraulic cylinder may also be used to lift the row unit off the ground for transport by a heavier, stronger, fixed-height frame that is also used to transport large quantities of fertilizer for application via multiple residue-clearing and tillage row units. This hydraulic or pneumatic cylinder may be controlled to adjust the downward force for different soil conditions such as is described in U.S. Pat. Nos. 5,709,271, 5,685,245 and 5,479,992.

The row-clearing unit 10 includes an attachment frame that includes a pair of rigid arms 20 and 21 adapted to be rigidly connected to the towing frame 12. In the illustrative embodiment, the arms 20 and 21 are bolted to opposite sides of the front frame 13 of the row unit 11, which in turn is rigidly attached to the towing frame 12. An alternative is to attach the row-clearing unit 10 directly to the towing frame 12. At the bottom of the row-clearing unit 10, a pair of cooperating toothed clearing wheels 22 and 23 are positioned upstream of the coulter wheel 15 of the planting row unit 11.

The clearing wheels 22, 23 are arranged for rotation about transverse axes and are driven by the underlying soil as the wheels are advanced over the soil. The illustrative wheels 22, 23 are a type currently sold by the assignee of the present invention under the trademark TRASHWHEEL. The toothed wheels 22, 23 cooperate to produce a scissors action that breaks up compacted soil and simultaneously clears residue out of the path of planting. The wheels 21 and 22 kick residue off to opposite sides, thus clearing a row for planting. To this end, the lower edges are tilted outwardly to assist in clearing the row to be planted. This arrangement is particularly well suited for strip tilling, where the strip cleared for planting is typically only about 10 inches of the 30-inch center-to-center spacing between planting rows.

In FIGS. 1 and 2, the clearing wheels 22 and 23 are shown in two different vertical positions. Specifically, the wheels 22, 23 are in a lower position in FIG. 1, where the elevation of the soil is decreasing, than in FIG. 2, where the soil elevation is increasing.

The row-clearing unit 10 is shown in more detail in FIGS. 3-9. The two frame arms 20, 21 are interconnected by an arched crossbar 24 that includes a pair of journals 25 and 26 for receiving the leading ends of a pair of laterally spaced support arms 30 and 31. The support arms 30, 31 are thus pivotally suspended from the crossbar 24 of the attachment frame, so that the trailing ends of the support arms 30, 31 can be pivoted in an arc around a horizontal axis 32 extending through the two journals 25, 26.

The row-clearing wheels 22 and 23 are mounted on the trailing ends of the support arms 30 and 31, which are bolted or welded together. As can be seen in FIGS. 4-6, the wheels 22, 23 can be raised and lowered by pivoting the support arms 30, 31 around the horizontal axis 32. The pivoting movement of the support arms 30, 31 is controlled by a hydraulic cylinder 70 connected between the fixed crossbar 24 and the trailing ends of the support arms 30, 31. FIGS. 4-6 show the support arms 30, 31, and thus the clearing wheels 22, 23, in progressively lower positions. The downward pressure applied to the support arms 30, 31 to urge the clearing wheels 22, 23 against the soil is also controlled by the hydraulic cylinder 70.

The hydraulic cylinder 70 is shown in more detail in FIGS. 7-9. Pressurized hydraulic fluid from the tractor is supplied by a hose (not shown) to a port 71 that leads into an annular cavity 72 surrounding a rod 73, and then on into an accumulator 79. After the internal cavities connected to the port 71 are filled with pressurized hydraulic fluid, the port is closed by a valve, as will be described in more detail below. The lower end of the annular cavity 72 is formed by a shoulder 74 on the rod 73, so that the hydraulic pressure exerted by the hydraulic fluid on the surface of the shoulder 74 urges the rod 73 downwardly (as viewed in FIGS. 7-9), with a force determined by the pressure of the hydraulic fluid and the area of the exposed surface of the shoulder 74. The hydraulic fluid thus urges the rod 73 in an advancing direction (see FIG. 8).

When the rod 73 is advanced outwardly from the cylinder 70, the rod pivots the support arms 30, 31 downwardly, thereby lowering the clearing wheels 22, 23. Conversely, retracting movement of the rod 73 pivots the support arms 30, 31 upwardly, thereby raising the clearing wheels 22, 23.

The accumulator 79 includes a diaphragm that divides the interior of the accumulator into a hydraulic-fluid chamber 79a and a gas-filled chamber 79b, e.g., filled with pressurized nitrogen. FIG. 7 shows the rod 73 in a position where the diaphragm is not deflected in either direction, indicating that the pressures exerted on opposite sides of the diaphragm are substantially equal. In FIG. 8, the hydraulic force has advanced the rod 73 to its most advanced position, which occurs when the resistance offered by the soil to downward movement of the clearing wheels 22, 23 is reduced (e.g., by softer soil or a depression in the soil).

As can be seen in FIG. 8, advancing movement of the rod 73 is limited by the “bottoming out” of a coil spring 75 located between a flange 76 attached to the inner end of the rod 73 and a flange 77 attached to the interior of the cylinder 70. As the rod 73 is advanced, the coil spring 75 is progressively compressed until it reaches its fully compressed condition illustrated in FIG. 8, which prevents any further advancement of the rod 73. Advancing movement of the rod 73 also expands the size of the annular cavity 72 (see FIG. 8), which causes the diaphragm 78 in the accumulator 79 to deflect to the position illustrated in FIG. 8 and reduce the amount of hydraulic fluid in the accumulator 80. When the rod 73 is in this advanced position, the support arms 30, 31 and the clearing wheels 22, 23 are pivoted to their lowermost positions relative to the row unit 11.

In FIG. 9, the rod 73 has been withdrawn to its most retracted position, which can occur when the clearing wheels 22, 23 encounter a rock or other obstruction, for example. When the rod 73 is in this retracted position, the support arms 30, 31 and the clearing wheels 22, 23 are pivoted to their uppermost positions relative to the row unit. As can be seen in FIG. 9, retracting movement of the rod 73 is limited by engagement of a shoulder 80 on the rod 73 with a ring 81 on the trailing end of the cylinder 70. As the rod 73 is retracted by forces exerted on the clearing wheels 22, 23, the coil spring 75 is progressively expanded, as illustrated in FIG. 9, but still applies a retracting bias to the rod 73.

Retracting movement of the rod 73 virtually eliminates the annular cavity 72 (see FIG. 9), which causes a portion of the fixed volume of hydraulic fluid in the cylinder 70 to flow into the chamber 79a of the accumulator 79, causing the diaphragm 78 to deflect to the position illustrated in FIG. 9. This deflection of the diaphragm 78 into the chamber 79b compresses the gas in that chamber. To enter the chamber 79a, the hydraulic fluid must flow through a restriction 82, which limits the rate at which the hydraulic fluid flows into the accumulator. This controlled rate of flow of the hydraulic fluid has a damping effect on the rate at which the rod 73 retracts or advances, thereby avoiding sudden large movements of the moving parts of the row-clearing unit.

When the external obstruction causing the row cleaners to rise is removed from the clearing wheels, the combined effects of the pressurized gas in the accumulator 79 on the diaphragm 78 and the pressure of the hydraulic fluid move the rod 73 to a more advanced position. This downward force on the clearing wheels 22, 23 holds them against the soil and prevents uncontrolled bouncing of the wheels over irregular terrain, but is not so excessive as to leave a trench in the soil. The downward force applied to the clearing wheels 22, 23 can be adjusted by changing the pressure of the hydraulic fluid supplied to the cylinder 70.

FIG. 10 is a schematic of a hydraulic control system for supplying pressurized hydraulic fluid to the cylinders 70 of multiple row-clearing units. A source 100 of pressurized hydraulic fluid, typically located on a tractor, supplies hydraulic fluid under pressure to a valve 101 via supply line 102 and receives returned fluid through a return line 103. The valve 101 can be set by an electrical control signal S1 on line 104 to deliver hydraulic fluid to an output line 105 at a desired constant pressure. The output line is connected to a manifold 106 that in turn delivers the pressurized hydraulic fluid to individual feed lines 107 connected to the ports 71 of the respective hydraulic cylinders 70 of the individual row-clearing units. With this control system, the valve 101 is turned off, preferably by a manually controlled on/off valve V, after all the cylinders 70 have been filled with pressurized hydraulic fluid, to maintain a fixed volume of fluid in each cylinder.

FIG. 11 is a schematic of a modified hydraulic control system that permits individual control of the supply of hydraulic fluid to the cylinder 70 each separate row-clearing unit via feed lines 107 connected to the ports 71 of the respective cylinders 70. Portions of this system that are common to those of the system of FIG. 10 are identified by the same reference numbers. The difference in this system is that each separate feed line 107 leading to one of the row-clearing units is provided with a separate control valve 110 that receives its own separate control signal on a line 111 from a controller 112. This arrangement permits the supply of pressurized hydraulic fluid to each row-clearing unit to be turned off and on at different times by the separate valve 110 for each unit, with the times being controlled by the separate control signals supplied to the valves 110 by the controller 112. The individual valves 110 receive pressurized hydraulic fluid via the manifold 106, and return hydraulic fluid to a sump on the tractor via separate return line 113 connected to a return manifold 114 connected back to the hydraulic system 100 of the tractor.

FIG. 12 illustrates on application for the controllable hydraulic control system of FIG. 11. Modern agricultural equipment often includes GPS systems that enable the user to know precisely where a tractor is located in real time. Thus, when a gang of planting row units 120 towed by a tractor 121 begins to cross a headland 122 in which the rows 123 are not orthogonal to the main rows 124 of a field, each planting row unit 120 can be turned off just as it enters the headland 122, to avoid double-planting while the tractor 121 makes a turn through the headland. With the control system of FIG. 11, the hydraulic cylinder 70 of each row unit can also be separately controlled to turn off the supply of pressurized hydraulic fluid at a different time for each row-clearing unit, so that each row-clearing unit is raised just as it enters the headland, to avoid disrupting the rows already planted in the headland.

One benefit of the system of FIG. 11 is that as agricultural planters, seeders, fertilizer applicators, tillage equipment and the like become wider with more row units on each frame, often 36 30-inch rows or 54 20-inch rows on a single 90-foot wide toolbar, is that each row-clearing unit can float vertically independently of every other row-clearing unit. Yet the following row units still have the down force remotely adjustable from the cab of the tractor or other selected location. This permits very efficient operation of a wide planter or other agricultural machine in varying terrain without having to stop to make manual adjustment to a large number of row-clearing units, resulting in a reduction in the number of acres planted in a given time period. One of the most important factors in obtaining a maximum crop yield is timely planting. By permitting remote down force adjustment of each row-clearing unit (or group of units), including the ability to quickly release all down force and let the row cleaner quickly rise, e.g., when approaching a wet spot in the field, one can significantly increase the planter productivity or acres planted per day, thereby improving yields and reducing costs of production.

On wide planters or other equipment, at times 90 feet wide or more and planting at 6 mph or more forward speed, one row-clearing unit must often rise or fall quickly to clear a rock or plant into an abrupt soil depression. Any resistance to quick movement results in either gouging of the soil or an uncleared portion of the field and reduced yield. With the row-clearing unit having its own hydraulic accumulator, the clearing wheels and the rod of the hydraulic cylinder can move quickly and with a nearly constant down force. Oil displaced by or required by quick movement of the rod and clearing wheels (or other agricultural tool) is quickly moved into or out of the closely mounted accumulator which is an integral part of each row-clearing unit. The accumulator diaphragm or piston supplies or accepts fluid as required at a relatively constant pressure and down force as selected manually or automatically by the hydraulic control system. By following the soil profile closely and leaving a more uniform surface, the toolbar-frame-mounted row-clearing unit permits the planter row unit following independently behind to use less down force for its function, resulting in more uniform seed depth control and more uniform seedling emergence. More uniform seedling stands usually result in higher yields than less uniform seedling stands produced by planters with less accurate row cleaner ground following.

Although the illustrative embodiments described above utilize clearing wheels as the agricultural tools, it should be understood that the invention is also applicable to row units that utilize other agricultural tools, such as fertilizer openers or rollers for firming loose soil.

It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims

1. An agricultural row-clearing unit for use with an agricultural planting row unit attached to a towing frame hitched to a tractor, said row clearing unit comprising:

an attachment frame adapted to be rigidly connected to said towing frame,
a support element having a leading end pivotally connected to said attachment frame at a pivotal connection for vertical pivoting movement relative to said attachment frame,
at least one row-clearing wheel mounted on the trailing end of said support element,
a hydraulic cylinder pivotally connected between said attachment frame and said support element for pivoting said support element around said pivotal connection to said attachment frame, said hydraulic cylinder including a movable rod coupling said cylinder to said support element, a cavity within said cylinder for receiving pressurized hydraulic fluid for advancing said rod in a direction that pivots said support element downwardly toward the soil, and an energy storage device coupled to said rod and said cylinder to apply a retracting force to said rod to pivotally bias said support element in a direction that urges said at least one row-clearing wheel upwardly away from the soil.

2. The row-clearing unit of claim 1 which includes an accumulator having a fluid chamber containing a diaphragm, the portion of said chamber on one side of said diaphragm connected to said hydraulic-fluid cavity in said hydraulic cylinder, and the portion of said chamber on the other side of said diaphragm containing a pressurized gas.

3. The row-clearing unit of claim 2 in which said cavity is closed so that the volume of hydraulic fluid in said cylinder and accumulator is fixed.

4. The row-clearing unit of claim 1 in which said energy storage device is a compressed coil spring disposed around a portion of said rod with one end of said spring coupled to said rod and the other end of said spring coupled to said cylinder so that said spring continuously biases said movable rod in a retracting direction relative to said cylinder.

5. The row-clearing unit of claim 1 in which said rod forms a shoulder within said cavity so that the pressure of said hydraulic fluid urges said rod in an advancing direction.

6. The row-clearing unit of claim 1 in which said agricultural row unit is a planting row unit.

7. The row-clearing unit of claim 6 which said attachment frame is adapted to be rigidly connected to said towing frame via an attachment frame of a planting row unit.

8. An agricultural implement for use with a towing frame adapted to be hitched to a tractor, said implement comprising

an attachment frame adapted to be rigidly connected to said towing frame,
a support element having a leading end pivotally connected to said attachment frame at a pivotal connection for vertical pivoting movement relative to said attachment frame,
at least one agricultural tool mounted on the trailing end of said support element,
a hydraulic cylinder pivotally connected between said attachment frame and said support element for pivoting said support element around said pivotal connection to said attachment frame, said hydraulic cylinder including a movable rod coupling said cylinder to said support element, a cavity within said cylinder for receiving pressurized hydraulic fluid for advancing said rod in a direction that pivots said support element downwardly toward the soil, and an energy storage device coupled to said rod and said cylinder to apply a retracting force to said rod to pivotally bias said support element in a direction that urges said at least one agricultural tool upwardly away from the soil.

9. An agricultural implement for use with a towing frame adapted to be hitched to a tractor, said implement comprising

a planting row unit having a frame element rigidly adapted to be rigidly attached to said towing frame, and a planting assembly pivotally connected to said frame element, and
a row-clearing unit having a frame element adapted to be rigidly connected to said towing frame, a support element having a leading end pivotally connected to said frame element of said row-clearing unit at a pivotal connection for vertical pivoting movement of said support element, at least one clearing wheel mounted on the trailing end of said support element, a hydraulic cylinder pivotally connected between said frame element of said row-clearing unit and said support element for pivoting said support element around said pivotal connection, said hydraulic cylinder including a movable rod coupling said cylinder to said support element, a cavity within said cylinder for receiving pressurized hydraulic fluid for advancing said rod in a direction that pivots said support element downwardly, and an energy storage device coupled to said rod and said cylinder to apply a retracting force to said rod to pivotally bias said support element in a direction that urges said at least one clearing wheel upwardly away from the soil to be cleared.

10. The agricultural implement of claim 9 in which said frame element of said row-clearing unit is adapted to be rigidly connected to said towing frame via said frame element of said planting row unit.

11. The agricultural implement of claim 8, in which said energy storage device is a compressed coil spring.

12. The agricultural implement of claim 11, in which a bias force of said compressed coil spring is adjustable.

13. The agricultural implement of claim 12, in which said compressed coil spring is configured to provide an upward bias force.

14. The agricultural implement of claim 11, in which said compressed coil spring is disposed around a portion of said rod with one end of said spring coupled to said rod and the other end of said spring coupled to said cylinder so that said spring continuously biases said movable rod in a retracting direction relative to said cylinder.

15. The agricultural implement of claim 11, in which said compressed spring coil is disposed between a flange attached to an inner end of said rod and a flange attached to an interior of said cylinder.

16. The agricultural implement of claim 8, in which said agricultural implement is part of a planting row unit or a row-clearing unit.

17. The agricultural implement of claim 15, in which a downward force is a function of a weight of the planting row unit.

18. The agricultural implement of claim 8, in combination with a hydraulic control system having a controller, said hydraulic cylinder including a control valve coupled via a line to the controller to control a supply of said pressurized hydraulic fluid.

19. The agricultural implement of claim 8, in which a bias force of said energy storage device is adjustable.

20. The agricultural implement of claim 8, in which said hydraulic cylinder is configured to apply said retracting force as a function of a force exerted on the at least one agricultural tool.

21. The agricultural implement of claim 8, in which said hydraulic cylinder is configured to apply a compression force as a function of a resistance offered by the soil on the at least one agricultural tool.

22. The agricultural implement of claim 8, in which the at least one agricultural tool includes a clearing wheel, a fertilizer opener, or a roller for firming loose soil.

23. The agricultural implement of claim 8, in which the agricultural implement is an agricultural planter, a seeder, a fertilizer applicator, or a tillage equipment.

24. The agricultural implement of claim 8, in which a downward force is held on the at least one agricultural tool to prevent uncontrolled bouncing of the at least one agricultural tool over the soil.

25. The agricultural implement of claim 8, in combination with a GPS system that tracks a location of the tractor.

26. The agricultural implement of claim 25, in combination with a control system that avoids double-planting of rows.

27. The agricultural implement of claim 26, wherein the control system is configured to selectively turn off the supply of the hydraulic fluid to avoid disrupting a row already planted.

28. The agricultural implement of claim 8, wherein the hydraulic fluid includes oil.

29. The agricultural implement of claim 28, wherein the oil is displaced by the energy storage device.

30. The agricultural implement of claim 29, wherein the energy storage device is configured to displace the oil.

31. The agricultural implement of claim 28, wherein the energy storage device includes an accumulator diaphragm or piston that supplies or accepts the oil.

32. The agricultural implement of claim 31, wherein the accumulator diaphragm or piston operates at a relatively constant pressure.

33. The agricultural implement of claim 31, wherein the hydraulic cylinder is pneumatic.

34. The agricultural implement of claim 8, further comprising one or more springs to urge the implement downwardly with a controllable force.

35. The agricultural implement of claim 8, wherein the energy storage device includes a piston that supplies or accepts the hydraulic fluid.

36. The agricultural implement of claim 35, wherein the energy stored by the energy storage device includes oil or a gas.

37. The agricultural implement of claim 8, wherein the cavity includes a hydraulic-fluid chamber and a gas-filled chamber.

38. The agricultural implement of claim 37, wherein a gas or fluid or both a gas and fluid is stored with the energy storage device.

39. The agricultural implement of claim 8, wherein the energy storage device is coupled to said rod, and wherein a retracting movement of said rod raises said at least one agricultural tool.

40. The agricultural implement of claim 8, in combination with a hydraulic control system and at least one other agricultural implement, wherein the hydraulic control system comprises a plurality of ports supplied by a plurality of feed lines separately controllable via separate control signals supplied by a controller.

41. The agricultural implement of claim 40, wherein a downforce on the agricultural implement is remotely adjustable and a downforce on the at least one other agricultural implement is remotely adjustable.

42. The agricultural implement of claim 41, wherein the downforce is adjustable from a cab of the tractor.

43. The agricultural implement of claim 40, wherein a downforce on the agricultural implement and the at least one other agricultural implement is releasable to allow the agricultural implement and the at least one other agricultural implement to rise quickly.

44. The agricultural implement of claim 40, wherein the controller is configured to control the supply of the hydraulic fluid at different times to selective ones of the feed lines.

45. The agricultural implement of claim 40, wherein a down force is selected manually or automatically by the hydraulic control system.

46. The agricultural implement of claim 45, wherein the down force is remotely adjustable from a cab of the tractor.

Referenced Cited
U.S. Patent Documents
114002 April 1871 Godfrey
353491 February 1886 Wells
523508 July 1894 Bauer et al.
736369 August 1903 Dynes et al.
803088 October 1905 Barker
1134462 April 1915 Kendrick
1158023 October 1915 Beaver
1247744 November 1917 Trimble
1260752 March 1918 Casaday
1321040 November 1919 Hoffman
1391593 September 1921 Sweeting
1398668 November 1921 Bordsen
1791462 February 1931 Bermel
1901299 March 1933 Johnson
1901778 March 1933 Schlag
2014334 September 1935 Johnson
2058539 October 1936 Welty et al.
2269051 January 1942 Cahoy
2341143 February 1944 Herr
2505276 April 1950 Boroski
2561763 July 1951 Waters et al.
2593176 April 1952 Patterson
2611306 September 1952 Strehlow et al.
2612827 October 1952 Baggette et al.
2691353 October 1954 Secondo
2692544 October 1954 Jessup
2715286 August 1955 Saveson
2754622 July 1956 Rohnert
2771044 November 1956 Putifer
2773343 December 1956 Oppel
2777373 January 1957 Pursche
2799234 July 1957 Chancey
2805574 September 1957 Jackson, Jr. et al.
2925872 February 1960 Darnell
2960358 November 1960 Christison
3010744 November 1961 Hollis
3014547 December 1961 Van der Lely
3038424 June 1962 Johnson
3042121 July 1962 Broetzman et al.
3057092 October 1962 Curlett
3058243 October 1962 McGee
3065879 November 1962 Jennings et al.
3110973 November 1963 Reynolds
3122901 March 1964 Thompson
3123152 March 1964 Biskis
3188989 June 1965 Johnston
3213514 October 1965 Evans
3250109 May 1966 Spyridakis
3314278 April 1967 Bergman
3319589 May 1967 Moran
3351139 November 1967 Schmitz et al.
3355930 December 1967 Fedorov
3370450 February 1968 Scheucher
3420273 January 1969 Greer
3433474 March 1969 Piret
3447495 June 1969 Miller et al.
3539020 November 1970 Andersson et al.
3543603 December 1970 Gley
3561541 February 1971 Woelfel
3576098 April 1971 Brewer
3581685 June 1971 Taylor
3593720 July 1971 Botterill et al.
3606745 September 1971 Girodat
3635495 January 1972 Orendorff
3653446 April 1972 Kalmon
3701327 October 1972 Krumholz
3708019 January 1973 Ryan
3718191 February 1973 Williams
3749035 July 1973 Cayton et al.
3753341 August 1973 Berg, Jr. et al.
3766988 October 1973 Whitesides
3774446 November 1973 Diehl
3939846 February 24, 1976 Drozhzhin et al.
3945532 March 23, 1976 Marks
3975890 August 24, 1976 Rodger
4009668 March 1, 1977 Brass et al.
4018101 April 19, 1977 Mihalic
4044697 August 30, 1977 Swanson
4055126 October 25, 1977 Brown et al.
4058171 November 15, 1977 van der Lely
4063597 December 20, 1977 Day
4096730 June 27, 1978 Martin
4099576 July 11, 1978 Jilani
4122715 October 31, 1978 Yokoyama et al.
4129082 December 12, 1978 Betulius
4141200 February 27, 1979 Johnson
4141302 February 27, 1979 Morrison, Jr. et al.
4141676 February 27, 1979 Jannen et al.
4142589 March 6, 1979 Schlagenhauf
4147305 April 3, 1979 Hunt
4149475 April 17, 1979 Bailey et al.
4157661 June 12, 1979 Schindel
4173259 November 6, 1979 Heckenkamp
4182099 January 8, 1980 Davis et al.
4187916 February 12, 1980 Harden et al.
4191262 March 4, 1980 Sylvester
4196567 April 8, 1980 Davis et al.
4196917 April 8, 1980 Oakes et al.
4206817 June 10, 1980 Bowerman
4208974 June 24, 1980 Dreyer et al.
4213408 July 22, 1980 West et al.
4225191 September 30, 1980 Knoski
4233803 November 18, 1980 Davis et al.
4241674 December 30, 1980 Mellinger
4280419 July 28, 1981 Fischer
4295532 October 20, 1981 Williams et al.
4301870 November 24, 1981 Carre et al.
4307674 December 29, 1981 Jennings et al.
4311104 January 19, 1982 Steilen et al.
4317355 March 2, 1982 Hatsuno et al.
4359101 November 16, 1982 Gagnon
4375837 March 8, 1983 van der Lely et al.
4377979 March 29, 1983 Peterson et al.
4407371 October 4, 1983 Hohl
4430952 February 14, 1984 Murray
4433568 February 28, 1984 Kondo
4438710 March 27, 1984 Paladino
4445445 May 1, 1984 Sterrett
4461355 July 24, 1984 Peterson et al.
4481830 November 13, 1984 Smith et al.
4499775 February 19, 1985 Lasoen
4506610 March 26, 1985 Neal
4508178 April 2, 1985 Cowell et al.
4528920 July 16, 1985 Neumeyer
4530405 July 23, 1985 White
4537262 August 27, 1985 van der Lely
4538688 September 3, 1985 Szucs et al.
4550122 October 29, 1985 David et al.
4553607 November 19, 1985 Behn et al.
4580506 April 8, 1986 Fleischer et al.
4596200 June 24, 1986 Gafford et al.
4603746 August 5, 1986 Swales
4604906 August 12, 1986 Scarpa
4630773 December 23, 1986 Ortlip
4643043 February 17, 1987 Furuta et al.
4646620 March 3, 1987 Buchl
4650005 March 17, 1987 Tebben
4669550 June 2, 1987 Sittre
4671193 June 9, 1987 States
4674578 June 23, 1987 Bexten et al.
4703809 November 3, 1987 Van den Ende
4726304 February 23, 1988 Dreyer et al.
4738461 April 19, 1988 Stephenson et al.
4744316 May 17, 1988 Lienemann et al.
4762075 August 9, 1988 Halford
4765190 August 23, 1988 Strubbe
4768387 September 6, 1988 Kemp et al.
4779684 October 25, 1988 Schultz
4785890 November 22, 1988 Martin
4825957 May 2, 1989 White et al.
4825959 May 2, 1989 Wilhelm
4920901 May 1, 1990 Pounds
4926767 May 22, 1990 Thomas
4930431 June 5, 1990 Alexander
4986367 January 22, 1991 Kinzenbaw
4998488 March 12, 1991 Hansson
5015997 May 14, 1991 Strubbe
5027525 July 2, 1991 Haukaas
5033397 July 23, 1991 Colburn, Jr.
5065632 November 19, 1991 Reuter
5074227 December 24, 1991 Schwitters
5076180 December 31, 1991 Schneider
5092255 March 3, 1992 Long et al.
5129282 July 14, 1992 Bassett et al.
5136934 August 11, 1992 Darby, Jr.
5190112 March 2, 1993 Johnston et al.
5234060 August 10, 1993 Carter
5240080 August 31, 1993 Bassett et al.
5255617 October 26, 1993 Williams et al.
5269237 December 14, 1993 Baker et al.
5282389 February 1, 1994 Faivre et al.
5285854 February 15, 1994 Thacker et al.
5333694 August 2, 1994 Roggenbuck et al.
5337832 August 16, 1994 Bassett
5341754 August 30, 1994 Winterton
5346019 September 13, 1994 Kinzenbaw et al.
5346020 September 13, 1994 Bassett
5349911 September 27, 1994 Holst et al.
5351635 October 4, 1994 Hulicsko
5379847 January 10, 1995 Snyder
5394946 March 7, 1995 Clifton et al.
5398771 March 21, 1995 Hornung et al.
5419402 May 30, 1995 Heintzman
5427192 June 27, 1995 Stephenson et al.
5443023 August 22, 1995 Carroll
5443125 August 22, 1995 Clark et al.
5461995 October 31, 1995 Winterton
5462124 October 31, 1995 Rawson
5473999 December 12, 1995 Rawson et al.
5477682 December 26, 1995 Tobiasz
5477792 December 26, 1995 Bassett et al.
5479868 January 2, 1996 Bassett
5479992 January 2, 1996 Bassett
5485796 January 23, 1996 Bassett
5485886 January 23, 1996 Bassett
5497717 March 12, 1996 Martin
5497837 March 12, 1996 Kehrney
5499683 March 19, 1996 Bassett
5499685 March 19, 1996 Downing, Jr.
5517932 May 21, 1996 Ott et al.
5524525 June 11, 1996 Nikkel et al.
5531171 July 2, 1996 Whitesel et al.
5542362 August 6, 1996 Bassett
5544709 August 13, 1996 Lowe et al.
5562165 October 8, 1996 Janelle et al.
5590611 January 7, 1997 Smith
5603269 February 18, 1997 Bassett
5623997 April 29, 1997 Rawson et al.
5640914 June 24, 1997 Rawson
5657707 August 19, 1997 Dresher et al.
5660126 August 26, 1997 Freed et al.
5685245 November 11, 1997 Bassett
5704430 January 6, 1998 Smith et al.
5709271 January 20, 1998 Bassett
5727638 March 17, 1998 Wodrich et al.
5852982 December 29, 1998 Peter
5868207 February 9, 1999 Langbakk et al.
5878678 March 9, 1999 Stephens et al.
RE36243 July 6, 1999 Rawson et al.
5970891 October 26, 1999 Schlagel
5970892 October 26, 1999 Wendling et al.
5988293 November 23, 1999 Brueggen et al.
6067918 May 30, 2000 Kirby
6164385 December 26, 2000 Buchl
6223663 May 1, 2001 Wendling et al.
6223828 May 1, 2001 Paulson et al.
6237696 May 29, 2001 Mayerle
6253692 July 3, 2001 Wendling et al.
6314897 November 13, 2001 Hagny
6325156 December 4, 2001 Barry
6330922 December 18, 2001 King
6331142 December 18, 2001 Bischoff
6343661 February 5, 2002 Thompson et al.
6347594 February 19, 2002 Wendling et al.
6382326 May 7, 2002 Goins et al.
6389999 May 21, 2002 Duello
6453832 September 24, 2002 Schaffert
6454019 September 24, 2002 Prairie et al.
6460623 October 8, 2002 Knussman et al.
6516595 February 11, 2003 Rhody et al.
6530334 March 11, 2003 Hagny
6575104 June 10, 2003 Brummelhuis
6644224 November 11, 2003 Bassett
6701856 March 9, 2004 Zoke et al.
6701857 March 9, 2004 Jensen et al.
6786130 September 7, 2004 Steinlage et al.
6834598 December 28, 2004 Jüptner
6840853 January 11, 2005 Foth
6886650 May 3, 2005 Bremmer
6912963 July 5, 2005 Bassett
6986313 January 17, 2006 Halford et al.
6997400 February 14, 2006 Hanna et al.
7004090 February 28, 2006 Swanson
7044070 May 16, 2006 Kaster et al.
7063167 June 20, 2006 Staszak et al.
7159523 January 9, 2007 Bourgault et al.
7222575 May 29, 2007 Bassett
7290491 November 6, 2007 Summach et al.
7360494 April 22, 2008 Martin
7360495 April 22, 2008 Martin
7438006 October 21, 2008 Mariman et al.
7451712 November 18, 2008 Bassett et al.
7523709 April 28, 2009 Kiest
7540333 June 2, 2009 Bettin et al.
7575066 August 18, 2009 Bauer
7584707 September 8, 2009 Sauder et al.
7665539 February 23, 2010 Bassett et al.
7743718 June 29, 2010 Bassett
7870827 January 18, 2011 Bassett
7938074 May 10, 2011 Liu
7946231 May 24, 2011 Martin et al.
8146519 April 3, 2012 Bassett
8151717 April 10, 2012 Bassett
8327780 December 11, 2012 Bassett
8359988 January 29, 2013 Bassett
8380356 February 19, 2013 Zielke et al.
8386137 February 26, 2013 Sauder et al.
8393407 March 12, 2013 Freed
8408149 April 2, 2013 Rylander
6644224 November 11, 2003 Bassett
6912963 July 5, 2005 Bassett
7222575 May 29, 2007 Bassett
8544397 October 1, 2013 Bassett
8544398 October 1, 2013 Bassett
8550020 October 8, 2013 Sauder et al.
8573319 November 5, 2013 Casper et al.
8634992 January 21, 2014 Sauder et al.
8636077 January 28, 2014 Bassett
20020162492 November 7, 2002 Juptner
20060102058 May 18, 2006 Swanson
20060191695 August 31, 2006 Walker et al.
20060237203 October 26, 2006 Miskin
20070044694 March 1, 2007 Martin
20070272134 November 29, 2007 Baker et al.
20080093093 April 24, 2008 Sheppard et al.
20080236461 October 2, 2008 Sauder et al.
20080256916 October 23, 2008 Vaske et al.
20100019471 January 28, 2010 Ruckle et al.
20100108336 May 6, 2010 Thomson et al.
20100180695 July 22, 2010 Sauder et al.
20100198529 August 5, 2010 Sauder et al.
20100282480 November 11, 2010 Breker et al.
20110247537 October 13, 2011 Freed
20110313575 December 22, 2011 Kowalchuk et al.
20120167809 July 5, 2012 Bassett
20120186216 July 26, 2012 Vaske et al.
20120210920 August 23, 2012 Bassett
20120216731 August 30, 2012 Schilling et al.
20120232691 September 13, 2012 Green et al.
20120255475 October 11, 2012 Mariman et al.
20120305274 December 6, 2012 Bassett
20130000535 January 3, 2013 Martin et al.
20130032363 February 7, 2013 Curry et al.
20130112121 May 9, 2013 Achen et al.
20130112124 May 9, 2013 Bergen et al.
20130133904 May 30, 2013 Bassett
20130146318 June 13, 2013 Bassett
20130192186 August 1, 2013 Bassett
20130199808 August 8, 2013 Bassett
20130213676 August 22, 2013 Bassett
20130248212 September 26, 2013 Bassett
20130264078 October 10, 2013 Bassett
20130306337 November 21, 2013 Bassett
20130333599 December 19, 2013 Bassett et al.
20140026748 January 30, 2014 Stoller et al.
20140026792 January 30, 2014 Bassett
20140033958 February 6, 2014 Bassett
20140034339 February 6, 2014 Sauder et al.
20140034343 February 6, 2014 Sauder et al.
20140034344 February 6, 2014 Bassett
20140048001 February 20, 2014 Bassett
20140048295 February 20, 2014 Bassett
20140048296 February 20, 2014 Bassett
20140048297 February 20, 2014 Bassett
20140060864 March 6, 2014 Martin et al.
Foreign Patent Documents
551372 October 1956 BE
530673 September 1956 CA
335464 September 1921 DE
1108971 June 1961 DE
24 02 411 July 1975 DE
2 497 348 September 2012 EP
1 574 412 September 1980 GB
2 056 238 October 1982 GB
54-57726 May 1979 JP
392897 August 1973 SU
436778 July 1974 SU
611201 June 1978 SU
625648 September 1978 SU
1410884 July 1988 SU
1466674 March 1989 SU
WO 2011/161140 December 2011 WO
WO 2012/149367 January 2012 WO
WO 2012/149415 January 2012 WO
WO 2012/167244 December 2012 WO
WO 2013/025898 February 2013 WO
Other references
  • Case Corporation Brochure, Planters 900 Series Units/Modules Product Information, Aug. 1986 (4 pages).
  • Buffalo Farm Equipment All Flex Cultivator Operator Manual, Apr. 1990 (7 pages).
  • Shivvers, Moisture Trac 3000 Brochure, Aug. 21, 1990 (5 pages).
  • The New Farm, “New Efficiencies in Nitrogen Application,” Feb. 1991, p. 6 (1 page).
  • Hiniker Company, Flow & Acreage Continuous Tracking System Monitor Demonstration Manuel, date estimated as early as Feb. 1991 (7 pages).
  • Russnogle, John, “Sky Spy: Gulf War Technology Pinpoints Field and Yields,” Top Producer, A Farm Journal Publication, Nov. 1991, pp. 12-14 (4 pages).
  • Borgelt, Steven C., “Sensor Technologies and Control Strategies for Managing Variability,” University of Missouri, Apr. 14-16, 1992 (15 pages).
  • Buffalo Farm Equipment Catalog on Models 4600, 4630, 4640, and 4620, date estimated as early as Feb. 1992 (4 pages).
  • Hiniker 5000 Cultivator Brochure, date estimated as early as Feb. 1992 (4 pages).
  • Hiniker Series 5000 Row Cultivator Rigid and Folding Toolbar Operator's Manual, date estimated as early as Feb. 1992 (5 pages).
  • Orthman Manufacturing, Inc., Rowcrop Cultivator Booklet, date estimated as early as Feb. 1992 (4 pages).
  • Yetter Catalog, date estimated as early as Feb. 1992 (4 pages).
  • Exner, Rick, “Sustainable Agriculture: Practical Farmers of Iowa Reducing Weed Pressure in Ridge-Till,” Iowa State University University Extension, http://www.extension.iastate.edu/Publications/SA2.pdf, Jul. 1992, Reviewed Jul. 2009, retrieved Nov. 2, 2012 (4 pages).
  • Finck, Charlene, “Listen to Your Soil,” Farm Journal Article, Jan. 1993, pp. 14-15 (2 pages).
  • Acu-Grain, “Combine Yield Monitor 99% Accurate? ‘You Bet Your Bushels!!’” date estimated as early as Feb. 1993 (2 pages).
  • John Deere, New 4435 Hydro Row-Crop and Small-Grain Combine, date estimated as early as Feb. 1993 (8 pages).
  • Vansichen, R. et al., “Continuous Wheat Yield Measurement on a Combine,” date estimated as early as Feb. 1993 (5 pages).
  • Yetter 2010 Product Catalog, date estimated as early as Jan. 2010 (2 pages).
  • Yetter Cut and Move Manual, Sep. 2010 (28 pages).
  • John Deere, Seat Catalog, date estimated as early Sep. 2011 (19 pages).
  • Martin Industries, LLC Paired 13″ Spading Closing Wheels Brochure, date estimated as early as Jun. 6, 2012, pp. 18-25 (8 pages).
  • Vogt, Willie, “Revisiting Robotics,” http://m.farmindustrynews.com/farm-equipment/revisiting-robotics, Dec. 19, 2013 (3 pages).
  • John Deere, New Semi-Active Sea Suspension, http://www.deere.com/enUS/parts/agparts/semiactiveseat.html, date estimated as early as Jan. 2014, retrieved Feb. 6, 2014 (2 pages).
Patent History
Patent number: RE45091
Type: Grant
Filed: Nov 8, 2013
Date of Patent: Aug 26, 2014
Assignee: Dawn Equipment Company (Sycamore, IL)
Inventor: Joseph D. Bassett (Sycamore, IL)
Primary Examiner: Christopher J Novosad
Application Number: 14/075,270
Classifications
Current U.S. Class: Hopper Carrying (111/63); Tool-bar Type (111/66); Coulter (111/140); Having Holddown (111/143); Flat (111/167); Rolling Tool Spring Biased Into Ground Contact (172/551); With Parallelogram-type Linkage (172/624.5); Spring Biased Or Formed Tool Or Tool Part (172/705)
International Classification: A01B 19/00 (20060101); A01B 21/02 (20060101); A01B 49/04 (20060101); A01C 5/00 (20060101); A01C 7/18 (20060101);