Proximity Fuze Patents (Class 102/211)
  • Patent number: 11821723
    Abstract: A peripheral device that is used with a mixed reality system that is thrown by the user of the mixed reality system and captures scene and mapping data of the area the peripheral is thrown into. Upon capturing the scene and mapping data, the peripheral transmits the data (in some embodiments, including processed results of evaluation of the data) to the mixed reality system. The mixed reality system displays a visual representation of the scene and mapping data on a near eye display. In some embodiments, the visual representation appears in real space enabling an effect where the user of the mixed reality system can see through walls or other obstructions. In some embodiments, the peripheral is configured to detonate upon the satisfaction of a variable set of conditions.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: November 21, 2023
    Assignee: Chosen Realities, LLC
    Inventor: Eric Browy
  • Patent number: 11629940
    Abstract: A circuit for controlling the firing of an exploding-foil pyrotechnic component including at least one capacitor and switch means, the capacitor being connected to the pyrotechnic component by an array of at least three diodes connected in series and in a direction that prevents the capacitor from discharging, the sum of the reverse voltages of these diodes being greater than the maximum voltage that can be delivered by the capacitor, the switch means including at least two field-effect transistors associated with the array of diodes.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: April 18, 2023
    Assignee: NEXTER MUNITIONS
    Inventor: Jean-Luc Peron
  • Patent number: 11163393
    Abstract: A device for locating an impact against an interactive surface includes at least three transducers distributed against the interactive surface and an electronic central unit programmed to locate the impact by analysing propagation time differences of progressive mechanical waves from the impact to the transducers on the basis of instants of impact detection identified in the electrical signals supplied by the transducers. The electronic central unit is programmed to trigger an impact detection from a first instant when at least one M-th derivative from at least one of the received electrical signals exceeds a predetermined non-zero threshold value and for then determining, for each electrical signal received from each transducer, at least one second instant, subsequent to the first instant, of the first zero crossing of at least one N-th derivative of this electrical signal, from which is identified at least one instant of impact detection.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: November 2, 2021
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Jean-Marc Alexandre, Robert Boden
  • Patent number: 10677758
    Abstract: A system and method is provided for detecting the trajectory of multiple fragments through a conic or cylindrical section, such as the body of a missile. Three or more sensors are placed on the on the body of the object. Each of the sensors is constructed and arranged to measure signals to the sensor at from impacts on one or more locations on the body. The sensor then transmits a signal commiserate with the impact of a fragment thereon. A computer system is also provided to perform necessary calculations and, potentially, record the impact times and locations. When the body of the object is hit by fragments or shrapnel, a signal from one or more of the sensors is sent to the computer system. This operation is performed and constantly updated for all locations where a fragment is detected by one or more of the sensors. Waveforms of the impacts are recorded, but because multiple hits can occur, there can be superposition (or destruction) of the resulting waveform sent to the computer system.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: June 9, 2020
    Assignee: Invocon, Inc.
    Inventors: Donald L. Chaffee, Douglas A. Heermann, Brian D. Philpot
  • Patent number: 10495429
    Abstract: In one embodiment, a small arms projectile is described, including a shell and a hemostatic material retained within the shell, wherein the projectile is configured such that the hemostatic material is released upon an impact of the projectile. In some embodiments, the hemostatic material includes one or more of a factor concentrator, a mucoadhesive agent, and a procoagulant supplementor. In some embodiments, the hemostatic material may be configured as an expandable foam, a sponge, a hydrogel, a powder, a compound, a mixture, a suspension, or any combination thereof. In some embodiments, the hemostatic agent is further treated with one or more cauterizing agents, paralytic agents, anesthetic agents, and sedative agents.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: December 3, 2019
    Assignee: Lazarus Solutions LLC
    Inventors: Benjamin Omonira, Jonathan Omonira
  • Patent number: 9849785
    Abstract: Methods, systems and computer readable media are presented for computing a guidance control policy to transition an uncertain dynamical system from an initial state to a final state, in which a set of points are computed to provide discreet and accurate representation of uncertainty, and in which a guidance control policy is computed based on a set of equations involving the initial state, the final state, state variables, control variables, and parameters, as well as designated parameters of interest, a set of constraints corresponding to state and control variables, a performance metric, statistical distribution types corresponding to the parameters of interest, statistical moments individually corresponding to the parameters of interest, and weighting values corresponding to the parameters of interest.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: December 26, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Isaac Michael Ross, Mark Karpenko, Ronald Joseph Proulx
  • Patent number: 9441928
    Abstract: A method of autonomously tailoring a detonation delay time of a gun launched munition by utilizing target impact signatures including but not limited to a MOUT target set; earth and timber bunker, triple brick wall, double reinforced concrete, and light armor. While the present method is applicable to countless munition configurations, the projectile architecture used to develop the discrimination algorithm includes a tandem warhead configuration. Upon target impact the forward warhead detonates and pre-damages the target to allow the rear warhead to break through. Target impact data is used to set a detonation delay in the rear warhead providing increased performance behind the target.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: September 13, 2016
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: John Geaney, Jason Cahayla, Lloyd Khuc
  • Patent number: 9399514
    Abstract: An aerial delivery system is configured to allow delivery of one or more releasable items after the system is extracted from an aircraft. One or more linear guidance devices and releasable securing mechanisms allow the aerial delivery system to deploy one or more releasable items at an appropriate time. The releasable securing mechanisms may utilize one or more rotatable latch plates. The one or more releasable items may be deployed simultaneously, or in a staged or staggered fashion. Through use of drag or lift-producing devices, the system may be recovered and reused. The attitude and/or azimuth orientation of the system may be varied prior to, during, and/or after release of a releasable item.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: July 26, 2016
    Inventor: Roy L. Fox, Jr.
  • Patent number: 8916809
    Abstract: A method is provided for optically providing at least one of power and data to a projectile from an external optical source. The method including: outputting an optical signal from an external optical source into an interior of the projectile; receiving the optical signal in the interior of projectile and at least one of converting the optical signal to electrical energy and storing data provided in the optical signal. The electrical energy can be provided to the one or more electronic components and/or energy storage medium disposed on the interior of the projectile. The data provided in the optical signal can be provided to a data storage medium disposed on the interior of the projectile.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: December 23, 2014
    Assignee: Omnitek Partners LLC
    Inventors: Jahangir S. Rastegar, Thomas Spinelli
  • Patent number: 8757064
    Abstract: Described herein is an optical fuze for a guided missile that comprises an array of a large number of optical apertures distributed about the outer surface of the missile. An optical waveguide network selectively couples the array of apertures to a laser source and to a photodetector such that light from the laser source is emitted by selected ones of said apertures, and light returned from a target is received by selected ones of said apertures and directed by said optical waveguide network to said photodetector. These apertures might be arranged to form a composite target images in a particular direction, and/or may be arranged to perform a sensing operation along selected directions. The optical proximity fuze described herein provides inherent flexibility in the way the fuze can be configured in the missile for optimisation for different applications.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: June 24, 2014
    Assignee: MBDA UK Limited
    Inventors: Martyn Robert Jennings, Lee Douglas Miller
  • Patent number: 8378277
    Abstract: An optical impact system controls munitions termination through sensing proximity to a target and preventing effects of countermeasures on false munitions termination. Embodiments can be implemented on in a variety of munitions such as small and mid caliber that can be applicable in non-lethal weapons and in weapons of high lethality with airburst capability for example and in guided air-to-ground and cruise missiles. Embodiments can improve accuracy, reliability and lethality of munitions depending on its designation without modification in a weapon itself and make the weapon resistant to optical countermeasures.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Physical Optics Corporation
    Inventors: Sergey Sandomirsky, Vladimir Esterkin, Thomas C. Forrester, Tomasz Jannson, Andrew Kostrzewski, Alexander Naumov, Naibing Ma, Sookwang Ro, Paul I. Shnitser
  • Patent number: 8124921
    Abstract: A guidance system according to various aspects of the present invention operates in conjunction with a suite of different ordnance delivery devices. In one embodiment, the guidance system comprises an interface configured to attach to the ordnance delivery devices in the suite, such as via the fuze well. The guidance system may further include a control system adapted to attempt to establish communications with a subsystem of the ordnance delivery device and operate the guidance system as a standalone guidance system if the attempt fails. The guidance system may further include a control surface interchangeably attachable, for example via an interchangeable control surface module.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 28, 2012
    Assignee: Raytheon Company
    Inventors: Chris E. Geswender, Stephen E. Bennett
  • Patent number: 8110784
    Abstract: A projectile including: a casing; first and second windows provided on the casing for at least one of transmitting a first optical signal into an interior of the casing and transmitting a second optical signal from the interior of the casing; a receiving element disposed on the interior of the casing and in optical communication with one or more of the first and second windows for at least one of converting the first optical signal into electrical energy and storing data provided in the first optical signal; and a transmitting element disposed on the interior of the casing and in optical communication with one or more of the first and second windows for transmitting data provided in the second optical signal to outside the casing.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: February 7, 2012
    Assignee: Omnitek Partners LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8020491
    Abstract: A method and apparatus for defending against airborne assault ammunition. The assault ammunition is located with at least one position-locating device. The flight path of the assault ammunition is iteratively calculated using the determined ballistic coefficient of the assault ammunition. A firing control solution is determined for firing a fragmentation-type defense ammunition, which is fired with a large-caliber weapon, especially one having a caliber of at least 76 mm. A fuse of the defense ammunition is set after the firing and/or the defense ammunition is remotely detonated, and after the firing the defense ammunition is ignited or remotely ignited at an ignition time point TZ. Alternatively, the ignition of the defense ammunition is initiated by a proximity igniter disposed in the defense ammunition.
    Type: Grant
    Filed: February 9, 2008
    Date of Patent: September 20, 2011
    Assignee: Krauss-Maffei Wegmann GmbH & Co.
    Inventor: Alexander Simon
  • Publication number: 20110147515
    Abstract: An unmanned aerial vehicle including a controller operating in a search mode of operation where a receiver of an acquisition sensor searches for a target and causes flight control surfaces to guide the vehicle in a downward spiral path, a terminal mode of operation where the acquisition sensor detects a target and causes flight control surfaces to direct the vehicle toward the target, and an activation mode of operation where a trigger sensor detects a target within a predetermined distance to the vehicle and the controller activates a responder.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Inventors: Gerald Miller, James Stewart
  • Publication number: 20100328642
    Abstract: A system for detecting proximity to a target object. The novel system includes a detector adapted to receive a reflected electromagnetic beam from the target and a processor adapted to determine a distance to the target by measuring an angle of the reflected beam. The system may also include an emitter adapted to transmit an electromagnetic beam toward the target to produce the reflected beam such that the angle of the reflected beam corresponds with a distance to the target. In an illustrative embodiment, the emitter is a focused infrared emitter or laser diode positioned to transmit the beam at a known angle such that the transmitted beam crosses an optical axis of the detector. The processor may also be adapted to use the rate of change of the amplitude of the reflected beam in determining the distance to the target.
    Type: Application
    Filed: August 13, 2007
    Publication date: December 30, 2010
    Inventor: Jeffrey C. Edwards
  • Patent number: 7849797
    Abstract: A projectile fuze sends a signal having encoded telemetry data. The telemetry data may be encoded by modulating an aspect or characteristic of the signal, such as frequency modulation of the signal. The fuze may receive and interpret reflections in order to determine proximity to a target or other object, such as by functioning as a height of burst sensor. The signal may include a series of random or seemingly random pulses (a keyed pattern of pulses), such as pulses in amplitude of the signal. The fuze includes a pair of transceivers for sending signals of different frequencies through an antenna, and for receiving signals through the antenna. The transceivers are configured such that one or the other is used at any one time when telemetry data is sent, with telemetry being encoded by changes in frequencies.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: December 14, 2010
    Assignee: Raytheon Company
    Inventors: Chris E. Geswender, Stephen E. Bennett, Cesar Sanchez, Matthew A. Zamora
  • Publication number: 20100107915
    Abstract: A projectile fuze sends a signal having encoded telemetry data. The telemetry data may be encoded by modulating an aspect or characteristic of the signal, such as frequency modulation of the signal. The fuze may receive and interpret reflections in order to determine proximity to a target or other object, such as by functioning as a height of burst sensor. The signal may include a series of random or seemingly random pulses (a keyed pattern of pulses), such as pulses in amplitude of the signal. The fuze includes a pair of transceivers for sending signals of different frequencies through an antenna, and for receiving signals through the antenna. The transceivers are configured such that one or the other is used at any one time when telemetry data is sent, with telemetry being encoded by changes in frequencies.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Chris E. Geswender, Stephen E. Bennett, Cesar Sanchez, Matthew A. Zamora
  • Patent number: 7699003
    Abstract: A safety and arming unit with a safe separation distance device (14), which acts as a function of a free-flight incident flow and temperature, for the fuze (12) of a projectile (11), which fuze is hermetically sealed from environmental influences, has, as a measurement device for the cooling, as a function of the incident flow, of a conductor through which current passes, in the heating circuit (18) of a resistant heating element (16) which is fitted flat on the fuze casing surface (17), an electronic current measurement apparatus (21) which is connected upstream of an evaluation circuit (22), in order to ram a firing circuit. Two heating elements (16, 16?), which are fed in the same way, are preferably arranged one behind the other in the incident flow direction (15), and, additionally as an environmental temperature sensor, a comparison heating element (16?) which is not influenced by the incident flow (15).
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: April 20, 2010
    Assignee: Junghans Microtec GmbH
    Inventors: Alexander Zinell, Reiner Hennig, Rolf Kaden
  • Patent number: 7533612
    Abstract: A method and system optimally determines a desired Height of Burst (HOB) over a target based solely upon the time at which the projectile reached or passes through the apogee or apex of its trajectory (ta). There are several modes of implementation. According to one mode, the downleg is determined as a percentage of the upleg. According to another mode, the time to Height Of Burst (tHOB) is calculated algebraically based substantially solely upon the time to height of apogee ta.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: May 19, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Efthimios Papayianis, Thomas M. Crowley, Raymond S. Trohanowsky
  • Patent number: 7498969
    Abstract: The present invention is directed to a fuze application capable of GPS (Global Positioning System) and proximity radar functionality by co-locating a proximity radar antenna with a GPS DRA (Dielectric Resonator Antenna) fuze. The GPS DRA fuze has a HE11? mode structure resulting in an E-field null at the center. The monopole proximity radar antenna is mounted in the E-field null center and is thus electrically isolated from the GPS DRA fuze. The high dielectric constant permits the GPS DRA fuze to operate in the L1 frequency and the electrically shortened proximity radar antenna to resonate in the C-Band within a small form factor. The GPS DRA fuze maintains a forward-looking CP (circular polarization) pattern while proximity antenna maintains a desirable monopole pattern. Nesting allows mounting of both GPS and proximity radar antennas on the fuze nose while reducing the total space occupied.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: March 3, 2009
    Assignee: Rockwell Collins, Inc.
    Inventors: Lee M. Paulsen, James B. West
  • Patent number: 7213517
    Abstract: A proximity-fuzed ammunition unit (1) that can approach a target and where during approach the proximity fuze function effects or gives rise to a voltage pulse pattern that is dependent on objects located along the flight path of the ammunition unit on its approach to the target. The voltage pulse pattern forms the basis for the actution of at least one triggering device (18) incorporated in the ammunition unit. The electrical circuit or circuits incorporated in or interacting with each triggering device is/are arranged to sense a voltage or amplitude value in the trailing edge of a pulse incorporated in or forming the pattern. If the pattern comprises a number of pulses an indication is given when a predetermined number of pulses has appeared to appears. Each electrical circuit causes or effects the opeation of the triggering device for its actuation depending on the said sensing and/or indication.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: May 8, 2007
    Assignee: Bofors Defence AB
    Inventors: Torsten Ronn, Nils Johansson
  • Patent number: 7197981
    Abstract: A projectile, having a casing, a projectile base, which closes off the casing at the rear, a receiver coil for receiving electromagnetic signals, an energy source, brought into contact with the receiver coil, and a logic module. The casing is made of a plastic material, at least in the area of the rear.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: April 3, 2007
    Assignee: Oerlikon Contraves Pyrotec AG
    Inventor: Peter Ettmüller
  • Patent number: 7121210
    Abstract: In one aspect, an artillery projectile apparatus is provided that includes a carrier projectile containing a payload, and a fuze disposed at an ogive of the projectile and which is configured to eject the payload when the fuze is detonated. The fuze includes a receiver configured to receive location information from a radionavigation source and a processor configured to acquire position data from the receiver. The processor is also configured to estimate a projectile flight path using the position data, to determine intercept parameters of the artillery projectile relative to an ejection plane of its payload cargo, and to adjust an ejection event initiation command time of the payload in accordance with the determined intercept parameters. In some configurations, the present invention dramatically decreases range errors typically associated with delivering artillery payloads to specific targets.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: October 17, 2006
    Assignee: KDI Precision Products, Inc.
    Inventor: Michael F. Steele
  • Patent number: 7098841
    Abstract: A unit is described that is configured to control detonation of a munition such that the munition is detonated at a desired altitude. The unit includes a radar transmitter, a radar receiver that includes a radar range gate, and a sequencer. The sequencer is configured to receive a detonation altitude and set the range gate based on the received detonation altitude. The unit is also configured to output a detonation signal when radar return pulses received by the receiver aligned with gate delay pulses from the range gate.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 29, 2006
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Glen Backes, Timothy J. Reilly
  • Patent number: 7089865
    Abstract: The present invention relates to a hollow bullet for a light weapon which comprises within said hollow: (a) At least one proximity sensor at the front portion of the bullet for sensing an object, and for providing a sensing indication of a proximity object to a control unit;—A control unit for providing a detonation signal to an explosive charge within the bullet upon receipt of said proximity indication;—and An explosive charge for detonating upon receipt of said detonation signal from said control unit.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: August 15, 2006
    Assignee: Rafael Armament Development Authority Ltd.
    Inventor: Alon Regev
  • Patent number: 6920827
    Abstract: A vehicle-borne system for countering an incoming threat, the system including a sensing device configured to sense an incoming threat, and an active protection system including a maneuverable interceptor incorporating a plurality of kinetic energy rods and an aimable explosive charge configured to deploy the kinetic energy rods in a predetermined direction; the active protection system further including a detection subsystem configured to maneuver the interceptor to intercept the incoming threat, the detection subsystem further configured to determine if the interceptor will miss the threat, and then initiate the explosive charge to aim the kinetic energy rods into a disbursed cloud in the trajectory path of the incoming threat and between the incoming threat and the vehicle.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: July 26, 2005
    Assignee: Raytheon Company
    Inventor: Richard M. Llyod
  • Patent number: 6919840
    Abstract: A proximity sensor for use with a guidance system of a smart bomb including a ranging radar proximity sensor configured for mounting on a smart bomb and a radome connected to the ranging radar proximity sensor. A laser radiation sensor system is attached to the proximity sensor, which is configured and arranged to detect laser radiation reflected from a target which passes through the radome and output the azimuth and elevation angles to the target to the guidance system.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: July 19, 2005
    Assignee: Alliant Techsystems Inc.
    Inventors: William A. Friedrich, Lyle H. Johnson, Mark K. Conrad
  • Patent number: 6901864
    Abstract: The present invention relates to a method for attacking a target by means of a missile (1) with at least one shaped charge, the direction of action of which differs from the direction of flight of the missile, and to a missile (1) comprising at least one shape charge (2) arranged to act in a direction (4) that differs from the direction of flight (5) of the missile. The shaped charge jet is corrected for the speed of the missile (1). According to the invention, the correction of the shaped charge jet is adjustable, whereby the lethality of the missile can be achieved within a wide range of speeds of the missile.
    Type: Grant
    Filed: September 3, 2001
    Date of Patent: June 7, 2005
    Assignee: Saab AB
    Inventor: Jyrki Helander
  • Publication number: 20040237825
    Abstract: A proximity-fuzed ammunition unit (1) that can approach a target and where during approach the proximity fuze function effects or gives rise to a voltage pulse pattern that is dependent on objects located along the flight path of the ammunition unit on its approach to the target. The voltage pulse pattern forms the basis for the actution of at least one triggering device (18) incorporated in the ammunition unit. The electrical circuit or circuits incorporated in or interacting with each triggering device is/are arranged to sense a voltage or amplitude value in the trailing edge of a pulse incorporated in or forming the pattern. If the pattern comprises a number of pulses an indication is given when a predetermined number of pulses has appeared to appears. Each electrical circuit causes or effects the opeation of the triggering device for its actuation depending on the said sensing and/or indication.
    Type: Application
    Filed: July 28, 2003
    Publication date: December 2, 2004
    Inventors: Torsten Ronn, Nils Johanson
  • Patent number: 6817296
    Abstract: A fuzing system for non-spinning or substantially non-spinning weapons is implemented by means of wide angle optics providing at least forward-hemisphere coverage, an array of infrared detectors and a microprocessor for image and data processing, aim-point selection, directional-warhead aiming and skewed-cone fuzing. The skewed-cone fuzing has a generatrix which is the vector sum of missile velocity, warhead velocity and the negative of target velocity.
    Type: Grant
    Filed: August 4, 2001
    Date of Patent: November 16, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Hayden N. Ringer, Abraham Shrekenhamer
  • Patent number: 6707417
    Abstract: A radar system having a tactical mode and a calibration mode includes a transmitter section for providing high-power amplification of an RF pulsed waveform from an exciter during the tactical mode and the calibration mode. A circulator system has an input port connected to an output of the transmitter section and including first, second and third switchable junctions, and a high-power attenuator. The circulator system provides a transmit tactical mode signal path and a transmit calibration mode signal path of virtually identical electrical path lengths for a transmitter output signal, the tactical path passing through the first, second and third junctions in a first direction to an antenna I/O port, the calibration path passing through the first, second and third junctions in a second direction and through the high-power attenuator to an output port.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: March 16, 2004
    Assignee: Raytheon Company
    Inventors: Steven Edward Huettner, Steven Craig Rein, Douglas Richard Baker
  • Patent number: 6681700
    Abstract: In a capacitive fuse for a missile interference due to discharge of static electricity from transmitter or receiver electrodes or to movement of the missile's control surfaces in flight is reduced by using as a receiver input signal the difference between signals at a pair of like receiver electrodes. The receiver includes a phase detector, and a small proportion of the transmitted signal is passed to the receiver input to cancel any standing receiver current. The output from two or more sets of receiver electrodes may be combined to produce s desired response pattern.
    Type: Grant
    Filed: July 31, 1970
    Date of Patent: January 27, 2004
    Assignee: Alenia Marconi Systems Limited
    Inventors: William Kenneth Capewell, Edward David Lawrence, Robin John Davies
  • Patent number: 6664915
    Abstract: An identification friend or foe system for use by a weapon to determine whether a target that has been selected is a friendly target comprises a signal source attached to the target and arranged to radiate encrypted signals. A detection system attached to the weapon includes a receiver arranged to receive the encrypted signals when the weapon is within a predetermined range from the target. Signal processing apparatus is connected to the receiver and arranged to determine whether the encrypted signals identify the target as being friendly. The central processing unit is arranged to decrypt the encrypted signal and produce a disarm signal if the target is identified as being friendly. The central processing unit preferably is also arranged to produce a signal that causes the weapon to perform a collision avoidance maneuver to avoid colliding with the target if the target is identified as being friendly.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 16, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Daniel A. Britton
  • Patent number: 6584906
    Abstract: The invention relates to a method and a device for triggering a warhead in a target-tracking guided missile. The guided missile has an impact fuse and a proximity fuse for triggering detonation of the warhead. The invention triggers the warhead such that the damage caused to the target, such as an enemy fighter aircraft, becomes maximal. To this end, the miss disdance is predicted from influencing variabled detected during the flight of the guided missile. The warhead triggering delay time of the proximity fuse is set dependent on the predicted miss distance to achieve such maximum damage.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: July 1, 2003
    Assignee: Bodenseewerk Gerätetechnik GmbH
    Inventors: Ulrich Hartmann, Thomas Schilli
  • Publication number: 20030047102
    Abstract: The invention relates to a method and a device for triggering a warhead in a target-tracking guided missile. The guided missile has an impact fuse and a proximity fuse for triggering detonation of the warhead. The invention triggers the warhead such that the damage caused to the target, such as an enemy fighter aircraft, becomes maximal. To this end, the miss disdance is predicted from influencing variabled detected during the flight of the guided missile. The warhead triggering delay time of the proximity fuse is set dependent on the predicted miss distance to achieve such maximum damage.
    Type: Application
    Filed: June 8, 2001
    Publication date: March 13, 2003
    Applicant: Bodenseewerk Geratetechnik GmbH
    Inventors: Ulrich Hartmann, Thomas Schilli
  • Patent number: 6480140
    Abstract: The present invention is to a method and system for providing protection from an EMS-targeted weapon by providing an appropriate spoofed EMS signal to cause an EMS-targeted weapon to determine an apparent object distance sufficiently close to the EMS-based targeting threat to nullify the weapon. In a first embodiment, the EMS-based targeting threat uses reflected EMS emissions, such as RADAR, to target the object the apparent object distance nullifies the weapon by falling within a weapon-safety lockout distance determined by a fire control system of the targeting threat. In another embodiment, the EMS-based targeting threat uses EMS signals from an external source, such as GPS, to target a position of the object and the apparent object distance nullifies the weapon by causing premature detonation at a safe standoff distance from said object.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: November 12, 2002
    Inventor: Jonathan B. Rosefsky
  • Patent number: 6474592
    Abstract: A platform launched or dropped self guided munition is disclosed. The munition comprises a body and flight control mechanism operative therewith, the body housing (a) an onboard guidance system for controlling the flight control mechanism, so as to guide the self guided munition to a target; and (b) an impact verification assembly including (i) a processing unit for receiving and processing information from the onboard guidance system, the information pertaining to an in-flight trajectory position of the self guided munition prior to impact, the processing unit further being for generating a signal including information pertaining to an accuracy, with respect to the target, of the in-flight trajectory position of the self guided munition prior to impact; and (ii) a transmitter being in communication with the processing unit, the transmitter being for transmitting the signal generated by the processing unit in a manner receivable by a receiving device of the platform.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 5, 2002
    Assignee: Tadiran Spectralink Ltd.
    Inventor: Moshe Shnaps
  • Patent number: 6389974
    Abstract: A passive proximity fuze. The inventive fuze (10) is adapted to be mounted on a munition (11) and includes a receiver (16) adapted to lock on to a signal transmitted by a target transmitter (12). The receiver (16) detects a Doppler shift in the signal as the munition approaches the target. When a closest point of approach is reached the Doppler shift changes from increasing to decreasing. The inventive fuze (10) includes a mechanism for detecting this change in the Doppler shift and provides a detonation signal in response thereto. In the illustrative embodiment, the receiver (16) is an FM receiver. The mechanism for detecting a change in the Doppler shift may be implemented with discrete analog circuitry or digital circuitry. In an illustrative analog implementation, first and second resistive/capacitive networks (R1C1 and R2C2) are employed to compute a second derivative of the Doppler shift signal output by the receiver (16).
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: May 21, 2002
    Assignee: Raytheon Company
    Inventor: Carl G. Foster
  • Patent number: 6378435
    Abstract: A projectile fuze detects transitions between target layers by an electronic antenna radiating laterally into the target material and coupled to a pullable oscillator whose frequency shifts as the target material changes while the projectile penetrates. A frequency shift threshold detector relates the observed frequency shifts to a stored target profile to detonate the projectile after the desired layer penetration.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: April 30, 2002
    Assignee: General Dynamics Decision Systems, Inc.
    Inventors: Monty W. Bai, Gerald James Moore, Ralph Eugene Foresman
  • Patent number: 6345784
    Abstract: A platform launched or dropped self guided munition is disclosed. The munition comprises a body and flight control mechanism operative therewith, the body housing (a) an onboard guidance system for controlling the flight control mechanism, so as to guide the self guided munition to a target; and (b) an impact verification assembly including (i) a processing unit for receiving and processing information from the onboard guidance system, the information pertaining to an in-flight trajectory position of the self guided munition prior to impact, the processing unit further being for generating a signal including information pertaining to an accuracy, with respect to the target, of the in-flight trajectory position of the self guided munition prior to impact; and (ii) a transmitter being in communication with the processing unit, the transmitter being for transmitting the signal generated by the processing unit in a manner receivable by a receiving device of the platform.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: February 12, 2002
    Assignee: Tadiran Spectralink LTD
    Inventor: Moshe Shnaps
  • Patent number: 6279478
    Abstract: A fuzing system for non-spinning or substantially non-spinning weapons is implemented by means of wide angle optics providing at least forward-hemisphere coverage, an array of infrared detectors and a microprocessor for image and data processing, aim-point selection, directional-warhead aiming and skewed-cone fuzing. The skewed-cone fuzing has a generatrix which is the vector sum of missile velocity, warhead velocity and the negative of target velocity.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 28, 2001
    Inventors: Hayden N. Ringer, Abraham Shrekenhamer
  • Patent number: 6244156
    Abstract: A blast shell is launched as a defense against an attacking tail fin-stabilized projectile, such as in particular a KE penetrator, from an object which is to be protected. Gas fumes and a reaction pressure blast wave from a fired blast warhead of the shell act principally on the tail region of the attacking projectile and thereby deflect the latter from a trajectory in the attack direction so that the object under attack is either missed or at least is not hit in a head-on direction, thereby reducing the effectiveness of the attacking projectile.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: June 12, 2001
    Assignee: Diehl Stiftung & Co.
    Inventors: Raimar Steuer, Christian Klee, Helmut Ertel, Gunter Weihrauch
  • Patent number: 6196130
    Abstract: The inventive environment sensor apparatus includes an electrostatic sensor carried by the projectile. The electrostatic sensor has first and second electrical conducting areas separated by a dielectric material to form two plates of a capacitor. The first electrical conducting area is conductively connected to a current-to-voltage converter and the second electrical conducting area is conductively connected to the outside projectile body surface. A time changing electric field surrounding the projectile causes a time changing current to flow within the electrostatic sensor, which is converted to a time changing voltage by the current-to-voltage converter. A threshold detector device is conductively connected to an output of the current-to-voltage converter and provides a voltage signal to the safe and arm mechanism when the time changing voltage signal from the current-to-voltage converter exceeds a predetermined level, to indicate that a change has occurred in the sensed muzzle exit environment.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: March 6, 2001
    Assignee: Alliant Techsystems Inc.
    Inventors: Scott D. Crist, Kenneth D. Ceola
  • Patent number: 6189430
    Abstract: A weapon system, comprising a fire control system (1) and an ammunition unit (3) that can be fired from a weapon and that has at least one electronic switching device (8) that can be actuated by the fire control system (1). To achieve a constant, secure and simple monitoring of the link between the fire control computer (1) and the electronic switching device (8) to be triggered of the respective ammunition unit (3), a bidirectional data transfer is conducted via the two supply lines (15, 16) that are necessary for the voltage and current supply of the electronic switching device (8) of the respective ammunition unit (3). In the process, data are transmitted from the fire control system (1) to the electronic switching device (8) by a voltage modulation of the supply voltage, and data are transmitted from the switching device (8) to the fire control system (1) by a current modulation of the operating current.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: February 20, 2001
    Assignee: TZN Forschungs-und Entwicklungszentrum
    Inventor: Karl Ulrich Vornfett
  • Patent number: 6155155
    Abstract: The land mine neutralizing system has a launcher that launches a disk munon, and a means for determining the location of a mine threat. The disk munition is launched in stabilized flight on a predetermined azimuth. A fuze in the disk munition is armed relative to the velocity of the disk munition leaving the launcher, and the disk munition is detonated at a predetermined time that places the disk munition over a mine. A method for neutralizing mines uses the land mine neutralizing system to neutralize a buried mine.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: December 5, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Gary S. Moshier
  • Patent number: 6094054
    Abstract: A radome probe apparatus for use with an electrostatic proximity sensor is disclosed. The apparatus comprises a radome nose cone probe connected to a projectile and having an inner surface. The nose cone is made of a dielectric material. Single or multiple electrically conducting areas are connected to the inner surface of the nose cone. The conducting areas are dielectrically isolated. Electronics are utilized to sense the time rate of change voltage or current between the areas due to the intrinsic electrostatic charge on a target aircraft.
    Type: Grant
    Filed: June 24, 1996
    Date of Patent: July 25, 2000
    Assignee: Alliant Techsystems Inc.
    Inventor: Scott D. Crist
  • Patent number: 6050194
    Abstract: A sensor arrangement for target-seeking ammunition which includes an insert for forming a hollow charge, and in front of which there is positioned a transducer for electromagnetic radiation energy. The sensor arrangement of the above-constructional type has the transducer located in the longitudinal axis of symmetry of the ammunition and of the insert. The insert forming the combat charge may itself serve as a focusing reflector for the operating characteristics of the sensor arrangement. Inasmuch as there is available for the aperture practically the entire caliber of the ammunition; in effect, the front surface of the insert facing into the effective direction, there can be obtained an extremely favorable operating characteristic for the sensor arrangement.
    Type: Grant
    Filed: December 10, 1984
    Date of Patent: April 18, 2000
    Assignee: Diehl Stiftung & Co.
    Inventors: Horst-Georg Bugiel, Jurgen Schloss
  • Patent number: 6044765
    Abstract: The present invention relates to a method and a device for combating aircraft (4). According to the invention, use is made of a projectile which rotates in the trajectory (5) towards the target (4) and which is provided with a direction-sensing proximity fuse whose direction of impact has been coordinated with a defined splinter-scattering direction for the explosive charge (8) of the projectile. In a preferred embodiment, the projectile concerned is a projectile which is fired by means of rocket technology, backblast technology or, alternatively, by means of a gas generator, and which is included in a one-man weapon or team-operated weapon of the single-shot type.
    Type: Grant
    Filed: June 23, 1998
    Date of Patent: April 4, 2000
    Assignee: Bofors AB
    Inventor: Chirster Regebro
  • Patent number: 5942714
    Abstract: An accurate, yet ultra low power fuse electronics is presented in which two methods are used to reduce power consumption in the fuze electronics. First, the fuze uses low power 3.3 volt logic chips ("LV" series or equivalent CMOS logic chips) along with switches that have low input capacitance and low quiescent current. Second, a circuit design is used which, while still accomplishing the objects of the invention, drastically reduces the number of electronic elements required. When a projectile is fired from a weapon, a fire control system transmits a signal to a data conditioner located on the projectile. The data conditioner demodulates and filters the signal, producing a burst time data word which is transmitted to a microcontroller. The data conditioner is comprised of passive components, therefore no supply power is required. The microcontroller decodes the data word and also uses the data word to correct any error in the high and low speed fuze oscillators.
    Type: Grant
    Filed: December 31, 1997
    Date of Patent: August 24, 1999
    Assignee: AAI Corporation
    Inventors: Richard P. Oberlin, Robert T. Soranno