Afterburning Means Patents (Class 110/210)
  • Patent number: 10724736
    Abstract: A small heating system is provided for the combustion of solid fuels, having: a gasification zone for generating combustion gas and a combustion zone for combusting combustion gas; a first blower for supplying primary air into the gasification zone; and a second blower for supplying secondary air into the combustion zone , wherein the first blower can be regulated depending on the desired output of the small heating system and/or the second blower can be regulated depending on a desired oxygen content in the exhaust air from the combustion zone.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: July 28, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventor: Mohammadshayesh Aleysa
  • Patent number: 10723548
    Abstract: The present invention relates to a hygienic interactive system for sanitary material comprising a dispenser having at least three drawers, at least three buttons corresponding to the aforementioned three drawers, and a display screen; and, a disposal feature having at least two compartments and at least one sensor located on the top compartment The sensor being connected with the display screen and with drawers of the dispenser. The disposal additionally comprises at least three compartments containing an incinerating compartment.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: July 28, 2020
    Inventor: Shacorri Moore
  • Patent number: 10151481
    Abstract: A material is utilized with an electropositive metal. This can be used as post-oxyfuel process for oxyfuel power stations. Here, an energy circuit is realized by the material utilization. An electropositive metal, in particular lithium, serves as energy store and as central reaction product for the conversion of nitrogen and carbon dioxide into ammonia and methanol. The power station thus operates without CO2 emissions.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 11, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Günter Schmid
  • Patent number: 10099174
    Abstract: For purifying waste gas charged with nitrogen oxides in a reactor with heat-accumulator chambers containing heat-accumulator materials, the raw gas to be purified alternately enters one of the heat-accumulator chambers. Mixed with a reducing agent for the reduction of the nitrogen oxides, it is supplied to a catalyst for the reduction of the nitrogen oxides, and the clean gas heats the heat-accumulator material in the heat-accumulator chamber which the clean gas exits. A partial flow is taken therefrom, heated by means of a heat source and, mixed with a reducing agent, supplied again to the heat-accumulator chamber which the raw gas enters. This heated, recirculated gas forms the only heat source for the overall system.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: October 16, 2018
    Assignee: CHEMISCH THERMISCHE PROZESSTECHNIK GMBH
    Inventors: Christian Mulleder, Franz Ortner
  • Patent number: 10094552
    Abstract: A multistage boiler heat exchange apparatus has a combustion furnace and at least one boiler set. The combustion furnace is used to produce a heat source and has a furnace base and a hot-air passage. The at least one boiler set is connected to the combustion furnace, and each has a preheater and a boiler. The preheater is deposited adjacent to the combustion furnace, and is connected to and communicates with the hot-air passage to adjust temperature of the heat source that enters the preheater. The boiler is an uprightly-deposited cylinder, is connected to the preheater, and has a conducting pipe and an exchange tube. The conducting pipe is deposited on and communicates with the boiler to enable the heat source to enter the boiler. The exchange tube is deposited in the boiler and has an exchange medium to exchange heat with the heat source in the boiler.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: October 9, 2018
    Assignee: Suncue Company Ltd
    Inventor: Jung-Lang Lin
  • Patent number: 9316393
    Abstract: A burner system for consuming waste fuel comprises a combustion unit having at least three combustion chambers arranged concentrically around a variable speed conveyor screw for directing the waste fuel along a fuel consumption path through the combustion chambers; an air chamber surrounding the combustion chambers to facilitate preheating combustion air delivered to the combustion chambers and to facilitate insulating the combustion chambers against thermal losses to the environment; a boiler in fluid communication with the combustion chambers for heating fluid to facilitate an energy conversion process; and an intelligent control system for controlling operation of the burner system. The control system controls operating parameters of the boiler including pressure, temperature and fluid level and activates an emergency stop alarm if any one of the operating parameters is outside a predetermined range of operating values.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: April 19, 2016
    Inventors: William Hunkyun Bang, Thomas Anthony Patti Paternostro
  • Publication number: 20140295358
    Abstract: A method and apparatus for burning hydrocarbons or other combustible liquids and gases, the apparatus (APP) has been provided with at least one inlet for a liquid and/or gaseous fuel (FUE) and air (AIR) and at least one outlet (EXHG) for gases for removing the gases (EXHG) generated in the apparatus (APP), at least one measurement and adjustment unit (C) for adjusting the amount of fuel (FUE) and air (AIR), at least one pre-combustion zone (Cz11, Cz12, Tz1) for the partial combustion of gases, and at least one post-combustion zone (Tz2, Cz21, Cz22) for the combustion of gases generated in pre-combustion, for the reduction of NOx's produced in pre-combustion, and/or for the oxidation of hydrocarbon and carbon monoxide emissions.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 2, 2014
    Applicant: OILON OY
    Inventors: Reijo LYLYKANGAS, Eero PEKKOLA, Tero TULOKAS
  • Patent number: 8784095
    Abstract: Techniques, systems, apparatus and material are disclosed for generating oxygenated fuel. In one aspect, a method of producing an oxygenated fuel from biomass waste for use in a combustion system includes dissociating the biomass waste to produce one or more carbon donors. The biomass waste produced carbon donors are reacted with an oxygen donor to produce the oxygenated fuel comprising oxygenated carbon. Reacting the carbon donors with the oxygen donors includes applying waste heat recovered from an external heat source to the reaction of carbon donors and oxygen donor. The oxygenated fuel is combusted in the combustion system.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 22, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8661993
    Abstract: In an exhaust gas treatment system including a denitration device that removes nitrogen oxide in exhaust gas from a heavy fuel-fired boiler, an air preheater that recovers heat in the gas after the nitrogen oxide is removed, an electric precipitator that removes dust while adding ammonia into the gas after heat recovery, a desulfurization device that removes sulfur oxide in the gas after dust removal, and a stack that exhausts the gas after desulfurization to the outside, an ash-shear-force measuring instrument is provided to measure an ash shear force, which is ash flowability, on the downstream side of the electric precipitator, so that a feed rate of an air supply unit that supplies air to the boiler is reduced according to ash shear-force information.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Naoyuki Kamiyama, Tomoo Akiyama, Toshihiko Setoguchi, Koutaro Fujimura, Yoshihisa Yamamoto, Koichi Tagami, Yasutoshi Ueda
  • Patent number: 8632741
    Abstract: A system and method according to which exhaust is directed from a stationary exhaust source and through a burner, and a combustible fluid is vented from at least one combustible fluid source other than the stationary exhaust source. The combustible fluid is captured and directed to flow from the combustible fluid source and towards the burner, and at least air is mixed with the captured combustible fluid to form a mixture. The mixture is introduced into the burner and burned therein to thereby pre-heat the exhaust flowing therethrough. The pre-heated exhaust contacts a catalyst.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Dresser-Rand Company
    Inventors: Jon K. Tice, Loran Novacek
  • Patent number: 8607717
    Abstract: The present invention relates to a regulated two stage thermal oxidation of waste and applications to use such a process for energy generation. A system and a method are provided comprising a set up of one or more gasification chambers, which are connected via ductwork to a combustion chamber to burn the waste material. The waste is loaded into the gasification chamber(s) and ignited there and the gas, which is generated by the sub-stoichiometric combustion in the gasification chamber is fully combusted in the secondary combustion chamber at a very high temperature. The time used for the burn down period is decreased and controlled by several air and gas flow factors of the system of the present invention.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 17, 2013
    Assignee: WTE Waste To Energy Canada, Inc.
    Inventor: Fridfinnur Einarsson
  • Patent number: 8578869
    Abstract: A method and apparatus to batch de-coat the organics in metal scrap, and/or gasify the organics from certain types of waste material (including biomass, municipal solid waste, industrial waste, and sludge). The apparatus is suited for use on a batch tilting single entry rotary furnace of the type used to melt the metal scrap in the aluminum industry. The apparatus uses a burner in the tilting rotary furnace but does not necessarily melt the metal scrap. It preferably operates below the melting temperature of the metal scrap (<1400 F) and below the stoichiometric level (more specifically <12% oxygen) to partially combust the organic in the tilting rotary furnace. The gasified organics depart the furnace in a complete closed circuit where no air is allowed to entrain into the flue gases. These organic filled gases (synthetic gases) are fully incinerated in a separate thermal oxidizer where a stoichiometric burner uses either natural gas or liquid fuel to ignite the synthetic gas.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: November 12, 2013
    Assignee: Chinook Sciences LLC
    Inventor: Fanli Meng
  • Patent number: 8574329
    Abstract: A method of operating a gasifier is provided that envisions dividing the gasifier into multiple zones. A high-calorific-value feedstock with an oxidant is injected in the first zone. The gasifier is operated to substantially consume the oxidant within the first gasification zone. The method of operating the gasifier further includes injecting a low-calorific-value, high-oxygen-content feedstock in a second gasification zone. The low-calorific-value, high-oxygen-content feedstock is devolatilized and gasified in second zone. A method of operation provides for a synergistic co-gasification of the high-calorific-value feedstock and the low-calorific-value, high oxidant content feedstock. The method provides for specific control actions that enable operation of multi-fuel, multizone gasifier.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: November 5, 2013
    Assignee: General Electric Company
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Nikolaevich Eiteneer, Wei Wei, Ravichandra Srinivasa Jupudi, Ramanathan Subramanian
  • Patent number: 8512036
    Abstract: An oven for baking a batch of parts has a housing having side walls and a top wall defining a closed container with a closed top end and an open downwardly facing bottom end. Loading/unloading occurs at the bottom end onto a carriage raised to the top end where baking occurs. On each side is provided an array of heating elements below the top. A shield is located in front of the heating array so as to block direct radiation onto the parts to prevent over-heating as the carrying arrangement passes the heating array to be unloaded. The shield generates an upwardly flowing air stream to carry the heat to the top. The heating elements are mounted with their lower end in a connection box with a collar and insulated heat shield above the box to keep the electrical connections cooled.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 20, 2013
    Inventor: Frederick G. Ellis
  • Publication number: 20130112119
    Abstract: A furnace includes a primary and secondary combustion chamber. Heated air from the secondary combustion chamber travels through a vertically-oriented set of flues, and two horizontally-oriented sets of flues before exiting through a chimney.
    Type: Application
    Filed: February 5, 2009
    Publication date: May 9, 2013
    Inventor: Delmer Plett
  • Patent number: 8430665
    Abstract: Combustion systems having reduced nitrogen oxide emissions and methods of using the same are disclosed herein. In one embodiment, a combustion system is provided. The combustion system includes a combustion zone, which includes a burner for converting a fuel, under fuel rich conditions, to a flue gas. An intermediate staged air inlet is downstream from the combustion zone, for supplying intermediate staged air to the flue gas and producing fuel lean conditions. A reburn zone is downstream from the intermediate staged air inlet for receiving the flue gas. A process for using the combustion system and a method of reducing NOX flowing into the reburn zone of a combustion system are also described herein.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: April 30, 2013
    Assignee: General Electric Company
    Inventors: Roy Payne, Larry William Swanson, David Kelly Moyeda, Antonio Marquez
  • Patent number: 8377264
    Abstract: Disclosed is an organic material disposal method comprising a step for thermally decomposing a raw organic material and a gas treatment step for treating a gas generated in the preceding step, wherein the thermal decomposition step comprises a substep of decomposing the raw organic material into a carbide and a gaseous component, and the gas treatment step comprises the following substeps (1) to (5): (1) catalytically oxidizing the gaseous component produced in the thermal decomposition step; (2) neutralizing/washing the oxidized gas; (3) subjecting a waste water produced in the neutralization/washing step to the solid-liquid separation; (4) further thermally decomposing a solid component separated in the solid-liquid separation step together with the raw organic material in the thermal decomposition step; and (5) re-using a liquid component separated in the solid-liquid separation step in the solid-liquid separation step and/or the neutralization/washing step.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 19, 2013
    Assignee: N.M.G. Environmental Development Co., Ltd
    Inventors: Yoshiyuki Tokuda, Toshiaki Okauchi
  • Patent number: 8316922
    Abstract: A thermal postcombustion device includes, in a conventional manner per se, a housing, having an inlet for the exhaust air that is to be purified and an outlet for clean air. A combustion chamber is located inside the housing, and inside this combustion chamber, a heating device generates a temperature at which the pollutants carried by the exhaust air burn. In order to reduce the energy requirement, a heat exchanger is provided over which the exhaust air coming from the inlet is guided to the combustion chamber, and the clean air coming from the combustion chamber is guided to the outlet. In order to also be able to process exhaust air, which is loaded with adherent residues, for example, pitch vapors, a device is provided with which, during a purification mode, at least a portion of the clean air can be optionally fed past a section of the heat exchanger located closer to the combustion chamber and into another section of the heat exchanger located further from the combustion chamber.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: November 27, 2012
    Assignee: Eisenmann AG
    Inventor: Apostolos Katefidis
  • Publication number: 20120234217
    Abstract: In a method for processing ash, fly ash is separated from a product gas flow obtained from gasification of fuel, which fly ash is burned in fluidized bed combustion to reduce the carbon content of the ash. After this, the flue gases from the combustion are processed. In a first step, the ash is burned in fluidized bed combustion (fluidized bed reactor 1) at a temperature of not higher than 800° C. to reduce the carbon content, and in a second step, the flue gases a burned in an independent combustion process (combustion chamber 7), the combustion conditions reaching the temperature of at least 850° C.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 20, 2012
    Applicant: Metso Power Oy
    Inventor: Juhani ISAKSSON
  • Publication number: 20120234008
    Abstract: A gas supply device includes a first flow channel connecting a heat-treating furnace and a power generation device, a pressure control valve arranged in the first flow channel for controlling a pressure of exhaust gas flowing through the first flow channel, and a furnace pressure gauge measuring a pressure within the heat-treating furnace. If the pressure within the heat-treating furnace measured by the furnace pressure gauge becomes lower than a predetermined value, the pressure control valve controls the pressure of the exhaust gas to increase the pressure of the exhaust gas within the first flow channel.
    Type: Application
    Filed: November 26, 2010
    Publication date: September 20, 2012
    Inventor: Chikara Ohki
  • Publication number: 20120216539
    Abstract: A boiler system for producing steam from water includes a plurality of serially arranged oxy fuel boilers. Each boiler has an inlet in flow communication with a plurality of tubes. The tubes of each boiler form at least one water wall. Each of the boilers is configured to substantially prevent the introduction of air. Each boiler includes an oxy fuel combustion system including an oxygen supply for supplying oxygen having a purity of greater than 21 percent, a carbon based fuel supply for supplying a carbon based fuel and at least one oxy-fuel burner system for feeding the oxygen and the carbon based fuel into its respective boiler in a near stoichiometric proportion. The oxy fuel system is configured to limit an excess of either the oxygen or the carbon based fuel to a predetermined tolerance. The boiler tubes of each boiler are configured for direct, radiant energy exposure for energy transfer. Each of the boilers is independent of each of the other boilers.
    Type: Application
    Filed: December 22, 2011
    Publication date: August 30, 2012
    Applicant: Jupiter Oxygen Corporation
    Inventors: Brian R. Patrick, Tom L. Ochs, Danylo B. Oryschyn, Cathy A. Summers
  • Patent number: 8231382
    Abstract: This invention relates to apparatus for thermally de-coating and/or drying coated and/or contaminated materials. The apparatus comprises at least one support, an oven (10) mounted to each support and adapted for receiving material to be treated: each oven (10) being moveable between a first position in which a first portion (4) is generally higher than a second portion (6) and a second position in which the second portion (6) is generally higher than the first portion (4) and in use, the or each oven (10) is repeatedly moved between first and second positions to move material within the oven. The apparatus including at least one afterburner (22) for generating a stream of hot gasses and conduit means for directing the stream of hot gasses into a treatment zone of the oven and exhaust means for returning the gasses to the at least one afterburner whereby the or each oven does not include an integral afterburner.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: July 31, 2012
    Inventors: Ophneill Henry Perry, Rifat Alchalabi
  • Publication number: 20120096840
    Abstract: The present invention is a burner apparatus (S1, S2, S3, S4) that combusts air-fuel mixture (Y) of an oxidizing agent and fuel. This burner apparatus (S1, S2, S3, S4) includes a partitioning component (8) that separates an ignition chamber (R2) where the air-fuel mixture (Y) is ignited and a combustion holding chamber (R3) where the combustion of the air-fuel mixture (Y) is maintained such that the air-fuel mixture (Y) is able to pass between them, wherein the partitioning component (8) adjusts the flow rate of the air-fuel mixture (Y) that is supplied from the ignition chamber (R2) to the combustion holding chamber (R3).
    Type: Application
    Filed: July 14, 2010
    Publication date: April 26, 2012
    Inventors: Youichi Marutani, Yasunori Ashikaga, Syouji Itoh, Akihiko Ogasawara, Mamoru Kurashina
  • Publication number: 20120031987
    Abstract: A process heater system (10) for an industrial envelope (11) comprises a main combustion chamber (20), an afterburner (30), and an exhaust stack (40). Retrofitted heat-recovery piping (50) receives combustion gas downstream of the afterburner (30) and uses it as a heat source for the industrial envelope. When the industrial load in the main combustion chamber (20) is paint, powder coating, varnish, epoxy, grease and/or oil, the secondary materials burned in the afterburner 30 can be considered alternative fuel, not solid wastes.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Inventors: Robert F. Heran, Robert A. Koptis
  • Publication number: 20120012038
    Abstract: Described herein is a combustor having a first burn chamber and a second burn chamber. The first burn chamber has a first burner and the second burn chamber has a second, separate burner. The first burn chamber is in fluid communication with the second burn chamber which allows particles or vapor to move from the first burn chamber to the second burn chamber. The first burn chamber is configured to perform a primary burn on particles or vapors that have been introduced into the first chamber and the second burn chamber is configured to perform a secondary burn on particles that have not been burned in the first chamber and move to the second burn chamber.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Inventors: Dylan Smuts, Roger Oehler
  • Patent number: 8096063
    Abstract: An apparatus for thermally de-coating and/or drying coated and/or contaminated materials comprises a support and an oven pivotally mounted to the support. The oven has charging portion for receiving material to be treated and a changeover portion. Incorporated within the changeover portion is a heat treatment chamber through which a stream of hot gases can be passed. The oven is pivotally moveable between a first position in which the changeover portion is higher than the charging portion and a second position in which the charging portion is higher than the changeover portion. The arrangement is such that the oven can be repeatedly moved between the first and second positions so that material within the oven falls from one portion to the other portion, passing through the stream of hot gasses in the heat treatment chamber. A method of using the apparatus is also disclosed.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: January 17, 2012
    Inventors: Ophneil Henry Perry, Rifat Alchalabi
  • Patent number: 8034283
    Abstract: A rotary hearth furnace includes an exhaust gas eductor. The exhaust gas eductor includes a compartment-defining portion and an exhaust duct. The compartment-defining portion is provided on part of a ceiling of the rotary hearth furnace in an exhaust gas discharge region, and an exhaust duct is connected to the compartment-defining portion. The lower surface of the compartment-defining portion lies higher than the lower surface of the other portion of the ceiling. The compartment-defining portion defines a compartment where the exhaust gas stays. The exhaust duct can include a cooling medium injection nozzle. The furnace increases fuel efficiency by completely burning combustible components remaining in exhaust gas generated in the rotary hearth furnace so as to use the combustible components efficiently for the heating and reduction reaction in the rotary hearth furnace, without problems in producing reduced iron.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: October 11, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Masahiko Tetsumoto, Sumito Hashimoto, Koji Tokuda
  • Publication number: 20110214593
    Abstract: An eco-friendly system for generating thermal energy from waste biomass comprises a furnace, a set of boiler tubes placed on the top of the furnace, a rectangular or tubular structure housing the boiler tube and the furnace, an outlet for the flue gases leading to a cyclone, said cyclone carrying a tubular body for leading away a part of flue gases and fitted with a butterfly control valve for regulating flow of effluent gases, a tubular body connecting the body to the suction blower, a water tank, a hopper for waste biomass, and a fuel injection blower for introducing fuel inside the furnace by means of pressurized air jet blown through the pipe.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Inventors: Prabir Kumar Roychoudhury, Sayan Roychoudhury
  • Patent number: 8001912
    Abstract: Pyrolyzing gasification system and method of use including primary combustion of non-uniform solid fuels such as biomass and solid wastes within a refractory lined gasifier, secondary combustion of primary combustion gas within a staged, cyclonic, refractory lined oxidizer, and heat energy recovery from the oxidized flue gas within an indirect air-to-air all-ceramic heat exchanger or external combustion engine. Primary combustion occurs at low substoichiometric air percentages of 10-30 percent and at temperatures below 1000 degrees F. Secondary combustion is staged and controlled for low NOx formation and prevention of formation of CO, hydrocarbons, and VOCs. The gasifier includes a furnace bed segmented into individual cells, each cell is independently monitored using a ramp temperature probe, and provided with controlled air injection. Gasifier air injection includes tuyere arrays, lances, or both.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 23, 2011
    Assignee: Heat Transfer International, Inc.
    Inventor: Robert G. Graham
  • Patent number: 7967008
    Abstract: A fireplace system having a fireplace cavity and a secondary combustion assembly disposed adjacent to a rear wall of the fireplace cavity. The secondary combustion assembly includes a plurality of combustion chambers configured to facilitate secondary combustion. A plurality of inlets are disposed in the rear wall of the fireplace cavity. One or more of the plurality of inlets are configured to provide fluid communication between the fireplace cavity and a respective one of the plurality of combustion chambers. An exhaust gas collection chamber is in fluid communication with at least the secondary combustion assembly. The exhaust gas collection chamber includes a vent configured to release exhaust gas into a chimney. An ambient air bypass aperture is disposed in a top baffle of the fireplace cavity. The ambient air bypass aperture is configured to divert at least a portion of ambient air entering the fireplace cavity into the exhaust gas collection chamber.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: June 28, 2011
    Assignee: Incendia IP, LLC
    Inventors: Robert W. Ferguson, Derik K. Andors
  • Patent number: 7906695
    Abstract: Break down of waste materials such as animal parts is carried out by pyrolysis, gasification and combustion using a reactor vessel with a conical lower portion located within an exterior vessel. Feed material is deposited in continuous mode through an air lock at the top and falls by gravity alone into the lower cone portion. The cone geometry supports organic feedstocks, eliminating the requirement for grates or other combustion support systems. Organic material that may escape gasification and exit the bottom of the cone accumulates within the ash and carbon particle volume until burned. Carbon is sequestered from high energy feedstocks and is stored in a chamber below the gasification cone. This carbon supplements the energy output of lower energy feedstocks to maintain desired operating temperatures at all times.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: March 15, 2011
    Assignee: RES/OP Technologies Inc.
    Inventor: Ronald Keith Giercke
  • Patent number: 7896645
    Abstract: A system when installed in-line with a pollution source provides reduction and/or complete combustion of harmful emissions generated there from. Such emissions including (but not limited to) compounds such as oxides of nitrogen, hydrocarbons, carbon monoxide, odors, organic and inorganic particulates. The pollution source can be of any type, such as smoke from a smokestack, engine exhaust, etc. The re-burner system is of very simple construction, is extremely energy efficient and does not require any moving parts or maintenance, respectively.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 1, 2011
    Assignee: Universal Cleanair Technologies
    Inventor: Ronald Everett Loving
  • Publication number: 20100307392
    Abstract: Disclosed are a method and an installation for generating effective energy by gasifying waste. In the method and installation, waste such as garbage is introduced into a shaft-type melting gasifier, is dried in a reverse flow, is degassed, and is gasified while the solid residue is melted. The hot crude gases that are withdrawn from the melting gasifier (15) are fed to a hot gas steam generator (18) in which steam is admixed to the hot gas and the hot gas-steam mixture is conducted across the double turbine rotor (18.13) of a turbine (18.3) that drives a power generator (18.4), a preliminary reaction taking place at the same time. The pre-purified hot gas-steam mixture is then introduced into a downflow device (38) in which the mixture is cooled and pre-purified using sprayed water mixed with reactant and by repeatedly expanding, compressing, and foaming the mixture, the pre-purified gas being withdrawn and the liquid being collected.
    Type: Application
    Filed: November 28, 2007
    Publication date: December 9, 2010
    Inventor: Hermann Berthold
  • Patent number: 7836835
    Abstract: The invention relates to a gas incinerator device comprising a combustion chamber having a heater body producing combustion gas, at least one fan feeding the heater body with cool air to ensure combustion, and an exhaust chimney for exhausting the mixture formed by the combustion gas and the cool air, the combustion chamber being mounted in the exhaust chimney in such a manner as to leave an annular duct between the combustion chamber and the exhaust chimney to pass a flow of combustion cool air and/or of cooling air coming from said at least one fan, said combustion chamber having a plurality of injection orifices and/or tubes enabling a fraction of the cool air flowing in the annular duct to be injected therein.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 23, 2010
    Assignee: SNECMA
    Inventor: Damien Feger
  • Patent number: 7832342
    Abstract: A process for combusting fuels, in particular waste, includes reducing the oxygen mass flow of the underfire combustion gas and increasing the oxygen mass flow of the overfire combustion gas in the event of an increase in the reaction rate or combustion intensity.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: November 16, 2010
    Assignees: Martin GmbH für Umwelt-und Energietechnik, Mitsubishi Heavy Industries, Ltd.
    Inventors: Johannes Martin, Oliver Gohlke, Masao Takuma, Minoru Kuranishi, Yoshio Yanagisawa
  • Patent number: 7833010
    Abstract: The present invention provides a system and method for injecting natural gas in an RTO. The RTO may be, for example, a known type that has a rotary distributor, a center section divided into pie-shaped segments above the rotary distributor, a heat exchanger section above the center section, and a combustion chamber above the heat exchanger. According to an aspect of the invention, the system introduces gas into segments of the center section in a sequenced manner via cycling on/off control valves. In a particular embodiment, the natural gas is injected at a specific location of a respective segment within the center section that is past the rotary distributor seals and directly under the bottom of the heat exchanger bed. According to the injection sequence, the injection of natural gas into the segment commences when the segment begins to receive inlet waste gas streams, and injection ceases before the flow through the sector changes or stops.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: November 16, 2010
    Assignee: Eisenmann Corporation
    Inventors: Robin J. Baker, Bradley L. Ginger
  • Patent number: 7814845
    Abstract: A device for gasifying biomass waste has two each of primary chambers, fume transfer vents, mixing chambers which accept fumes from the primary chamber, afterburner chambers in fluid communication with the mixing chambers, and an exhaust duct. Each secondary burner produces an initial heating flame within a vertical portion of the respective afterburner chamber, and secondary chambers are in fluid communication with the afterburner chambers. Heated gases from the afterburner chambers cause heating of the secondary chambers. A portion of each primary chamber has a heat conductive floor superimposed over the respective secondary chamber, and the partition between the primary chambers is heat conductive, so that conductive and convective heating of the primary chambers occurs.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: October 19, 2010
    Assignee: Zebrex Environmental Systems
    Inventor: David Brookes
  • Patent number: 7802528
    Abstract: Apparatus for the pyrolysis of solid waste material includes a thermal reactor including an elongate hollow housing with a reaction chamber disposed within the housing. The thermal reactor is vertically oriented in order to cause solid waste material fed thereinto to pass through said reaction chamber by the force of gravity and a plurality of vanes are disposed for both conducting heat into said reactor chamber and for tumbling said solid waste material as said solid waste material passes through said reaction chamber.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: September 28, 2010
    Assignee: Rainbow Conversion Technologies, LLC
    Inventors: Bruce Shuman, Jerry Moffatt, Bruce Atwell, Robert J. Romacly, Glenn A. Romacly
  • Publication number: 20100186645
    Abstract: An embodiment is an emissions reduction system for exhaust gases. The emissions reduction system includes a reaction chamber with one or more parallel flow tubes. Each parallel flow tube includes a heating element to heat exhaust gases to oxidize PICs and other pollutants contained in and/or carried by the exhaust gases. The reaction chamber may also include an adjustable bypass for the exhaust gases to variably bypass the parallel flow tubes. The reaction chamber may further include an oxidizing agent injector to improve the oxidation of the PICs and other pollutants in the reaction chamber. The emissions reduction system of an embodiment may further include a catalyst bed in fluid communication with the reaction chamber to further reduce emissions.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 29, 2010
    Inventor: Paul E. Tiegs
  • Publication number: 20100116183
    Abstract: An in-furnace combustion application process method and apparatus reduces nitrogen oxides in flue gas by injecting a bitumen, carbon residue or an asphalt water emulsion or a mixture thereof into flue gas so that the three types of emulsions (injected individually or as a blend) mixes with said flue gas. The emulsions are preferably atomized before injection and may also be injected in jet streams.
    Type: Application
    Filed: December 7, 2009
    Publication date: May 13, 2010
    Inventor: George C. Dusatko
  • Patent number: 7681508
    Abstract: An after-air nozzle capable of reducing NOx and CO and a boiler equipped with such a nozzle are provided The after-air nozzle has a vena contracta such that an outside diameter of a flow passage diminishes towards the air-jetting port which supplies air to a boiler, and a changing apparatus changes a flow passage cross-sectional area of the vena contracta. A method of use of such an after-air nozzle and a boiler so equipped is also provided.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: March 23, 2010
    Assignee: Babcock-Hitachi K.K.
    Inventors: Masayuki Taniguchi, Kenji Yamamoto, Hirofumi Okazaki, Kazumi Yasuda, Kenji Kiyama, Takanori Yano, Akira Baba
  • Publication number: 20100018443
    Abstract: A furnace includes a primary and secondary combustion chamber. Heated air from the secondary combustion chamber travels through a vertically-oriented set of flues, and two horizontally-oriented sets of flues before exiting through a chimney.
    Type: Application
    Filed: February 5, 2009
    Publication date: January 28, 2010
    Inventor: Delmer Plett
  • Publication number: 20090320726
    Abstract: A system when installed in-line with a pollution source provides reduction and/or complete combustion of harmful emissions generated there from. Such emissions including (but not limited to) compounds such as oxides of nitrogen, hydrocarbons, carbon monoxide, odors, organic and inorganic particulates. The pollution source can be of any type, such as smoke from a smokestack, engine exhaust, etc. The re-burner system is of very simple construction, is extremely energy efficient and does not require any moving parts or maintenance, respectively.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 31, 2009
    Inventor: Ronald Everett Loving
  • Patent number: 7621225
    Abstract: An apparatus for treating waste material that comprises four major cooperating subsystems, namely a pyrolytic converter (24), a two-stage thermal oxidizer (26), a steam generator (28) and a steam turbine (30) driven by steam generated by the steam generator. In operation, the pyrolytic converter is uniquely heated without any flame impinging on the reactor component and the waste material to be pyrolyzed is transported through the reaction chamber of the pyrolytic converter by a pair of longitudinally extending, side-by-side material transporting mechanisms (42, 43).
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: November 24, 2009
    Assignee: International Environmental Solutions Corporation
    Inventors: William C. Walker, Karen Bertram, legal representative
  • Publication number: 20090286191
    Abstract: A combustion device including a combustion chamber, a primary reactor and a suction and exhaust tube for gases wherein the gas suction and exhaust tube passes through the primary reactor. In a preferred embodiment, the primary reactor emerges into a post-combustion chamber whereby the post-combustion gases are discharged from the post-combustion chamber through the suction tube passing through the primary reactor.
    Type: Application
    Filed: May 31, 2006
    Publication date: November 19, 2009
    Inventor: Jean Julien Leonard Guillot
  • Patent number: 7591982
    Abstract: A thermal waste recycling system and method and to the application thereof in the treatment of high-water-content waste includes: a column for thermal waste pyrolysis, a thermal pyrolysis gas combustion chamber, a thermal purification and molecular cracking device, a heat exchange device comprising a condensation device and an element-concentration device, a device for the condensation of carbonic gas CO2, a device for cooling the hot parts of the system, and a cogeneration installation.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: September 22, 2009
    Assignee: BIO 3D Applications
    Inventor: Raymond Guyomarc'h
  • Patent number: 7569200
    Abstract: The present invention relates to a method for reducing nitrogen oxide emissions in combustion. Fuel is combusted in a first zone, whereby nitrogen oxides are generated. Supplementary fuel is fed in another zone under reducing conditions. At the same time, the temperature is adjusted so that nitrogen oxides convert essentially to hydrogen cyanide. Finally, air is fed in for finalizing the combustion and converting the hydrogen cyanide into nitrogen.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: August 4, 2009
    Assignee: Andritz Oy
    Inventors: Edgardo Coda Zabetta, Mikko Hupa, Kari Saviharju
  • Publication number: 20090123883
    Abstract: The invention relates to heat engineering and can be used for designing and reconstructing furnaces for industrial boilers. More advantageously the inventive furnace can be used for burning coarsely dispersed broken combustibles, coal and schist. The invective swirling-type furnace operating method consists in returning the controllable amount of a coal-ash mixture from an ash catcher located behind a combustion to the internal surface thereof. Said swirling-type furnace comprises a combustion chamber provided with a sloping bottom which is formed by slops of lower parts of the walls thereof, a bottom-blowing device arranged under the sloping bottom mouth and an inclined burner which is used for supplying a fuel-air mixture and is fixed to the combustion chamber wall. The furnace is provided with the ash catcher located behind the combustion chamber and a recirculation ash channel, whose one end communicates with the ash catcher and the other with the combustion chamber internal space.
    Type: Application
    Filed: December 28, 2006
    Publication date: May 14, 2009
    Inventors: Felix Zalmanovich Finker, Igor Borisovich KUBYSHKIN
  • Publication number: 20090078175
    Abstract: A fuel flexible furnace, including a main combustion zone, a reburn zone downstream from the main combustion zone, and a delivery system operably coupled to supplies of biomass and coal and configured to deliver the biomass and the coal as ingredients of first and reburn fuels to the main combustion zone and the reburn zone, with each fuel including flexible quantities of the biomass and/or the coal. The flexible quantities are variable with the furnace in an operating condition.
    Type: Application
    Filed: December 5, 2007
    Publication date: March 26, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Boris Nikolaevich Eiteneer, William Randall Seeker, Roy Payne
  • Publication number: 20090007825
    Abstract: A thermal postcombustion device includes, in a conventional manner per se, a housing, having an inlet for the exhaust air that is to be purified and an outlet for clean air. A combustion chamber is located inside the housing, and inside this combustion chamber, a heating device generates a temperature at which the pollutants carried by the exhaust air burn. In order to reduce the energy requirement, a heat exchanger is provided over which the exhaust air coming from the inlet is guided to the combustion chamber, and the clean air coming from the combustion chamber is guided to the outlet. In order to also be able to process exhaust air, which is loaded with adherent residues, for example, pitch vapors, a device is provided with which, during a purification mode, at least a portion of the clean air can be optionally fed past a section of the heat exchanger located closer to the combustion chamber and into another section of the heat exchanger located further from the combustion chamber.
    Type: Application
    Filed: July 25, 2005
    Publication date: January 8, 2009
    Inventor: Apostolos Katefidis