With Movement Of Substrate Or Vapor Or Gas Supply Means During Growth Patents (Class 117/107)
  • Patent number: 6863728
    Abstract: A low defect (e.g., dislocation and micropipe) density silicon carbide (SiC) is provided as well as an apparatus and method for growing the same. The SiC crystal, grown using sublimation techniques, is preferably divided into two stages of growth. During the first stage of growth, the crystal grows in a normal direction while simultaneously expanding laterally. Although dislocations and other material defects may propagate within the axially grown material, defect propagation and generation in the laterally grown material are substantially reduced, if not altogether eliminated. After the crystal has expanded to the desired diameter, the second stage of growth begins in which lateral growth is suppressed and normal growth is enhanced. A substantially reduced defect density is maintained within the axially grown material that is based on the laterally grown first stage material.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 8, 2005
    Assignee: The Fox Group, Inc.
    Inventors: Yury Alexandrovich Vodakov, Mark Grigorievich Ramm, Evgeny Nikolaevich Mokhov, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Heikki I. Helava
  • Patent number: 6824611
    Abstract: A method and apparatus for controlled, extended and repeatable growth of high quality silicon carbide boules of a desired polytype is disclosed which utilizes graphite crucibles coated with a thin coating of a metal carbide and in particular carbides selected from the group consisting of tantalum carbide, hafnium carbide, niobium carbide, titanium carbide, zirconium carbide, tungsten carbide and vanadium carbide.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: November 30, 2004
    Assignee: Cree, Inc.
    Inventors: Olle Claes Erik Kordina, Michael James Paisley
  • Patent number: 6764546
    Abstract: An improved apparatus and method for substrate layer deposition in which substrate layers are grown by carrier gas delivery of sequential pulses of reactants to the substrate surface. At least one of the reactants comprises excited species, e.g., radicals. In a specific embodiment, the apparatus of this invention provides sequential repeated pulses of reactants in a flow of carrier gas for reaction at a substrate surface. The reactant pulses are delivered with sufficient intervening delay times to minimize undesirable reaction between reactants in adjacent pulses in the gas phase or undesired uncontrolled reactions on the substrate surface.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: July 20, 2004
    Assignee: ASM International N.V.
    Inventor: Ivo Raaijmakers
  • Patent number: 6749685
    Abstract: Methods of growing silicon carbide are provided in which an electric arc is used to sublime a silicon carbide source material. In these embodiments, a silicon carbide seed crystal is introduced into a sublimation system, along with first and second electrodes that are separated by a gap. A power supply is coupled to at least one of the electrodes and used to create an electric arc across the gap between the two electrodes. This electric arc is used to sublime at least a portion of a silicon carbide source material. The vaporized silicon carbide material may then be encouraged to condense onto a seed material to produce monocrystalline or polycrystalline silicon carbide. In embodiments of the present invention, at least one of the electrodes is comprised of silicon carbide and serves as the silicon carbide source material.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: June 15, 2004
    Assignee: Cree, Inc.
    Inventor: Thomas G. Coleman
  • Patent number: 6660083
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 9, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
  • Patent number: 6632279
    Abstract: A method is provided for growing thin oxide films on the surface of a substrate by alternatively reacting the surface of the substrate with a metal source material and an oxygen source material. The oxygen source material is preferably a metal alkoxide. The metal source material may be a metal halide, hydride, alkoxide, alkyl, a cyclopentadienyl compound, or a diketonate.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: October 14, 2003
    Assignee: ASM Microchemistry, Oy
    Inventors: Mikko Ritala, Antti Rahtu, Markku Leskela, Kaupo Kukli
  • Patent number: 6579360
    Abstract: A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0° and less than 90° to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: June 17, 2003
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Stephen E. Dorris, Beihai Ma, Meiya Li
  • Patent number: 6579359
    Abstract: A method is disclosed for fabricating monocrystal material with the bandgap width exceeding 1.8 eV. The method comprises the steps of processing a monocrystal semiconductor wafer to develop a porous layer through electrolytic treatment of the wafer at direct current under UV-illumination, and epitaxially growing a monocrystal layer on said porous layer. Growth on porous layer produces semiconductor material with reduced stress and better characteristics than with the same material grown on non-porous layers and substrates. Also, semiconductor device structure comprising at least one layer of porous group III material is included.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: June 17, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Marina Mynbaeva, Denis Tsvetkov, Vladimir Dmitriev, Alexander Lebedev, Nataliya Savkina, Alexander Syrkin, Stephen Saddow, Karim Mynbaev
  • Patent number: 6562131
    Abstract: A method and apparatus for axially growing single crystal silicon carbide is provided. Utilizing the system, silicon carbide can be grown with a dislocation density of less than 104 per square centimeter, a micropipe density of less than 10 per square centimeter, and a secondary phase inclusion density of less than 10 per cubic centimeter. As disclosed, a SiC source and a SiC seed crystal of the desired polytype are co-located within a crucible, the growth zone being defined by the substantially parallel surfaces of the source and the seed in combination with the sidewalls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed, either directly or through the use of a secondary container housing the crucible. The crucible is comprised of tantalum or niobium that has been specially treated.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 13, 2003
    Assignee: The Fox Group, Inc.
    Inventors: Yury Alexandrovich Vodakov, Evgeny Nikolaevich Mokhov, Mark Grigorievich Ramm, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Leonid Iosifovich Temkin
  • Patent number: 6562130
    Abstract: A method and apparatus for axially growing single crystal silicon carbide is provided. Utilizing the system, silicon carbide can be grown with a dislocation density of less than 104 per square centimeter, a micropipe density of less than 10 per square centimeter, and a secondary phase inclusion density of less than 10 per cubic centimeter. As disclosed, a SiC source and a SiC seed crystal of the desired polytype are co-located within a crucible, the growth zone being defined by the substantially parallel surfaces of the source and the seed in combination with the sidewalls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed, either directly or through the use of a secondary container housing the crucible. The crucible is comprised of tantalum or niobium that has been specially treated.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 13, 2003
    Assignee: The Fox Group, Inc.
    Inventors: Yury Alexandrovich Vodakov, Evgeny Nikolaevich Mokhov, Mark Grigorievich Ramm, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Leonid Iosifovich Temkin
  • Patent number: 6554897
    Abstract: A method of producing silicon carbide (SiC), by introducing into the interior of a furnace a quantity of relatively pure elemental silicon and a quantity of elemental carbon; subjecting the interior of the furnace to a vacuum; and heating the silicon and carbon to a temperature of 1500° C.-2200° C. to vaporize the silicon and to react it with the carbon to produce silicon carbide. Several embodiments are described for producing a heating or lighting element and a high temperature sensor, respectively, in which the carbon is in the form of a shaped body made of a mixture of finely-divided particles of carbon in a binder, and the silicon is in the form of finely-divided particles applied to the outer surface of the shaped body. A further embodiment is described for producing silicon carbide powder, in which the carbon and silicon are each in the form of finely-divided particles, and are physically separated from each other by a graphite sheet permeable to silicon vapor.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: April 29, 2003
    Assignee: Silbid Ltd.
    Inventor: Gady Golan
  • Patent number: 6547877
    Abstract: A method and apparatus for axially growing single crystal silicon carbide is provided. Utilizing the system, silicon carbide can be grown with a dislocation density of less than 104 per square centimeter, a micropipe density of less than 10 per square centimeter, and a secondary phase inclusion density of less than 10 per cubic centimeter. As disclosed, a SiC source and a SiC seed crystal of the desired polytype are co-located within a crucible, the growth zone being defined by the substantially parallel surfaces of the source and the seed in combination with the sidewalls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed, either directly or through the use of a secondary container housing the crucible. The crucible is comprised of tantalum or niobium that has been specially treated.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: April 15, 2003
    Assignee: The Fox Group, Inc.
    Inventors: Yury Alexandrovich Vodakov, Evgeny Nikolaevich Mokhov, Mark Grigorievich Ramm, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Leonid Iosifovich Temkin
  • Patent number: 6537371
    Abstract: A method and apparatus for axially growing single crystal silicon carbide is provided. Utilizing the system, silicon carbide can be grown with a dislocation density of less than 104 per square centimeter, a micropipe density of less than 10 per square centimeter, and a secondary phase inclusion density of less than 10 per cubic centimeter. As disclosed, a SiC source and a SiC seed crystal of the desired polytype are co-located within a crucible, the growth zone being defined by the substantially parallel surfaces of the source and the seed in combination with the sidewalls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed, either directly or through the use of a secondary container housing the crucible. The crucible is comprised of tantalum or niobium that has been specially treated.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: March 25, 2003
    Assignee: The Fox Group, Inc.
    Inventors: Yury Alexandrovich Vodakov, Evgeny Nikolaevich Mokhov, Mark Grigorievich Ramm, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Leonid Iosifovich Temkin
  • Patent number: 6527857
    Abstract: A GaN boule is epitaxially grown by reacting a vapor of the metal Ga with the gas NH3 at a high temperature of about 1200-degrees C., which high temperature causes the NH3 to dissociate into the two elements N and H. A seed 51 of GaN is placed within a growth-furnace that is heated to about 1200-degrees C., and an input stream of Ga vapor and NH3 gas are directed incident on the GaN seed. An upward-facing, shower head-shaped, manifold is provided to uniformly distribute the Ga vapor and the NH3 gas to the interior of the growth-furnace at a location that is generally below and spaced from the bottom of the GaN seed. GaN vapor is thus formed within this space, generally adjacent to the surface of the boule. At the exterior surface of the GaN seed, the Ga vapor reacts with the NH3 gas to epitaxially form solid GaN on the exterior surface of the GaN seed, and to also form H2.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: March 4, 2003
    Assignee: Astralux, Inc.
    Inventor: Jacques Isaac Pankove
  • Patent number: 6514339
    Abstract: A laser annealing apparatus for sequential lateral solidification (SLS) to uniformly crystallize silicon on an entire silicon substrate by minimizing the dislocation of the silicon substrate during laser beam irradiation is disclosed. During the laser annealing, a vacuum chuck holds the silicon substrate on a movable stage. The device includes a laser source, an optical system patterning the shape and energy of a laser beam irradiated from the laser source, a vacuum chuck supporting a silicon substrate, and a movable stage supporting the vacuum chuck as well as transferring the vacuum chuck in a predetermined direction. Accordingly, the apparatus improves the degree of crystallization because it is able to uniformly carry out SLS on an entire surface of the silicon substrate.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: February 4, 2003
    Assignee: LG. Philips Co., Ltd.
    Inventor: Yun-Ho Jung
  • Patent number: 6508880
    Abstract: A low defect (e.g., dislocation and micropipe) density silicon carbide (SiC) is provided as well as an apparatus and method for growing the same. The SiC crystal, grown using sublimation techniques, is preferably divided into two stages of growth. During the first stage of growth, the crystal grows in a normal direction while simultaneously expanding laterally. Although dislocations and other material defects may propagate within the axially grown material, defect propagation and generation in the laterally grown material are substantially reduced, if not altogether eliminated. After the crystal has expanded to the desired diameter, the second stage of growth begins in which lateral growth is suppressed and normal growth is enhanced. A substantially reduced defect density is maintained within the axially grown material that is based on the laterally grown first stage material.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: January 21, 2003
    Assignee: The Fox Group, Inc.
    Inventors: Yury Alexandrovich Vodakov, Mark Grigorievich Ramm, Evgeny Nikolaevich Mokhov, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Heikki I. Helava
  • Patent number: 6506252
    Abstract: The invention describes a CVD reactor on solid substrates and a related method of deposition of epitaxial layers on the wafers. In the reactor of the invention, the wafer carrier is transported between a loading position and a deposition position. In the deposition position, the wafer carrier is detachably mounted on an upper end of a rotatable spindle without an intermediate susceptor. The reactor of the invention may process a single wafer at the same time. The invention also describes several embodiments and variants of the invention. One of the variants of the invention provides a decrease in a heat drain from the wafer-supporting assembly through the spindle and a novel heating arrangement therefore. The advantages of the invention include lower reactor cycle, the lower cost and longer lifetime of the component parts, and better temperature control, among others.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: January 14, 2003
    Assignee: Emcore Corporation
    Inventors: Vadim Boguslavskiy, Alexander Gurary
  • Publication number: 20020185059
    Abstract: A laser annealing apparatus for sequential lateral solidification (SLS) to uniformly crystallize silicon on an entire silicon substrate by minimizing the dislocation of the silicon substrate during laser beam irradiation is disclosed. During the laser annealing, a vacuum chuck holds the silicon substrate on a movable stage. The device includes a laser source, an optical system patterning the shape and energy of a laser beam irradiated from the laser source, a vacuum chuck supporting a silicon substrate, and a movable stage supporting the vacuum chuck as well as transferring the vacuum chuck in a predetermined direction. Accordingly, the apparatus improves the degree of crystallization because it is able to uniformly carry out SLS on an entire surface of the silicon substrate.
    Type: Application
    Filed: August 5, 2002
    Publication date: December 12, 2002
    Applicant: LG Philips LCD Co. Ltd.
    Inventor: Yun-Ho Jung
  • Patent number: 6461428
    Abstract: A method of controlling the temperature of a semiconductor substrate for prevention of any cracks from being formed in the semiconductor substrate event though semiconductors having different temperature rise/fall characteristics are fed into a reactor in which each semiconductor substrates is subjected to an oxidation, diffusion, or a chemical vapor deposition process. The temperatures are measured at various points in the semiconductor substrates in the heated reactor; the temperature rise/fall characteristic thereof is determined by computing the rate of temperature rise and the in-plane temperature distribution out of the measured values; a temperature control program adaptable for said temperature rise/fall characteristic is automatically selected out of a plurality of temperature control programs written in advance; the semiconductor substrate is controlled on the basis of the selected temperature control program.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: October 8, 2002
    Assignees: Toshiba Ceramics Co., Ltd., Toshiba Kikai Kabushiki Kaisha
    Inventors: Shyuji Tobashi, Tadashi Ohashi, Katsuyuki Iwata, Hiroyuki Saito, Shinichi Mitani, Takaaki Honda, Hideki Arai, Yoshitaka Murofushi, Kunihiko Suzuki, Hidenori Takahashi, Hideki Ito, Hirofumi Katsumata
  • Patent number: 6261363
    Abstract: A sublimation technique of growing silicon carbide single crystals, comprising a parallel arrangement, opposite each other, of the evaporating surface of a silicon carbide source (1) and the growing surface of at least one seed crystal (2) of a specified politype, to define a growth zone (4), and generation of a reduced pressure and an operating temperature field with an axial gradient in the direction from the seed crystal (2) towards the source (1), providing evaporation of silicon carbide of the source (1) and vapour-phase crystallization of silicon carbide on the growing surface of the seed crystal (2). The growth zone (4) is here sealed before the operating temperatures are reached therein, and the process is run with a solid solution of tantalum and silicon carbides in tantalum and their chemical compounds present in the growth zone (4). The material of the source (1) employed for implementing the sublimation technique of growing silicon carbide crystals is silison carbide ceramics.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: July 17, 2001
    Inventors: Yury Alexandrovich Vodakov, Evgeny Nikolaevich Mokhov, Mark Grigorievich Ramm, Alexandr Dmitrievich Roenkov, Yury Nikolaevich Makarov, Sergei Yurievich Karpov, Mark Spiridonovich Ramm, Leonid Iosifovich Temkin
  • Patent number: 6183555
    Abstract: A sapphire single crystal wafer 11 having a diameter not less than two inches and having an off-angled surface which is obtained by rotating an R (1-102) surface about a [11-20] axis by a given off-angle is introduced in a CVD apparatus, and a double-layer structure of first and second aluminum single crystal layers 12 and 13 is deposited on the off-angled surface of the sapphire single crystal wafer by MOCVD. The thus deposited aluminum single crystal layer 13 has (1-210) surface. The first aluminum nitride single crystal layer 12 serves as a buffer layer and has a thickness of 5-50 nm, and the second aluminum nitride single crystal layer 13 has a thickness not less than 1 &mgr;m. The off-angle is preferably set to a value not less than ±1°, much preferably a value ±2°, more preferably a value not less than −3°, and particularly preferable to a value within a range from −2°-+10°.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: February 6, 2001
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomohiko Shibata, Yukinori Nakamura
  • Patent number: 6113690
    Abstract: A method of preparing crystalline alkaline earth metal oxides on a Si substrate wherein a Si substrate with amorphous silicon dioxide on a surface is provided. The substrate is heated to a temperature in a range of 700.degree. C. to 800.degree. C. and exposed to a beam of alkaline earth metal(s) in a molecular beam epitaxy chamber at a pressure within approximately a 10.sup.-9 -10.sup.-10 Torr range. During the molecular beam epitaxy the surface is monitored by RHEED technique to determine a conversion of the amorphous silicon dioxide to a crystalline alkaline earth metal oxide. Once the alkaline earth metal oxide is formed, additional layers of material, e.g. additional thickness of an alkaline earth metal oxide, single crystal ferroelectrics or high dielectric constant oxides on silicon for non-volatile and high density memory device applications.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: September 5, 2000
    Assignee: Motorola, Inc.
    Inventors: Zhiyi Jimmy Yu, Jerald A. Hallmark, Jonathan K. Abrokwah, Corey D. Overgaard, Ravi Droopad
  • Patent number: 6099640
    Abstract: A method of promoting evaporation of excess indium from a surface of an indium containing compound semiconductor single crystal layer during a discontinuation of a molecular beam epitaxial growth. Substantial supply of all elements for the indium containing compound semiconductor single crystal layer are stopped at least until a substrate temperature rises to a predetermined temperature of not less than an indium re-evaporation initiation temperature.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: August 8, 2000
    Assignee: NEC Corporation
    Inventor: Hitoshi Negishi
  • Patent number: 6068739
    Abstract: A method of manufacturing a data recording medium for recording and reproducing data by use of a magnetic field or light and formed of an ordered alloy thin film comprising the steps of forming at least one underlayer principally containing an element or a compound selected from the group consisting of Cr, Pt, Pd, Au, Fe, Ni, MgO, NiO and controlled in such a way that a crystal plane having a crystal lattice face of a Miller index (100) is in parallel to a substrate, and forming an ordered alloy layer with L1.sub.0 crystal structure by sputter deposition within the range satisfying Equation 1: P.times.D>3000, where P is Ar sputter-gas pressure (Pa) and D is a target-substrate distance (mm), is disclosed.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: May 30, 2000
    Assignee: Governor of Akita Prefecture
    Inventors: Toshio Suzuki, Naoki Honda, Kazuhiro Ouchi
  • Patent number: 6045614
    Abstract: A method is provided for depositing a (111)-oriented heteroepitaxial II-VI alloy film on Si substrates. The (111)-oriented heteroepitaxial II-VI alloy film may comprise II-VI semiconductor and/or II-VI semimetal. As such, the method of the present invention provides a means for growing a (111)-oriented heteroepitaxial II-VI semiconductor film or a (111)-oriented heteroepitaxial II-VI semimetal film. The method of the present invention overcomes the inherent difficulties associated with forming (111)-oriented heteroepitaxial II-VI alloy films on Si(001). These difficulties include twin formation and poor crystalline quality. The novelty of the method of the present invention consists principally in choosing a Si substrate having a surface which has a specific Si crystallographic orientation. In particular, the present invention utilizes a Si surface having a crystallographic orientation near Si(111) rather than Si(001). The Si surface is vicinal Si(111).
    Type: Grant
    Filed: March 14, 1996
    Date of Patent: April 4, 2000
    Assignee: Raytheon Company
    Inventors: Terence J. de Lyon, Scott M. Johnson
  • Patent number: 6036772
    Abstract: A method for making a semiconductor device comprises: depositing at least one Group II-VI compound semiconductor layer comprising at least one Group II element selected from the group consisting of zinc, magnesium, manganese, beryllium, cadmium and mercury and at least one Group VI element selected from the group consisting of oxygen, sulfur, selenium and tellurium onto a Group III-V compound semiconductor layer comprising at least one Group III element selected from the group consisting of gallium, aluminum, boron and indium and at least one Group V element selected from the group consisting of nitrogen, phosphorus, arsenic, antimony and bismuth; whereinbefore depositing the Group II-VI compound semiconductor layer, a particle beam composed of at least one Group II element selected from the group consisting of zinc, magnesium, beryllium, cadmium and mercury is radiated onto the Group III-V compound semiconductor layer in a dose of 8.times.10.sup.-4 Torr.multidot.sec or more.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: March 14, 2000
    Assignee: Sony Corporation
    Inventors: Tomonori Hino, Satoshi Taniguchi, Satoshi Ito
  • Patent number: 5989339
    Abstract: A molecular beam epitaxy system having a plurality of chambers which contain at least a first chamber and a second chamber. The first chamber is used to form II-VI column compound semiconductor layers not containing Te. The second chamber is used to form II-VI column compound semiconductor layers containing at least Te. A semiconductor device having an ohmic characteristics can be fabricated without mixing Te into other layers.
    Type: Grant
    Filed: September 13, 1995
    Date of Patent: November 23, 1999
    Assignee: Sony Corporation
    Inventors: Koshi Tamamura, Hironori Tsukamoto, Masao Ikeda
  • Patent number: 5964944
    Abstract: An easy and low-cost method of producing a large-size and high-purity silicon carbide (SiC) single crystal includes reacting silicon vapor directly with a carbon-containing compound gas under a heated atmosphere (growth space 14) to grow a silicon carbide single crystal (15) on a silicon carbide seed crystal (12), in which the silicon vapor generated from molten silicon (13) is used as a silicon vapor source, and a hydrocarbon gas (9) (e.g., propane gas) is used as the carbon-containing compound gas.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: October 12, 1999
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Naohiro Sugiyama, Atsuto Okamoto, Toshihiko Tani, Nobuo Kamiya
  • Patent number: 5940684
    Abstract: By (a) performing a first treatment process to a substrate in a first apparatus, (b) moving the substrate having undergone the first treatment process into an airtight passage communicating with the first apparatus and shut off from outside and thereafter, shutting off the communication between the passage and the first apparatus, (c) setting the passage to communicate with a second apparatus to move the substrate into the second apparatus, and (d) performing a second treatment process in the second apparatus, the treatment processes are performed in treatment apparatuses suitable therefor without the substrate being exposed to the outside air. As a result, the time between the treatment processes is reduced and the availability ratio of the expensive equipment is improved.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: August 17, 1999
    Assignee: Rohm, Co., Ltd.
    Inventors: Yukio Shakuda, Haruo Tanaka
  • Patent number: 5849078
    Abstract: A method for growing a high-quality single-crystalline semiconductor film on a substrate based on vapor phase growth while rotating the substrate and preventing micro-particles generated by a rotary drive unit from adhering onto the major plane of the substrate. The substrate 2 set inside the reaction chamber 21 is rotated using the rotary drive unit 7, a reaction gas 10 is fed to the major plane side of the substrate 2, a purge gas 3a is fed to the back space of the substrate in the reaction chamber 21 to replace a space 11a with a carrier gas atmosphere, where the rotary drive unit 7 is located in the purge gas discharge section 13, a purge gas discharge duct 12 is connected to the purge gas discharge section, and further to the purge gas discharge duct 12 is connected a gas flow controller 8, and serially in the downstream side thereof is connected an evacuation pump 9.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: December 15, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Munenori Tomita, Masanori Mayuzumi, Hitoshi Habuka
  • Patent number: 5772757
    Abstract: The present invention relates to molecr beam epitaxy, in particular, to a gas source molecular beam epitaxy apparatus using compound gases as sources of semiconductor component elements, and also relates to a method for growing semiconductor crystal using this apparatus. It is an object of the present invention to prevent an epitaxial layer from being contaminated with organic compounds produced by decomposition of source gases. It is another object to grow a high purity semiconductor crystal at a growth rate high enough for practical applications. To achieve the above objects, in a growth apparatus in accordance with the present invention, the ambient gas pressure is maintained at the order of 10.sup.-5 -10.sup.-3 Torr during a growing process.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 30, 1998
    Assignee: Fujitsu Limited
    Inventor: Junji Saito
  • Patent number: 5769942
    Abstract: This invention concerns a method for epitaxial growth by the use of a so-called heterogeneous reaction and includes disposing a source material in a first area of a horizontal chamber, disposing a growth substrate in a second area thereof, heating the first area thereby keeping the source material at a first temperature, heating the second area thereby keeping the growth substrate at a second temperature, lower than the first temperature, introducing a reaction gas into the chamber thereby causing the reaction gas to react with the source material and depositing the resultant reaction product on the growth substrate and consequently obtaining formation of a film by epitaxial growth.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: June 23, 1998
    Assignee: Semiconductor Process Laboratory Co.
    Inventor: Kazuo Maeda
  • Patent number: 5753039
    Abstract: An object formed of a semiconductor is heated to and kept at such a temperature that a semiconductor crystal formed of a II-VI Group compound semiconductor mainly containing Zn and Se can be grown. A molecular beam including elements constituting the II-VI Group compound semiconductor mainly containing Zn and Se is irradiated onto the heated object, and a gas beam composed of a nitrogen molecule being in a ground electronic state and having a gas pressure of not less than 3.times.10.sup.-5 Torr, to form a p-type semiconductor crystal on the object.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: May 19, 1998
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yuji Hishida, Tomoyuki Yoshie
  • Patent number: 5685905
    Abstract: In the preparation stage before the manufacturing of the single crystal thin film 13, growth conditions are determined by conducting a vapor phase growth without rotating the rotatable holder 14 on its axis and making adjustments such that the growth rate of the single crystal thin film 13 is laterally asymmetric with respect to the virtual center axis on the holder 14 parallel to the feeding direction of the source material gas 19, and then said single crystal thin film is manufactured based on said growth conditions.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: November 11, 1997
    Assignee: Shin-Etsu Handotai, Co., Ltd.
    Inventors: Takatoshi Nagoya, Hisashi Kashino, Hitoshi Habuka