Precursor Composition Intentionally Different From Product (e.g., Excess Component, Non-product Forming Component, Dopant, Non-stoichiometric Precursor, Solvent, Flux) Patents (Class 117/78)
  • Patent number: 11820901
    Abstract: [Object] An object of the present invention is to provide a high-aspect-ratio plate-like alumina particle having low aggregability and high dispersibility and a method for producing the particle. [Solving Means] The above problem is solved by providing a plate-like alumina particle including a step of firing an aluminum compound in the presence of a shape-controlling agent and a molybdenum compound serving as a fluxing agent. The above problem is solved also by providing a method for producing a plate-like alumina particle, the method including a step in which the aluminum compound and the molybdenum compound react with each other to form aluminum molybdate and a step in which the aluminum molybdate is decomposed to obtain the plate-like alumina particle.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 21, 2023
    Assignee: DIC Corporation
    Inventors: Yuan Jian Jun, Hiroshi Kinoshita
  • Patent number: 11485646
    Abstract: A solid electrolyte material includes a first crystal phase. The first crystal phase has a composition that is deficient in Li as compared with a composition represented by the following composition formula (1).
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 1, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tetsuya Asano, Akihiro Sakai, Masashi Sakaida, Yusuke Nishio, Akinobu Miyazaki, Shinya Hasegawa
  • Patent number: 11203818
    Abstract: The present disclosure relates to a silicon-based fusion composition used for a solution growth method for forming a silicon carbide single crystal, and represented by the following Formula 1, including silicon, a first metal (M1), scandium (Sc) and aluminum (Al): SiaM1bSccAld??(Formula 1) wherein a is more than 0.4 and less than 0.8, b is more than 0.2 and less than 0.6, c is more than 0.01 and less than 0.1, and d is more than 0.01 and less than 0.1.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 21, 2021
    Inventors: Ho Rim Lee, Chan Yeup Chung, Manshik Park, Jung Min Ko
  • Patent number: 9290861
    Abstract: Regarding a base substrate, a plurality of steps are formed stepwise on the principal surface (c-face). Each step has a height difference of 10 to 40 ?m, and an edge is formed parallel to an a-face of a hexagonal crystal of GaN. Meanwhile, the terrace width of each step is set at a predetermined width. The predetermined width is set in such a way that after a GaN crystal is grown on the principal surface of the base substrate, the principal surface is covered up with grain boundaries when the grown GaN crystal is observed from the surface side. The plurality of steps can be formed through, for example, dry etching, sand blasting, lasing, and dicing.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 22, 2016
    Assignee: NGK INSULATORS, LTD.
    Inventors: Takayuki Hirao, Takanao Shimodaira, Katsuhiro Imai
  • Patent number: 8999059
    Abstract: A growth apparatus is used having a plurality of crucibles each for containing the solution, a heating element for heating the crucible, and a pressure vessel for containing at least the crucibles and the heating element and for filling an atmosphere comprising at least nitrogen gas. One seed crystal is put in each of the crucibles to grow the nitride single crystal on the seed crystal.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: April 7, 2015
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Katsuhiro Imai, Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 8999060
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 7, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Patent number: 8940095
    Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventor: Partha Dutta
  • Patent number: 8846505
    Abstract: A method for growing islands of semiconductor monocrystals from a solution on an amorphous substrate includes the procedures of depositing a semiconductor-metal mixture layer, applying lithography and etching for forming at least one platform, heating the at least one platform, and saturating the semiconductor-metal solution until a monocrystal of the semiconductor component is formed. The procedure of depositing a semiconductor-metal mixture layer, includes a semiconductor component and at least one other metal component, is performed on top of the amorphous substrate. The procedure of applying lithography and etching to the semiconductor-metal mixture layer and a portion of the amorphous substrate is performed for forming at least one platform, the at least one platform having a top view shape corresponding to crystal growth direction and habit respective of the semiconductor component.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: September 30, 2014
    Assignee: SKOKIE Swift Corporation
    Inventor: Moshe Einav
  • Patent number: 8815011
    Abstract: The present invention relates to a magnetic garnet single crystal prepared by the liquid phase epitaxial (LPE) process and an optical element using the same as well as a method of producing the single crystal, for the purpose of providing a magnetic garnet single crystal at a reduced Pb content and an optical element using the same, as well as a method of producing the single crystal. The magnetic garnet single crystal is grown by the liquid phase epitaxial process and is represented by the chemical formula BixNayPbzM13-x-y-zFe5-wM2wO12 (M1 is at least one element selected from Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M2 is at least one element selected from Ga, Al, In, Ti, Ge, Si and Pt, provided that 0.5<x?2.0, 0<y?0.8, 0?z<0.01, 0.19?3-x-y-z<2.5, and 0?w?1.6).
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 26, 2014
    Assignee: TDK Corporation
    Inventor: Atsushi Ohido
  • Publication number: 20140209012
    Abstract: Provided is a base substrate with which a Group-III nitride crystal having a large area and a large thickness can be grown while inhibiting crack generation. A single-crystal substrate for use in growing a Group-III nitride crystal thereon, which satisfies the following expression (1), wherein Z1 (?m) is an amount of warpage of physical shape in a growth surface of the single-crystal substrate and Z2 (?m) is an amount of warpage calculated from a radius of curvature of crystallographic-plane shape in a growth surface of the single-crystal substrate: ?40<Z2/Z1<?1: Expression (1).
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kenji FUJITO, Yasuhiro Uchiyama
  • Patent number: 8784560
    Abstract: A method for producing a crystallized compound semiconductor material comprises synthesizing said material by fusion and inter-reaction of its constituents placed in elementary form constituting a charge into a sealed ampoule, and then crystallizing the resulting material in liquid form by cooling.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: July 22, 2014
    Assignee: Societe Francaise de Detecteurs Infrarouges-Sofradir
    Inventors: Sylvain Paltrier, Thierry Miguet
  • Patent number: 8735905
    Abstract: Provided is a method for producing inexpensive and high-quality aluminum nitride crystals. Gas containing N atoms is introduced into a melt of a Ga—Al alloy, whereby aluminum nitride crystals are made to epitaxially grow on a seed crystal substrate in the melt of the Ga—Al alloy. A growth temperature of aluminum nitride crystals is set at not less than 1000 degrees C. and not more than 1500 degrees C., thereby allowing GaN to be decomposed into Ga metal and nitrogen gas.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 27, 2014
    Assignees: Sumitomo Metal Mining Co., Ltd., Tohoku University
    Inventors: Hiroyuki Fukuyama, Masayoshi Adachi, Akikazu Tanaka, Kazuo Maeda
  • Publication number: 20140133014
    Abstract: The present invention relates to a borate birefringent crystal applicable to ultraviolet (UV) or deep ultraviolet (DUV) range, with chemical formula of Ba2Mg(B3O6)2. The borate birefringent crystal belongs to a trigonal system, with space group of R-3 wherein a=0.70528(3) nm, c=1.65520(9) nm and Z=12. The barium magnesium borate birefringent crystal is negative uniaxial (ne<no) with a birefringence of 0.077-0.229 and a transmission range of 177-3000 nm. The crystal is easy to cut, grind, polish, and preserve, and is stable in air and is not easy to deliquesce. The barium magnesium borate birefringent crystal can be grown by the Czochralski method, flux method or the method of spontaneous crystallization from a melt, and has larger birefringence (no?ne=0.077-0.229). The crystal has important applications in the fields of optics and communications, e.g. for fabricating the polarizing beam splitter prism.
    Type: Application
    Filed: February 17, 2012
    Publication date: May 15, 2014
    Inventors: Rukang Li, Yingying Ma
  • Patent number: 8721788
    Abstract: A method for charging with liquefied ammonia comprising sequentially a feeding step of feeding gaseous ammonia in a condenser, a liquefaction step of converting the gaseous ammonia into a liquefied ammonia in the condenser, and a charging step of feeding the liquefied ammonia formed in the condenser to a vessel to thereby charge the vessel with the liquefied ammonia wherein a cooling step of feeding the liquefied ammonia formed in the condenser to the vessel and cooling the vessel by the latent heat of vaporization of the liquefied ammonia and a circulation step of feeding the gaseous ammonia formed through vaporization of the liquefied ammonia in the previous cooling step to the condenser are carried out between the liquefaction step and the charging step.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yuuichi Katou, Takao Watanabe, Kazunori Hiruta
  • Patent number: 8702864
    Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C prepared by dissolving C into the melt that contains Cr and X, which consists of at least one element of Ce and Nd, such that a proportion of Cr in a whole composition of the melt is in a range of 30 to 70 at. %, and a proportion of X in the whole composition of the melt is in a range of 0.5 at. % to 20 at. % in the case where X is Ce, or in a range of 1 at. % to 25 at. % in the case where X is Nd, and the silicon carbide single crystal is grown from the solution.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Patent number: 8685163
    Abstract: A method for growing a silicon carbide single crystal on a single crystal substrate comprising the steps of heating silicon in a graphite crucible to form a melt, bringing a silicon carbide single crystal substrate into contact with the melt, and depositing and growing a silicon carbide single crystal from the melt, wherein the melt comprises 30 to 70 percent by atom, based on the total atoms of the melt, of chromium and 1 to 25 percent by atom, based on the total atoms of the melt, of X, where X is at least one selected from the group consisting of nickel and cobalt, and carbon. It is possible to improve morphology of a surface of the crystal growth layer obtained by a solution method.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Patent number: 8679248
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Publication number: 20140070370
    Abstract: Objects of the present invention are to provide a method for producing a Group III nitride semiconductor single crystal, which method enables production of a Group III nitride semiconductor single crystal having a flat surface by means of a crucible having any inside diameter; to provide a self-standing substrate obtained from the Group III nitride semiconductor single crystal; and to provide a semiconductor device employing the self-standing substrate. The production method includes adding the template, a flux, and semiconductor raw materials to a crucible and growing a Group III nitride semiconductor single crystal while the crucible is rotated. In the growth of the semiconductor single crystal, the crucible having an inside diameter R (mm) is rotated at a maximum rotation speed ? (rpm) satisfying the following conditions: ?1?4????1+4; ?1=10z; and z=?0.78×log10(R)+3.1.
    Type: Application
    Filed: July 26, 2013
    Publication date: March 13, 2014
    Applicant: TOYODA GOSEI CO., LTD.
    Inventors: Shiro Yamazaki, Miki Moriyama
  • Publication number: 20140026809
    Abstract: A seed crystal substrate 10 includes a supporting body 1, and a seed crystal film 3A formed on the supporting body 1 and composed of a single crystal of a nitride of a Group 13 metal element. The seed crystal film 3A includes main body parts 3a and thin parts 3b having a thickness smaller than that of the main body parts 3a. The main body parts 3a and thin part 3b are exposed to a surface of the seed crystal substrate 10. A nitride 15 of a Group 13 metal element is grown on the seed crystal film 3A by flux method.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 30, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventors: Makoto Iwai, Takanao Shimodaira, Shuhei Higashihara, Takayuki Hirao, Masahiro Sakai, Katsuhiro Imai
  • Patent number: 8637761
    Abstract: One embodiment of the present invention provides a method for fabricating a solar cell. The method includes: melting a metallurgical-grade (MG) Si feedstock, lowering a single-crystalline Si seed to touch the surface of the molten MG-Si, slowly pulling out a single-crystal Si ingot of the molten MG-Si, processing the Si ingot into single crystal Si wafers to form MG-Si substrates for subsequent epitaxial growth, leaching out residual metal impurities in the MG-Si substrate, epitaxially growing a layer of single-crystal Si thin film doped with boron on the MG-Si substrate, doping phosphor to the single-crystal Si thin film to form an emitter layer, depositing an anti-reflection layer on top of the single-crystal Si thin film, and forming the front and the back electrical contacts.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: January 28, 2014
    Assignee: Silevo, Inc.
    Inventors: Jianming Fu, Zheng Xu, Peijun Ding, Chentao Yu, Guanghua Song, Jianjun Liang
  • Publication number: 20140014028
    Abstract: A gallium nitride layer is produced using a seed crystal substrate by flux method. The seed crystal substrate 8A includes a supporting body 1, a plurality of seed crystal layers 4A each comprising gallium nitride single crystal and separated from one another, a low temperature buffer layer 2 provided between the seed crystal layers 4A and the supporting body and made of a nitride of a group III metal element, and an exposed layer 3 exposed to spaces between the adjacent seed crystal layers 4A and made of aluminum nitride single crystal or aluminum gallium nitride single crystal. The gallium nitride layer is grown on the seed crystal layers by flux method.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 16, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventors: Katsuhiro Imai, Makoto Iwai, Takanao Shimodaira, Masahiro Sakai, Shuhei Higashihara, Takayuki Hirao
  • Publication number: 20140000509
    Abstract: The present invention provides a semiconductor crystal removal apparatus which realizes effective removal of a semiconductor crystal from a crucible through rapid melting of a solidified flux, and a method for producing a semiconductor crystal. The semiconductor crystal removal apparatus includes a crucible support for supporting a crucible so that the opening of the crucible is directed downward; a heater for heating the crucible supported on the crucible support; and a semiconductor crystal receiving net for receiving a semiconductor crystal falling from the opening of the crucible. The semiconductor crystal removal apparatus further includes a determination portion for determining removal of the semiconductor crystal on the basis of a change in weight through falling of the semiconductor crystal.
    Type: Application
    Filed: June 14, 2013
    Publication date: January 2, 2014
    Inventors: Shiro YAMAZAKI, Seiji NAGAI, Miki MORIYAMA
  • Publication number: 20130313478
    Abstract: The present invention relates generally to the field of synthetic crystal, and more particularly, this invention relates to doped low-temperature phase barium metaborate single crystal, growth method and frequency-converter. Molten salt method was adopted. The single crystal completely overcome the shortcomings of BBO with strong deliquescence, almost no deliquescence; its frequency doubling effect and optical damage threshold has improved greatly compared with the BBO; its hardness increased significantly, the single crystal with Shore hardness of 101.3 and Mohs hardness of 6, however, BBO with Shore hardness of 71.2 and Mohs hardness of 4. From the UV-Vis region transmittance curves tests, the cut-off wavelength of the single crystal is 190 nm, wavelength of absorption onset is 205 nm. BBSAG is widely applied in the fields of laser and nonlinear optics, and in terms of frequency-converter of ultraviolet and deep-ultraviolet due to its excellent properties better than BBO.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 28, 2013
    Applicant: FUJIAN INSTITUTE OF RESEARCH ON THE STRUCTURE OF MATTER, CHINESE ACADEMY OF SCIENCES
    Inventor: FUJIAN INSTITUTE OF RESEARCH ON THE STRUCTURE OF MATTER, CHINESE ACADEMY OF SCIENCES
  • Publication number: 20130309472
    Abstract: A monolithic crystal having the atomic formula WnXmYpZr, with at least one dimension greater than about 10 mm. A method for top seed, solution growth of a monolithic crystal, wherein the method includes the steps of: preparing a precursor, forming a seed crystal, and forming the monolithic crystal. Some configurations of the method include the differential control of the crystal flux temperature in a furnace and the rotational frequency of a seed crystal in the crystal flux.
    Type: Application
    Filed: November 5, 2012
    Publication date: November 21, 2013
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventor: University of Houston System
  • Patent number: 8562737
    Abstract: A crystal growth method, comprising the steps of: a) bringing a nitrogen material into a reaction vessel in which a mixed molten liquid comprising an alkaline metal and a group-III metal; and b) growing a crystal of a group-III nitride using the mixed molten liquid and the nitrogen material brought in by the step a) in the reaction vessel, wherein a provision is made such as to prevent a vapor of the alkaline metal from dispersing out of the reaction vessel.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: October 22, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Seiji Sarayama, Masahiko Shimada, Hisanori Yamane, Masato Aoki
  • Patent number: 8529696
    Abstract: A method for producing hexagonal boron nitride single crystals including mixing boron nitride crystals with a solvent thereby obtaining a mixture, heating and melting the mixture under high-temperature and high-pressure thereby obtaining a melted mixture, and recrystallizing the melted mixture thereby producing hexagonal boron nitride single crystals, wherein the solvent is boronitride of alkaline earth metal, or boronitride of alkali metal and the boronitride of alkaline earth metal.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: September 10, 2013
    Assignee: National Institute for Materials Science
    Inventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
  • Patent number: 8518178
    Abstract: Disclosed is: a single crystalline silicon carbide nanofiber having improved thermal and mechanical stability as well as a large specific surface area which is applicable to a system for purifying exhaust gas, silicon carbide fiber filter, diesel particulate filter having a high temperature stability and may be used in the form of nanostructures such as nanorods and nanoparticles.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 27, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Il Doo Kim, Seung Hun Choi, Seong Mu Jo, Jae-Min Hong
  • Patent number: 8512470
    Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 20, 2013
    Assignee: China Crystal Technologies Co. Ltd
    Inventor: Meng Zhu
  • Patent number: 8506705
    Abstract: A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: August 13, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Mikiya Ichimura, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
  • Patent number: 8501141
    Abstract: An object of the present invention is to effectively add Ge in the production of GaN through the Na flux method. In a crucible, a seed crystal substrate is placed such that one end of the substrate remains on the support base, whereby the seed crystal substrate remains tilted with respect to the bottom surface of the crucible, and gallium solid and germanium solid are placed in the space between the seed crystal substrate and the bottom surface of the crucible. Then, sodium solid is placed on the seed crystal substrate. Through employment of this arrangement, when a GaN crystal is grown on the seed crystal substrate through the Na flux method, germanium is dissolved in molten gallium before formation of a sodium-germanium alloy. Thus, the GaN crystal can be effectively doped with Ge.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: August 6, 2013
    Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka University
    Inventors: Takayuki Sato, Seiji Nagai, Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka
  • Publication number: 20130069078
    Abstract: A crystal producing apparatus includes a crystal forming unit and a crystal growing unit. The crystal forming unit forms a first gallium nitride (GaN) crystal by supplying nitride gas into melt mixture containing metal sodium (Na) and metal gallium (Ga). The first GaN crystal is sliced and polished to form GaN wafers. The crystal growing unit grows a second GaN crystal on a substrate formed by using a GaN wafer, by the hydride vapor phase epitaxy method, thus producing a bulked GaN crystal.
    Type: Application
    Filed: November 16, 2012
    Publication date: March 21, 2013
    Inventors: Seiji Sarayama, Hirokazu Iwata
  • Patent number: 8398767
    Abstract: Bulk mono-crystalline gallium-containing nitride, grown on the seed at least in the direction essentially perpendicular to the direction of the seed growth, essentially without propagation of crystalline defects as present in the seed, having the dislocation density not exceeding 104/cm2 and considerably lower compared to the dislocation density of the seed, and having a large curvature radius of the crystalline lattice, preferably longer than 15 m, more preferably longer than 30 m, and most preferably of about 70 m, considerably longer than the curvature radius of the crystalline lattice of the seed.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: March 19, 2013
    Assignees: Ammono S.A., Nichia Corporation
    Inventors: Robert Dwilinski, Roman Doradzinski, Jerzy Garczynski, Leszek Sierzputowski, Yasuo Kanbara, Robert Kucharski
  • Patent number: 8388752
    Abstract: A method capable of stably manufacturing a SiC single crystal in the form of a thin film or a bulk crystal having a low carrier density of at most 5×1017/cm3 and preferably less than 1×1017/cm3 and which is suitable for use in various devices by liquid phase growth using a SiC solution in which the solvent is a melt of a Si alloy employs a Si alloy having a composition which is expressed by SixCryTiz wherein x, y, and z (each in atomic percent) satisfy 0.50<x<0.68, 0.08<y<0.35, and 0.08<z<0.35, or ??(1) 0.40<x?0.50, 0.15<y<0.40, and 0.15<z<0.35.??(2) x, y, and z preferably satisfy 0.53<x<0.65, 0.1<y<0.3, and 0.1<z<0.3.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazuhito Kamei, Kazuhiko Kusunoki, Nobuyoshi Yashiro, Akihiro Yauchi, Shinji Shimosaki
  • Patent number: 8377203
    Abstract: An oxide single crystal having a composition represented by RExSi6O1.5x+12 (RE: La, Ce, Pr, Nd, or Sm, x: 8 to 10) is grown by using the Czochralski method such that the crystal growth orientation coincides with the c-axis direction. The solidification rate (the weight of the grown crystal÷the weight of the charged raw material) in the crystal growth is less than 45%.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: February 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Katsuaki Takahashi, Keisuke Mochizuki, Shuichi Kawaminami, Yoshikatsu Higuchi, Masayuki Sugawara, Susumu Nakayama
  • Patent number: 8323405
    Abstract: An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 4, 2012
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8287644
    Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C by dissolving C into the melt that contains Si, Cr and X, which consists of at least one element of Sn, In and Ga, such that the proportion of Cr in the whole composition of the melt is in a range of 30 to 70 at. %, and the proportion of X is in a range of 1 to 25 at. %, and the silicon carbide crystal is grown from the solution.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Publication number: 20120255484
    Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Inventor: Meng Zhu
  • Patent number: 8231729
    Abstract: It is disclosed an apparatus for growing a nitride single crystal using a flux containing an easily oxidizable substance. The apparatus has a crucible for storing the flux; a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen gas; furnace materials disposed within the pressure vessel and out of the crucible; heaters attached to the furnace material; and alkali-resistant and heat-resistant metallic layers covering the furnace material.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 31, 2012
    Assignees: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Patent number: 8231726
    Abstract: An object of the present invention is to obtain, with respect to a semiconductor light-emitting element using a group III nitride semiconductor substrate, a semiconductor light-emitting element having an excellent light extraction property by selecting a specific substrate dopant and controlling the concentration thereof. The semiconductor light-emitting element comprises a substrate composed of a group III nitride semiconductor comprising germanium (Ge) as a dopant, an n-type semiconductor layer composed of a group III nitride semiconductor formed on the substrate, an active layer composed of a group III nitride semiconductor formed on the n-type semiconductor layer, and a p-type semiconductor layer composed of a group III nitride semiconductor formed on the active layer in which the substrate has a germanium (Ge) concentration of 2×1017 to 2×1019 cm?3.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 31, 2012
    Assignee: Panasonic Corporation
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Yasutoshi Kawaguchi, Yasuhito Takahashi, Yoshiaki Hasegawa
  • Publication number: 20120125254
    Abstract: A method for reducing the range in resistivities of semiconductor crystalline sheets produced in a multi-lane growth furnace. A furnace for growing crystalline sheets is provided that includes a crucible with a material introduction region and a crystal growth region including a plurality of crystal sheet growth lanes. The crucible is configured to produce a generally one directional flow of material from the material introduction region toward the crystal sheet growth lane farthest from the material introduction region. Silicon doped with both a p-type dopant and an n-type dopant in greater than trace amounts is introduced into the material introduction region. The doped silicon forms a molten substance in the crucible called a melt. Crystalline sheets are formed from the melt at each growth lane in the crystal growth region. Co-doping the silicon feedstock can reduce the variation in resistivities among the crystalline sheets formed in each lane.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Applicant: EVERGREEN SOLAR, INC.
    Inventors: Brian D. Kernan, Gary J. Tarnowski, Weidong Huang, Scott Reitsma, Christine Richardson
  • Publication number: 20120125255
    Abstract: A method for producing a crystal of a metal nitride of Group 13 of the periodic table, the method comprises: preparing a solution or melt containing a raw material and a solvent, and growing a crystal of a metal nitride of Group 13 of the periodic table in the solution or melt in a crystal producing apparatus, to produce the crystal of a metal nitride of Group 13 of the periodic table, wherein a member in the crystal producing apparatus, which contacts with the solution or melt comprises: at least one metal selected from the elements of Groups 4 to 6 of the periodic table; and a nitride layer that contains a nitride of at least one selected from the elements of Groups 4 to 6 of the periodic table, on the surface of the member.
    Type: Application
    Filed: December 5, 2011
    Publication date: May 24, 2012
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventor: Yuya SAITO
  • Publication number: 20120111265
    Abstract: A nonlinear optical crystal having a chemical formula of YiLajAlkB16O48, where 2.8?i?3.2, 0.8?j?1.2, i and j sum to about four, and k is about 12 is provided. The nonlinear optical crystal is useful for nonlinear optical applications including frequency conversion. Nonlinear optical crystals in a specific embodiment are characterized by UV blocking materials (e.g., some transition metals and lanthanides) at concentrations of less than 1,000 parts per million, providing high transmittance over portions of the UV spectrum (e.g., 175-360 nm).
    Type: Application
    Filed: October 10, 2011
    Publication date: May 10, 2012
    Applicant: Deep Photonics Corporation
    Inventor: Theodore Alekel
  • Publication number: 20120111264
    Abstract: A plurality of seed crystal films of a single crystal of a nitride of a metal belonging to group III are formed on a substrate, while a non-growth surface not covered with the seed crystal films is formed on the substrate. A single crystal of a nitride of a metal belonging to group III is grown on the seed crystal film. A plurality of the seed crystal films are separated by the non-growth surface and arranged in at least two directions X and Y. The maximum inscribed circle diameter “A” of the seed crystal film is 50 ?m or more and 6 mm or less, a circumscribed circle diameter “B” of the seed crystal film is 50 ?m or more and 10 mm or less, and the maximum inscribed circle diameter “C” of the non-growth surface 1b is 100 ?m or more and 1 mm or less.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 10, 2012
    Inventors: Takanao Shimodaira, Katsuhiro Imai, Makoto Iwai
  • Patent number: 8133319
    Abstract: A Periodic Table Group 13 metal nitride crystal is grown by causing a reaction of a Periodic Table Group 13 metal phase with a nitride-containing molten salt phase to proceed while removing a by-product containing a metal element except for Periodic Table Group 13 metals, from the reaction field. According to this process, a high-quality Periodic Table Group 13 metal nitride bulk crystal can be produced under low pressure or atmospheric pressure.
    Type: Grant
    Filed: July 4, 2005
    Date of Patent: March 13, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yoji Arita, Yoshinori Seki, Takeshi Tahara, Yuzuru Sato
  • Patent number: 8123856
    Abstract: In the flux method, a source nitrogen gas is sufficiently heated before feeding to an Na—Ga mixture. The apparatus of the invention is provided for producing a group III nitride based compound semiconductor. The apparatus includes a reactor which maintains a group III metal and a metal differing from the group III metal in a molten state, a heating apparatus for heating the reactor, an outer vessel for accommodating the reactor and the heating apparatus, and a feed pipe for feeding a gas containing at least nitrogen from the outside of the outer vessel into the reactor. The feed pipe has a zone for being heated together with the reactor by means of the heating apparatus, wherein the zone is heated inside the outer vessel and outside the reactor.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 28, 2012
    Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka University
    Inventors: Shiro Yamazaki, Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 8118933
    Abstract: Silicon raw material is filled into a graphite crucible (10), the graphite crucible (10) is heated to form molten silicon (M), at least one rare earth element and at least one of Sn, Al, and Ge are added to molten silicon (M), and a temperature gradient is maintained in the molten silicon in which the temperature decreases from within the molten silicon toward the surface while growing an silicon carbide single crystal starting from an silicon carbide seed crystal (14) held immediately below the surface of the molten liquid.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 21, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidemitsu Sakamoto, Yukio Terashima
  • Patent number: 8088220
    Abstract: In accordance with various embodiments, crystalline structures are formed by providing, at a growth temperature, a liquid comprising AlN and having a quality factor greater than approximately 0.14 and forming solid AlN from the liquid, the growth temperature being lower than the melting point of AlN.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 3, 2012
    Assignee: Crystal IS, Inc.
    Inventors: Glen A. Slack, Sandra B. Schujman
  • Publication number: 20110297893
    Abstract: A method for producing n-type SiC single crystal, including: adding gallium and nitrogen, which is a donor element, for obtaining an n-type semiconductor during crystal growth of SiC single crystal, such that the amount of nitrogen as represented in atm unit is greater than the amount of gallium as represented in atm unit; an n-type SiC single crystal obtained according to this production method; and, a semiconductor device that includes the n-type SiC single crystal.
    Type: Application
    Filed: February 18, 2010
    Publication date: December 8, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akinori Seki, Yasuyuki Fujiwara
  • Patent number: 8038794
    Abstract: A method of manufacturing a group III-nitride crystal substrate including the steps of introducing an alkali-metal-element-containing substance, a group III-element-containing substance and a nitrogen-element-containing substance into a reactor, forming a melt containing at least the alkali metal element, the group III-element and the nitrogen element in the reactor, and growing group III-nitride crystal from the melt, and characterized by handling the alkali-metal-element-containing substance in a drying container in which moisture concentration is controlled to at most 1.0 ppm at least in the step of introducing the alkali-metal-element-containing substance into the reactor is provided. A group III-nitride crystal substrate attaining a small absorption coefficient and the method of manufacturing the same, as well as a group III-nitride semiconductor device can thus be provided.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 18, 2011
    Assignees: Sumitomo Electric Industries, Ltd.
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Seiji Nakahata, Ryu Hirota
  • Patent number: 8021481
    Abstract: A method for large-scale manufacturing of gallium nitride includes a process for reducing and/or minimizing contamination in the crystals, for solvent addition to an autoclave, for improving or optimizing the solvent atmosphere composition, for removal of the solvent from the autoclave, and for recycling of the solvent. The method is scalable up to large volumes and is cost effective.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: September 20, 2011
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn