With A Movement Of Substrate Or Vapor Or Gas Supply Means During Growth (e.g., Substrate Rotation) Patents (Class 117/98)
  • Patent number: 11542601
    Abstract: Described herein is a technique capable of improving the uniformity of the film formation among the substrates. According to the technique described herein, there is provided a configuration including: a reaction tube having a process chamber where a plurality of substrates are processed; a buffer chamber protruding outward from the reaction tube and configured to supply a process gas to the process chamber, the buffer chamber including: a first nozzle chamber where a first nozzle is provided; and a second nozzle chamber where a second nozzle is provided; an opening portion provided at a lower end of an inner wall of the reaction tube facing the buffer chamber; and a shielding portion provided at a communicating portion of the opening portion between the second nozzle chamber and the process chamber.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: January 3, 2023
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Hidenari Yoshida, Takeo Hanashima, Hiroaki Hiramatsu
  • Patent number: 11447890
    Abstract: A crystal growth apparatus including: a heat source, a crucible including a container body in which a raw material can be received and a lid part on which a seed crystal can be mounted; a first heat insulating part which is disposed externally of the crucible and in which a first through-hole penetrating in a thickness direction is provided; a second heat insulating part which is disposed externally of the first heat insulating part and in which a second through-hole penetrating in a thickness direction is provided; a moving mechanism configured to move the first heat insulating part and the second heat insulating part relative to each other; and a radiation type temperature measuring unit configured to measure a temperature of the crucible via the first through-hole and the second through-hole.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: September 20, 2022
    Assignee: SHOWA DENKO K.K.
    Inventor: Shunsuke Noguchi
  • Patent number: 11171026
    Abstract: The present disclosure provides systems and methods for monitoring an environment of a front opening universal pod (FOUP). The systems and methods may include an environmental sensor disposed within the FOUP and configured to measure one or more environmental parameters of an interior environment of the FOUP; and a wireless transmitter disposed within the FOUP and in communication with the environmental sensor, wherein the wireless transmitter is configured to wirelessly transmit the one or more environmental parameters from the environmental sensor to a controller disposed outside of the FOUP to decide whether the one or more environmental parameters are within threshold limits and receive a message according to a decision of whether the one or more environmental parameters are within the threshold limits from the controller.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: November 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po Shun Lin, Zhi Long Huang, Kung Chieh Cheng
  • Patent number: 11152239
    Abstract: The present invention relates to an apparatus for removing fume which includes, a wafer cassette for stacking wafers; and an exhaust for exhausting the fume of the wafers stacked in the wafer cassette, wherein the wafer cassette includes stacking shelves provided at both sides for stacking wafers; and a front opening for incoming and outgoing of the wafers which are being stacked in the stacking shelf, wherein the stacking shelves include multiple inclined ramp portions which are slanted towards the wafers stacked in the stacking shelves as they travel towards the front opening, wherein a purge gas outlet is provided in the inclined ramp portion for supplying purge gas for the wafers stacked in the stacking shelves. According to the present invention, the residual process gases on wafers can be removed efficiently.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: October 19, 2021
    Inventor: Bum Je Woo
  • Patent number: 11114325
    Abstract: The present invention relates to an apparatus for removing fume which includes, a wafer cassette for stacking wafers; and an exhaust for exhausting the fume of the wafers stacked in the wafer cassette, wherein the wafer cassette includes stacking shelves provided at both sides for stacking wafers; and a front opening for incoming and outgoing of the wafers which are being stacked in the stacking shelf, wherein the stacking shelves include multiple inclined ramp portions which are slanted towards the wafers stacked in the stacking shelves as they travel towards the front opening, wherein a purge gas outlet is provided in the inclined ramp portion for supplying purge gas for the wafers stacked in the stacking shelves. According to the present invention, the residual process gases on wafers can be removed efficiently.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: September 7, 2021
    Inventor: Bum Je Woo
  • Patent number: 11056347
    Abstract: A method for treating a substrate includes receiving a substrate in a vacuum process chamber. The substrate includes a III-V film layer disposed on the substrate. The III-V film layer includes an exposed surface, an interior portion underlying the exposed surface, and one or more of the following: Al, Ga, In, N, P, As, Sb, Si, or Ge. The method further includes altering the chemical composition of the exposed surface and a fraction of the interior portion of the III-V film layer to form an altered portion of the III-V film layer using a hydrogen-based plasma treatment, removing the altered portion of the III-V film layer using a chlorine-based plasma treatment, and repeating the altering and removing of the III-V film layer until a predetermined amount of the III-V film layer is removed from the substrate.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: July 6, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Peter Ventzek, Alok Ranjan
  • Patent number: 10985034
    Abstract: A semiconductor processing device is provided. The device includes a reaction chamber, a first gas inlet mechanism, and a second gas inlet mechanism that includes a gas inlet, a uniform-flow chamber, at least one gas outlet, and at least one switch element. The gas inlet communicates with the uniform-flow chamber and arranged to deliver a process gas into the uniform-flow chamber. The at least one gas outlet is between the reaction chamber and the uniflow-flow chamber. The at least one switch element is disposed in each gas outlet and arranged to enable the uniform-flow chamber to communicate with the reaction chamber when the process gas is being delivered into the uniform-flow chamber through the gas inlet, and to isolate the uniform-flow chamber from the reaction chamber when no process gas is being delivered into the uniform-flow chamber.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 20, 2021
    Assignee: BEIJING NAURA MICROELECTRONICS EQUIPMENT CO., LTD.
    Inventor: Longchao Zhao
  • Patent number: 10428424
    Abstract: Embodiments of the invention provide a tray device, a reaction chamber, and a MOCVD apparatus including the reaction chamber. According to an embodiment, the tray device includes a large tray, a rotating shaft, a small tray, and a supporting disk. The rotating shaft is connected with the center of the large tray and drives the large tray to rotate about the rotating shaft. The large tray is provided with a tray groove for placing the small tray. The supporting disk is located under the large tray. A sliding mechanism is provided between the supporting disk and the small tray, so that when revolving along with the large tray, the small tray spins under the function of the sliding mechanism.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: October 1, 2019
    Assignee: BEIJING NAURA MICROELECTRONICS EQUIPMENT CO., LTD.
    Inventor: Ye Tu
  • Patent number: 9879357
    Abstract: A system for depositing a film on a substrate comprises a lateral control shutter disposed between the substrate and a material source. The lateral control shutter is configured to block some predetermined portion of source material to prevent deposition of source material onto undesirable portion of the substrate. One of the lateral control shutter or the substrate moves with respect to the other to facilitate moving a lateral growth boundary originating from one or more seed crystals. A lateral epitaxial deposition across the substrate ensues, by having an advancing growth front that expands grain size and forms a single crystal film on the surface of the substrate.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: January 30, 2018
    Assignee: TIVRA CORPORATION
    Inventor: Indranil De
  • Patent number: 9725822
    Abstract: Provided is a feed material for epitaxial growth of a monocrystalline silicon carbide capable of increasing the rate of epitaxial growth of silicon carbide. A feed material 11 for epitaxial growth of a monocrystalline silicon carbide includes a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph. Upon X-ray diffraction of the surface layer, a diffraction peak corresponding to a (111) crystal plane and a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane are observed as diffraction peaks corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 8, 2017
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Satoru Nogami, Tsuyoshi Matsumoto
  • Patent number: 9493874
    Abstract: A method and apparatus to evenly distribute gas over a wafer in batch processing. Several techniques are disclosed, such as, but not limited to, angling an injector to distribute gas towards a proximate edge of the wafer, and/or reducing the amount of overlap in the center of the wafer of gas from subsequent gas injections.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: November 15, 2016
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventor: Rinji Sugino
  • Patent number: 9318643
    Abstract: A fabrication method for an inverted solar cell includes: (1) providing a growth substrate; (2) depositing a SiO2 mask layer over the surface of the growth substrate to form a patterned substrate; (3) forming a sacrificial layer with epitaxial growth over the patterned substrate, wherein the sacrificial layer encompasses the entire SiO2 mask pattern; (4) forming a buffer layer over the sacrificial layer via epitaxial growth; (5) forming a semiconductor material layer sequence of the inverted solar cell over the buffer layer with epitaxial growth; (6) bonding the semiconductor material layer sequence of the inverted solar cell with a supporting substrate; (7) selectively etching the SiO2 mask layer by wet etching; and (8) selectively etching the sacrificial layer by wet etching to lift off the growth substrate.
    Type: Grant
    Filed: January 4, 2014
    Date of Patent: April 19, 2016
    Assignee: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Minghui Song, Guijiang Lin, Zhihao Wu, Liangjun Wang, Jianqing Liu, Jingfeng Bi, Weiping Xiong, Zhidong Lin
  • Publication number: 20150107510
    Abstract: The present invention relates to a method of receiving and treating a moving substrate web (110) in a reaction space of an atomic layer deposition (ALD) reactor (100) and apparatuses therefore. It also pertains to a production line that includes such a reactor. The invention comprises receiving a moving substrate web into a reaction space (150) of an atomic layer deposition reactor, providing a track for the substrate web with a repeating pattern (140) in the reaction space and exposing the reaction space to precursor pulses to deposit material on the substrate web by sequential self-saturating surface reactions. The pattern is performed by turning the direction of propagation of the substrate web a plurality of times in the reaction space. One effect of the invention is adjusting an ALD reactor to a required production line substrate web speed.
    Type: Application
    Filed: June 15, 2012
    Publication date: April 23, 2015
    Applicant: Picosun Oy
    Inventor: Sven Lindfors
  • Patent number: 9005363
    Abstract: Methods of depositing thin film materials having crystalline content are provided. The methods use plasma enhanced chemical vapor deposition. According to one embodiment of the present invention, microcrystalline silicon films are obtained. According to a second embodiment of the present invention, crystalline films of zinc oxide are obtained. According to a third embodiment of the present invention, crystalline films of iron oxide are obtained.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 14, 2015
    Assignee: Sencera Energy, Inc.
    Inventors: Russell F Jewett, Steven F Pugh, Paul Wickboldt
  • Publication number: 20150075421
    Abstract: The present invention in one preferred embodiment discloses a new design of HVPE reactor, which can grow gallium nitride for more than one day without interruption. To avoid clogging in the exhaust system, a second reactor chamber is added after a main reactor where GaN is produced. The second reactor chamber may be configured to enhance ammonium chloride formation, and the powder may be collected efficiently in it. To avoid ammonium chloride formation in the main reactor, the connection between the main reactor and the second reaction chamber can be maintained at elevated temperature. In addition, the second reactor chamber may have two or more exhaust lines. If one exhaust line becomes clogged with powder, the valve for an alternative exhaust line may open and the valve for the clogged line may be closed to avoid overpressuring the system. The quartz-made main reactor may have e.g. a pyrolytic boron nitride liner to collect polycrystalline gallium nitride efficiently.
    Type: Application
    Filed: May 22, 2014
    Publication date: March 19, 2015
    Applicant: SIXPOINT MATERIALS, INC.
    Inventors: Tadao HASHIMOTO, Edward LETTS
  • Patent number: 8980000
    Abstract: In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: March 17, 2015
    Assignee: Veeco Instruments Inc.
    Inventors: Bojan Mitrovic, Alex Gurary, William Quinn, Eric A. Armour
  • Patent number: 8940094
    Abstract: A method of fabricating a semiconductor processing device includes providing a susceptor including a substantially cylindrical body portion having opposing upper and lower surfaces. The body portion has a diameter larger than a wafer diameter. The method also includes providing a set of holes circumferentially disposed at a first susceptor diameter, the set of holes being evenly spaced with respect to adjacent holes and extending through the upper and lower surfaces in an area. The first susceptor diameter is larger than the wafer diameter, and holes are omitted along the first diameter in a set of predetermined orientations.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: January 27, 2015
    Assignee: SunEdison Semiconductor Limited
    Inventors: John Allen Pitney, Manabu Hamano
  • Publication number: 20140311403
    Abstract: An epitaxial reactor enabling simultaneous deposition of thin films on a multiplicity of wafers is disclosed. During deposition, a number of wafers are contained within a wafer sleeve comprising a number of wafer carrier plates spaced closely apart to minimize the process volume. Process gases flow preferentially into the interior volume of the wafer sleeve, which is heated by one or more lamp modules. Purge gases flow outside the wafer sleeve within a reactor chamber to minimize deposition on the chamber walls. Sequencing of the illumination of the individual lamps in the lamp module may further improve the linearity of variation in deposition rates within the wafer sleeve. To improve uniformity, the direction of process gas flow may be varied in a cross-flow configuration. Combining lamp sequencing with cross-flow processing in a multiple reactor system enables high throughput deposition with good film uniformities and efficient use of process gases.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 23, 2014
    Applicant: Crystal Solar, Incorporated
    Inventors: Visweswaren Sivaramakrishnan, Kedarnath Sangam, Tirunelveli S. Ravi, Andrzej Kaszuba, Quoc Vinh Truong
  • Publication number: 20140261159
    Abstract: When a reaction chamber defined and formed by a ceiling plate as a top face, a substrate mounting portion as a bottom face, and a side wall as a lateral face is constructed, the ceiling plate is supported by a support at the circumferential edge of the ceiling plate from the upper side and the outer side of the circumferential edge, and the reactant gas is rectified in a reactant gas supply path disposed in the side wall so that a horizontal component in a flow direction of the reactant gas in the reaction chamber corresponds to a horizontal component in a direction extending from the center of an opening of the reactant gas supply path facing the reaction chamber to the center of the reaction chamber.
    Type: Application
    Filed: July 3, 2013
    Publication date: September 18, 2014
    Inventors: Akira Okabe, Yoshinobu Mori
  • Publication number: 20140209015
    Abstract: A vapor phase growth apparatus in an embodiment includes: a shower plate in an upper portion of the reaction chamber, the shower plate having first lateral gas flow passages in a first horizontal plane, first longitudinal gas flow passages being connected to the first lateral gas flow passages, the first longitudinal gas flow passages extending in a longitudinal direction, each of the first longitudinal gas flow passages having a first gas ejection hole, the shower plate having second lateral gas flow passages in a second horizontal plane upper than the first horizontal plane, second longitudinal gas flow passages being connected to the second lateral gas flow passages, the second longitudinal gas flow passages extending in the longitudinal direction through between the first lateral gas flow passages, each of the second longitudinal gas flow passages having a second gas ejection hole, and a support unit provided below the shower plate.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 31, 2014
    Applicant: Nuflare Technology, Inc.
    Inventors: Takumi YAMADA, Yuusuke Sato
  • Patent number: 8785316
    Abstract: Methods of depositing a III-V semiconductor material on a substrate include sequentially introducing a gaseous precursor of a group III element and a gaseous precursor of a group V element to the substrate by altering spatial positioning of the substrate with respect to a plurality of gas columns. For example, the substrate may be moved relative to a plurality of substantially aligned gas columns, each disposing a different precursor. Thermalizing gas injectors for generating the precursors may include an inlet, a thermalizing conduit, a liquid container configured to hold a liquid reagent therein, and an outlet. Deposition systems for forming one or more III-V semiconductor materials on a surface of the substrate may include one or more such thermalizing gas injectors configured to direct the precursor to the substrate via the plurality of gas columns.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: July 22, 2014
    Assignee: Soitec
    Inventor: Christiaan J. Werkhoven
  • Publication number: 20140116330
    Abstract: A flow inlet element for a chemical vapor deposition reactor is formed from a plurality of elongated tubular elements extending side-by-side with one another in a plane transverse to the upstream to downstream direction of the reactor. The tubular elements have inlets for ejecting gas in the downstream direction. A wafer carrier rotates around an upstream to downstream axis. The gas distribution elements may provide a pattern of gas distribution which is asymmetrical with respect to a medial plane extending through the axis.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: VEECO INSTRUMENTS INC.
    Inventors: Mikhail Belousov, Bojan Mitrovic, Keng Moy
  • Publication number: 20130104800
    Abstract: A film-forming method and apparatus for performing vapor phase growth reaction avoiding a substrate becoming adhered to a substrate supporting portion, comprising: placing a substrate on a substrate supporting portion in a film-forming chamber, supplying a source gas into the film-forming chamber while the substrate is rotating on a cylindrical portion for supporting the substrate supporting portion thereon, supplying a purge gas into the cylindrical portion and forming a film on the substrate while at least a part of the substrate is vibrating up and down on the substrate supporting portion by discharge of the purge gas from between the substrate and the substrate supporting portion. The vibration allowing the substrate to not become adhered to the substrate supporting portion, and thus increase throughput of the operation.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: NuFlare Technology, Inc
    Inventor: NuFlare Technology, Inc
  • Publication number: 20130098289
    Abstract: Embodiments of the invention generally relate to a chemical vapor deposition system and related method of use. In one embodiment, the system includes a reactor lid assembly having a body, a track assembly having a body and a guide path located along the body, and a heating assembly operable to heat the substrate as the substrate moves along the guide path. The body of the lid assembly and the body of the track assembly are coupled together to form a gap that is configured to receive a substrate. In another embodiment, a method of forming layers on a substrate using the chemical vapor deposition system includes introducing the substrate into a guide path, depositing a first layer on the substrate and depositing a second layer on the substrate, while the substrate moves along the guide path; and preventing mixing of gases between the first deposition step and the second deposition step.
    Type: Application
    Filed: April 11, 2012
    Publication date: April 25, 2013
    Applicant: ALTA DEVICES, INC.
    Inventors: Gang He, Gregg Higashi, Khurshed Sorabji, Roger Hamamjy, Andreas Hegedus, Melissa Archer, Harry Atwater, Stewart Sonnenfeldt
  • Patent number: 8425681
    Abstract: A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: April 23, 2013
    Assignee: Sandia Corporation
    Inventors: George T. Wang, Qiming Li
  • Publication number: 20130047916
    Abstract: A vapor growth apparatus including: a reaction chamber configured to lod a wafer; a gas supply mechanism which supplies process gas into the reaction chamber; a support unit for placing the wafer; a heater for heating the wafer from below; a rotation control unit for rotating the wafer; a gas exhaust mechanism including an exhaust port which exhausts gas from the reaction chamber; a reflector provided below the heater for reflecting heat from the heater onto a rear face of the wafer; and a vertical drive unit for vertically moving the reflector.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Inventors: Michio NISHIBAYASHI, Takumi YAMADA, Yuusuke SATO
  • Patent number: 8382897
    Abstract: Methods for gas delivery to a process chamber are provided herein. In some embodiments, a method may include flowing a process gas through one or more gas conduits, each gas conduit having an inlet and an outlet for facilitating the flow of gas through the gas conduits and into a gas inlet funnel having a second volume, wherein each gas conduit has a first volume less than the second volume, and wherein each gas conduit has a cross-section that increases from a first cross-section proximate the inlet to a second cross-section proximate the outlet but excluding any intersection points between the gas inlet funnel and the gas conduit, and wherein the second cross-section is non-circular; and delivering the process gas to the substrate via the gas inlet funnel.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kedarnath Sangam, Anh N. Nguyen
  • Patent number: 8366892
    Abstract: The present invention relates to an electrode composed of carbon having at least two different zones, wherein an outer zone (A) forms the base of the electrode and carries one or more inner zones, wherein the innermost zone (B) projects from the zone (A) at the top and has a lower specific thermal conductivity than zone (A).
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Wacker Chemie AG
    Inventors: Heinz Kraus, Mikhail Sofin
  • Patent number: 8334015
    Abstract: A combinatorial processing chamber and method are provided. In the method a fluid volume flows over a surface of a substrate with differing portions of the fluid volume having different constituent components to concurrently expose segregated regions of the substrate to a mixture of the constituent components that differ from constituent components to which adjacent regions are exposed. Differently processed segregated regions are generated through the multiple flowings.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: December 18, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Sunil Shanker, Chi-I Lang
  • Patent number: 8323407
    Abstract: The invention relates to a method and system for epitaxial deposition of a Group III-V semiconductor material that includes gallium. The method includes reacting an amount of a gaseous Group III precursor having one or more gaseous gallium precursors as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber; and supplying sufficient energy to the gaseous gallium precursor(s) prior to their reacting so that substantially all such precursors are in their monomer forms. The system includes sources of the reactants, a reaction chamber wherein the reactants combine to deposit Group III-V semiconductor material, and one or more heating structures for heating the gaseous Group III precursors prior to reacting to a temperature to decompose substantially all dimers, trimers or other molecular variations of such precursors into their component monomers.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 4, 2012
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Publication number: 20120291697
    Abstract: An apparatus for manufacturing a semiconductor device includes an out-heater including a heater element formed in an annular shape with a disconnected portion at one place, a first electrode component connected to a first heater electrode part of the heater element, a second electrode component connected to a second heater electrode part of the heater element, and a base including a first groove in which the first electrode component is fixedly disposed, and a second groove in which the second electrode component is movably disposed and a groove width in a circumferential direction of the heater element is formed such that a width of a second gap formed between a side of the second electrode component and an inner wall of the groove is wider than a width of a first gap formed between a side of the first electrode component and an inner wall of the first groove.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Inventors: Kunihiko Suzuki, Hironobu Hirata
  • Publication number: 20120272892
    Abstract: A VPE reactor is improved by providing temperature control to within 0.5° C., and greater process gas uniformity via novel reactor shaping, unique wafer motion structures, improvements in thermal control systems, improvements in gas flow structures, improved methods for application of gas and temperature, and improved control systems for detecting and reducing process variation.
    Type: Application
    Filed: April 6, 2012
    Publication date: November 1, 2012
    Applicant: Veeco Instruments Inc.
    Inventors: Ajit Paranjpe, Alexander Gurary, William Quinn
  • Patent number: 8252112
    Abstract: A method and apparatus for the unusually high rate deposition of thin film materials on a stationary or continuous substrate. The method includes delivery of a pre-selected precursor intermediate to a deposition chamber and formation of a thin film material from the intermediate. The intermediate is formed outside of the deposition chamber and includes a metastable species such as a free radical. The intermediate is pre-selected to include a metastable species conducive to the formation of a thin film material having a low defect concentration. By forming a low defect concentration material, deposition rate is decoupled from material quality and heretofore unprecedented deposition rates are achieved. In one embodiment, the pre-selected precursor intermediate is SiH3.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 28, 2012
    Assignee: Ovshinsky Innovation, LLC
    Inventor: Stanford R. Ovshinsky
  • Patent number: 8216367
    Abstract: A method for producing a silicon carbide layer on a surface of a silicon substrate includes the step of irradiating the surface of the silicon substrate heated in a high vacuum at a temperature in a range of from 500° C. to 1050° C. with a hydrocarbon-based gas as well as an electron beam to form a cubic silicon carbide layer on the silicon substrate surface.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 10, 2012
    Assignee: Showa Denko K.K.
    Inventor: Takashi Udagawa
  • Patent number: 8197597
    Abstract: The present invention is related to the field of semiconductor processing equipment and methods and provides, in particular, methods and equipment for the sustained, high-volume production of Group III-V compound semiconductor material suitable for fabrication of optic and electronic components, for use as substrates for epitaxial deposition, for wafers and so forth. In preferred embodiments, these methods are optimized for producing Group III-N (nitrogen) compound semiconductor wafers and specifically for producing GaN wafers. Specifically, the method includes reacting an amount of a gaseous Group III precursor as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber under conditions sufficient to provide sustained high volume manufacture of the semiconductor material on one or more substrates, with the gaseous Group III precursor continuously provided at a mass flow of 50 g Group III element/hour for at least 48 hours.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: June 12, 2012
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Publication number: 20120138952
    Abstract: A composition, reactor apparatus, method, and control system for growing epitaxial layers of group III-nitride alloys. Super-atmospheric pressure is used as a process parameter to control the epitaxial layer growth where the identity of alloy layers differ within a heterostructure stack of two or more layers.
    Type: Application
    Filed: August 12, 2010
    Publication date: June 7, 2012
    Applicant: GEORGIA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventor: Nikolaus Dietz
  • Patent number: 8143147
    Abstract: A method and apparatus for the deposition of thin films is described. In embodiments, systems and methods for epitaxial thin film formation are provided, including systems and methods for forming binary compound epitaxial thin films. Methods and systems of embodiments of the invention may be used to form direct bandgap semiconducting binary compound epitaxial thin films, such as, for example, GaN, InN and AlN, and the mixed alloys of these compounds, e.g., (In, Ga)N, (Al, Ga)N, (In, Ga, Al)N. Methods and apparatuses include a multistage deposition process and system which enables rapid repetition of sub-monolayer deposition of thin films.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: March 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Philip A. Kraus, Sandeep Nijhawan, Thai Cheng Chua
  • Patent number: 8133806
    Abstract: Methods of depositing a III-V semiconductor material on a substrate include sequentially introducing a gaseous precursor of a group III element and a gaseous precursor of a group V element to the substrate by altering spatial positioning of the substrate with respect to a plurality of gas columns. For example, the substrate may be moved relative to a plurality of substantially aligned gas columns, each disposing a different precursor. Thermalizing gas injectors for generating the precursors may include an inlet, a thermalizing conduit, a liquid container configured to hold a liquid reagent therein, and an outlet. Deposition systems for forming one or more III-V semiconductor materials on a surface of the substrate may include one or more such thermalizing gas injectors configured to direct the precursor to the substrate via the plurality of gas columns.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 13, 2012
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Christiaan J. Werkhoven
  • Publication number: 20120012049
    Abstract: Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have one or more precursor sources coupled thereto. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the precursors and at a lower temperature. The chamber has a truncated box shape formed by a curved cover which improves the flow of the nitrogen and precursor gases and the uniformity of the film deposition.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 19, 2012
    Inventors: Wei-Yung Hsu, Donald J.K. Olgado, Anzhong Chang
  • Patent number: 8007588
    Abstract: A vapor phase epitaxial growth method using a vapor phase epitaxy apparatus having a chamber, a support structure holding thereon a substrate in the chamber, a first flow path supplying a reactant gas for film formation on the substrate and a second flow path for exhaust of the gas, said method includes rotating the substrate, supplying the reactant gas and a carrier gas to thereby perform vapor-phase epitaxial growth of a semiconductor film on the substrate, and during the vapor-phase epitaxial growth of the semiconductor film on the substrate, controlling process parameters to make said semiconductor film uniform in thickness, said process parameters including flow rates and concentrations of the reactant gas and the carrier gas, a degree of vacuum within said chamber, a temperature of the substrate, and a rotation speed of said substrate.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: August 30, 2011
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideki Ito, Satoshi Inada, Yoshikazu Moriyama
  • Publication number: 20110174212
    Abstract: Methods and apparatus for processing a substrate are provided herein. In some embodiments, an apparatus for processing a substrate includes a process chamber having a substrate support disposed therein to support a processing surface of a substrate at a desired position within the process chamber; a first inlet port to provide a first process gas over the processing surface of the substrate in a first direction; a second inlet port to provide a second process gas over the processing surface of the substrate in a second direction different from the first direction, wherein an azimuthal angle measured between the first direction and the second direction with respect to a central axis of the substrate support is up to about 145 degrees; and an exhaust port disposed opposite the first inlet port to exhaust the first and second process gases from the process chamber.
    Type: Application
    Filed: September 22, 2010
    Publication date: July 21, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: BALASUBRAMANIAN RAMACHANDRAN, ERROL ANTONIO C. SANCHEZ, NYI O. MYO, KEVIN JOSEPH BAUTISTA, HARPREET SINGH JUNEJA, ZUOMING ZHU
  • Publication number: 20110114015
    Abstract: Method for producing a III-N (AlN, GaN, AlxGa(1-x)N) crystal by Vapor Phase Epitaxy (VPE), the method comprising: providing a reactor having: a growth zone for growing a III-N crystal; a substrate holder located in the growth zone that supports at least one substrate on which to grow the III-N crystal; a gas supply system that delivers growth material for growing the III-N crystal to the growth zone from an outlet of the gas supply system; and a heating element that controls temperature in the reactor; determining three growth sub-zones in the growth zone for which a crystal grown in the growth sub-zones has respectively a concave, flat or convex curvature; growing the III-N crystal on a substrate in a growth region for which the crystal has a by desired curvature.
    Type: Application
    Filed: January 22, 2011
    Publication date: May 19, 2011
    Applicant: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
  • Publication number: 20110067625
    Abstract: A crystal growth method for forming a semiconductor film, the method includes: while revolving one or more substrates about a rotation axis, passing raw material gas and carrier gas from the rotation axis side in a direction substantially parallel to a major surface of the substrate. The center of the substrate is located on a side nearer to the rotation axis than a position at which growth rate of the semiconductor film formed by thermal decomposition of the raw material gas is maximized.
    Type: Application
    Filed: November 29, 2010
    Publication date: March 24, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaaki Onomura, Yoshiyuki Harada
  • Patent number: 7862657
    Abstract: A crystal growth method for forming a semiconductor film, the method includes: while revolving one or more substrates about a rotation axis, passing raw material gas and carrier gas from the rotation axis side in a direction substantially parallel to a major surface of the substrate. The center of the substrate is located on a side nearer to the rotation axis than a position at which growth rate of the semiconductor film formed by thermal decomposition of the raw material gas is maximized.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Onomura, Yoshiyuki Harada
  • Patent number: 7857907
    Abstract: The present invention relates to a method for forming a layered structure with silicon nanocrystals. In one embodiment, the method comprises the steps of: (i) forming a first conductive layer on a substrate, (ii) forming a silicon-rich dielectric layer on the first conductive layer, and (iii) laser-annealing at least the silicon-rich dielectric layer to induce silicon-rich aggregation to form a plurality of silicon nanocrystals in the silicon-rich dielectric layer. The silicon-rich dielectric layer is one of a silicon-rich oxide film having a refractive index in the range of about 1.4 to 2.3, or a silicon-rich nitride film having a refractive index in the range of about 1.7 to 2.3. The layered structure with silicon nanocrystals in a silicon-rich dielectric layer is usable in a solar cell, a photodetector, a touch panel, a non-volatile memory device as storage node, and a liquid crystal display.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: December 28, 2010
    Assignee: AU Optronics Corporation
    Inventors: An-Thung Cho, Chih-Wei Chao, Chia-Tien Peng, Wan-Yi Liu, Ming-Wei Sun
  • Patent number: 7858144
    Abstract: A process of making an organic thin film on a substrate by atomic layer deposition is disclosed, the process comprising simultaneously directing a series of gas flows along substantially parallel elongated channels, and wherein the series of gas flows comprises, in order, at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, optionally repeated a plurality of times, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material wherein the first reactive gaseous material, the second reactive gaseous material or both is a volatile organic compound. The process is carried out substantially at or above atmospheric pressure and at a temperature under 250° C., during deposition of the organic thin film.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 28, 2010
    Assignee: Eastman Kodak Company
    Inventors: Diane C. Freeman, David H. Levy, Peter J. Cowdery-Corvan
  • Publication number: 20100263588
    Abstract: Epitaxial growth of semiconductor materials is carried out by introducing two or more reaction gases along with their carrier gas into a reaction chamber via one or more concentric pipe inlets and a plurality of separately distributed injection ports with a gas distribution system. The reaction gas can be injected into the reaction chamber either continuously or in pulse mode, wherein reaction gases are mixed together or injected alternately into the reaction chamber. The semiconductor materials are deposited on the substrates which are located on the rotating heated susceptor within the reaction chamber.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Inventor: Gan Zhiyin
  • Patent number: 7816764
    Abstract: Methods of controlling stress in GaN films deposited on silicon and silicon carbide substrates and the films produced therefrom are disclosed. A typical method comprises providing a substrate and depositing a graded gallium nitride layer on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply. A typical semiconductor film comprises a substrate and a graded gallium nitride layer deposited on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 19, 2010
    Assignee: The Regents of the University of California
    Inventors: Hugues Marchand, Brendan Jude Moran
  • Publication number: 20100258049
    Abstract: Embodiments disclosed herein generally relate to an HVPE chamber. The chamber may have two separate precursor sources coupled thereto to permit two separate layers to be deposited. For example, a gallium source and a separate aluminum source may be coupled to the processing chamber to permit gallium nitride and aluminum nitride to be separately deposited onto a substrate in the same processing chamber. The nitrogen may be introduced to the processing chamber at a separate location from the gallium and the aluminum and at a lower temperature. The different temperatures causes the gases to mix together, react and deposit on the substrate with little or no deposition on the chamber walls.
    Type: Application
    Filed: December 14, 2009
    Publication date: October 14, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Tetsuya Ishikawa, David H. Quach, Anzhong Chang, Olga Kryliouk, Yuriy Melnik, Harsukhdeep S. Ratia, Son T. Nguyen, Lily Pang
  • Patent number: 7811382
    Abstract: A wafer having a silicon layer that is strained is used to form transistors. The silicon layer is formed by first forming a silicon germanium (SiGe) layer of at least 30 percent germanium that has relaxed strain on a donor wafer. A thin silicon layer is epitaxially grown to have tensile strain on the relaxed SiGe layer. The amount tensile strain is related to the germanium concentration. A high temperature oxide (HTO) layer is formed on the thin silicon layer by reacting dichlorosilane and nitrous oxide at a temperature of preferably between 800 and 850 degrees Celsius. A handle wafer is provided with a supporting substrate and an oxide layer that is then bonded to the HTO layer. The HTO layer, being high density, is able to hold the tensile strain of the thin silicon layer. The relaxed SiGe layer is cleaved then etched away to expose the thin silicon layer.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: October 12, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Alexander L. Barr, Bich-Yen Nguyen, Voon-Yew Thean, Ted R. White