With Means To Apply Electrical And/or Radiant Energy To Work And/or Coating Material Patents (Class 118/50.1)
  • Publication number: 20120321813
    Abstract: A thin film deposition apparatus including a vacuum chamber; a substrate arranged inside the vacuum chamber; a container unit containing a deposition material and including a discharge opening to discharge the deposition material in a vaporized state; a first heating unit configured to heat at least a portion of the container unit; and a vapor discharge tube including a first opening connected to the discharge opening, and a second opening to discharge the vaporized deposition material to an outside of the vapor discharge tube, a length of a path connecting a center of the first opening to a center of the second opening along a centerline of the vapor discharge tube being greater than a length of a straight line interconnecting the centers of the first and second openings, the thin film deposition apparatus being configured to apply an electric field to the vapor discharge tube.
    Type: Application
    Filed: April 6, 2012
    Publication date: December 20, 2012
    Inventors: Geum-Jong Roh, Tae-Wook Kim
  • Publication number: 20120295033
    Abstract: Disclosed are a plasma nano-powder synthesizing and coating device and method, the device comprising: a chamber which forms a sealed space, and comprises a reaction unit provided at one side and a processing unit provided at the other side, the reaction unit provided in an upstream of gas flowing in the chamber, having a high-temperature plasma region formed by a plasma torch generating plasma with an applied electric current, and comprising a mixed gas feeder to supply mixed gas to the reaction unit and a powder feeder to supply powder to the reaction unit, and the processing unit provided in a downstream of plasma flame in the chamber, and comprising a supporter to support a material; and a vacuum forming unit which forms a vacuum inside the chamber, the powder being supplied to the reaction unit and reacting in the plasma region of the reaction unit, and the reacted powder being synthesized in the reaction unit, the processing unit and a surface of the supporter, and coated on a surface of the material of
    Type: Application
    Filed: August 29, 2011
    Publication date: November 22, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Huy Kim, Hyeong-Jae Lee, Yong-Il Kim
  • Publication number: 20120285923
    Abstract: According to embodiments of the present disclosure, a method for removing oxide includes placing a sensor chip assembly having an oxide layer formed on a portion thereof within an enclosed and controlled environment. The portion of the sensor chip assembly is exposed to a reactive gas and a UV light to result in a substantial removal of the oxide layer formed on the portion of the sensor chip assembly.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: Raytheon Company
    Inventors: Andreas Hampp, Sean F. Harris, Talieh H. Sadighi, Bengi F. Hanyaloglu
  • Patent number: 8294068
    Abstract: Embodiments of a lamphead and apparatus utilizing same are provided herein. In some embodiments, a lamphead for use in thermal processing may include a monolithic member having a plurality of coolant passages and a plurality of lamp passages and reflector cavities, wherein each lamp passage is configured to accommodate a lamp and each reflector cavity is shaped to act as a reflector or to receive a replaceable reflector for the lamp, and wherein the plurality of coolant passages are disposed proximate to the plurality of lamp passages; and at least one heat transfer member extending from the monolithic member into each coolant passage. In some embodiments, the lamphead may be disposed in an apparatus comprising a process chamber having a substrate support, wherein the lamphead is positioned to provide energy to the substrate support.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: October 23, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Joseph M. Ranish, Khurshed Sorabji, Kedarnath Sangam, Alexander Lerner
  • Publication number: 20120252209
    Abstract: A plasma nitriding method includes placing, in a processing chamber, a target object having a structure including a first portion containing a metal and a second portion containing silicon to expose surfaces of the first and the second portion; and performing a plasma process on the target object to selectively nitride the surface of the first portion such that a metal nitride film is selectively formed on the surface of the first portion. Further, the first portion contains tungsten, and a nitrogen-containing plasma is generated by supplying a nitrogen-containing gas into the processing chamber and setting an internal pressure of the processing chamber in a range from 133 Pa to 1333 Pa. The surface of the first portion is selectively nitrided without nitriding the surface of the second portion by the nitrogen-containing plasma such that a tungsten nitride film is formed on the surface of the first portion.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoshiro Kabe, Yoshihiro Sato
  • Publication number: 20120213948
    Abstract: A system for repairing a crack in a component, or forming a joint between two components, is described. The system includes a filler material; a plasma-generating material; and a ceramic cover that is positioned around the crack, or around an interface region between two components that are to be joined. The filler material is positioned proximate to the crack or the interface region; and the plasma generating material is positioned in the vicinity of the crack or the interface region. A microwave generator for generating a microwave field inside an enclosure region enclosed by the cover, and proximate to the crack or interface region, also forms part of the system. Related methods for filling at least one cavity in a casting component are also described.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 23, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jeffrey Jon Schoonover, Mahesh Chandran, Sarah Lillian Katz, Laurent Cretegny, Drew Brisco, David John Smith, Vasile Bogdan Neculaes
  • Patent number: 8227729
    Abstract: A method and apparatus for thermally processing a substrate is provided. In one embodiment, a method for thermally treating a substrate is provided. The method includes transferring a substrate to a chamber at a first temperature, the chamber having a heating source and a cooling source disposed in opposing portions of the chamber, heating the substrate in the chamber during a first time period to a second temperature, heating the substrate in the chamber to a third temperature during a second time period, and cooling the substrate in the chamber to a fourth temperature that is substantially equal to the second temperature during the second time period, wherein the second time period is about 2 seconds or less.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: July 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Khurshed Sorabji, Alexander N. Lerner
  • Patent number: 8222570
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: July 17, 2012
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 8217313
    Abstract: A disclosed heating apparatus includes a heating chamber configured to heat a substrate placed in the heating chamber with a heat plate opposing the substrate; a gas stream forming portion that creates a gas stream along a top surface of the substrate in the heating chamber; and a pair of first plate members respectively located between an inner side wall of the heating chamber and a first substrate edge opposing the inner side wall, and between another inner side wall of the heating chamber and a second substrate edge opposing the other inner side wall.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: July 10, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Tetsuo Fukuoka, Takahiro Kitano, Kazuo Terada
  • Patent number: 8183502
    Abstract: A mounting table structure arranged in a processing chamber is provided for mounting a target object to be processed on the upper surface. The mounting table structure is characterized in having a mounting table wherein a heating unit are embedded to heat the target object to perform a specified heat treatment to the target object, and a supporting column which stands on the bottom portion of the processing chamber and supports the mounting table. The mounting table structure is also characterized in that a heat-equalizing member spread in a planar direction is embedded above the heating unit in the mounting table.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 22, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kentaro Asakura, Hiroo Kawasaki
  • Patent number: 8176869
    Abstract: A production assembly and associated process for mass producing such as a thermoplastic pallet and which utilizes a multiple insert supporting and continuously moving carousels inter-faceable with an input line upon which is transported a plurality of rigid and planar shaped inserts, as well as an output line a spaced relationship from the input line for removing, from the carousel, the resin coated articles. The invention further teaches a series of subset variants for spray applying a two part resin and hardener upon the insert according to a selected thickness, following which the inserts are cured and dried prior to transferring to the output line and in order to create a finished product.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: May 15, 2012
    Assignee: Oria Collapsibles, LLC
    Inventor: Miguel A. Linares
  • Patent number: 8158911
    Abstract: A heating apparatus comprises heating elements arranged of a sheet form and having notches or through holes provided therein, a side wall member made of an electrically conductive material and arranged to surround and define the heating space, and holding members disposed at the heating space side of the side wall member for holding at one end the heating elements. Also, extending members are provided, each member comprising an extending-through portion arranged to project from the heating space side of the side wall member and extend through the notch or through hole between both ends in the heating element and projected portions arranged to project at both, front and back, sides of the heating element from the extending-through portion in a direction, which is orthogonal to the extending direction of the extending-through portion, thus to inhibit the displacement of the heating elements along the extending direction.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 17, 2012
    Assignees: Hitachi Kokusai Electric Inc., Teitokusha Co., Ltd.
    Inventors: Akira Hayashida, Masaaki Ueno, Masakazu Shimada, Kimio Kitamura, Kenji Tanaka, Jyunichi Nishihara
  • Publication number: 20120067278
    Abstract: A thin film solar cell manufacturing apparatus is provided which prevents the occurrence of transport wrinkles due to driving rollers transporting the film substrate, and which can improve workability.
    Type: Application
    Filed: October 9, 2008
    Publication date: March 22, 2012
    Applicant: Fuji Electric Systems Co., Ltd.
    Inventor: Ryohei Sakai
  • Patent number: 8138451
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. The light energy sources can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be either active sources of light energy or passive sources which reflect, refract or absorb light energy. For instance, in one embodiment, the tuning devices can comprise a lamp spaced from a focusing lens designed to focus determined amounts of light energy onto a particular location of a wafer being heated.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: March 20, 2012
    Assignee: Mattson Technology, Inc.
    Inventors: Arnon Gat, Bob Bogart
  • Patent number: 8129663
    Abstract: Deterioration of an O ring due to radiation heating in a vacuum heating apparatus is prevented to allow heat treatment of a substrate with good annealing properties. The vacuum heating apparatus 1 includes a vacuum chamber 2 constituted by flanges 11 and 12 having an opening portion 9 and joined together, a turbo molecular pump 17 for exhausting gas from the vacuum chamber 2, and a heater base 3 for heating a substrate 5 placed in the vacuum chamber 2. Joint surfaces of the flanges 11 and 12 are sealed by an O ring 10. Further, bonding steps 13 are formed between the heater base 3 and the O ring 10 on the joint surfaces of the flanges 11 and 12, thereby preventing thermo-radiation from the heater base 3 from reaching the O ring 10 through the joint surfaces of the flanges 11 and 12.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 6, 2012
    Assignee: Canon Anelva Corporation
    Inventors: Nobuyuki Masaki, Yuichi Sasuga, Masami Shibagaki, Hiroshi Doi
  • Patent number: 8117985
    Abstract: A laser cladding device for applying a coating to a part comprising a laser which can generate laser light, which is adapted to heat the coating and the part, a main body defining a laser light channel adapted to transmit the laser light to the part, a coating channel adapted to transmit the coating to the part, and a vacuum channel and a nozzle having an exit. The nozzle comprises a delivery port at one end of the laser light channel, a coating port at one end of the coating channel, and a vacuum port at one end of the vacuum channel, wherein the vacuum port is positioned generally adjacent the delivery port. In operation the vacuum port draws a vacuum, pulling the coating towards the part.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: February 21, 2012
    Inventor: Ronald Peter Whitfield
  • Publication number: 20120040485
    Abstract: Thermal management of film deposition processes. In one aspect, a deposition system includes a vacuum chamber defining an evacuated interior volume, a deposition source disposed within the interior volume, a substrate holder disposed within the interior volume and arranged to hold a substrate with a first surface of the substrate facing the deposition source and a second surface of the substrate disposed facing away from the deposition source, and a heat sink disposed to have a first side of the heat sink in radiative thermal contact with the second surface of the substrate held by the substrate holder, the first side of the heat sink comprising a collection of features having a longitudinal dimension that is four or more times larger than a lateral dimension between the features, the features thereby dimensioned and aligned to reflect, multiple times in succession, radiative thermal emissions of the second surface of the substrate.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 16, 2012
    Inventors: Sven Schramm, Susanne Schläfer
  • Patent number: 8115141
    Abstract: There is disclosed a heating element 10 comprising: at least a heat-resistant base member 1; a conductive layer 3 having a heater pattern 3a formed on the heat-resistant base member; a protection layer 4 with an insulating property formed on the conductive layer; and a corrosion-resistant layer 4p having a nitrogen gas permeability of 1×10?2 cm2/sec or less or being made of a compound containing a dopant formed on the protection layer 4.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: February 14, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Noboru Kimura, Yoshihiro Kubota, Waichi Yamamura, Shoji Kano
  • Patent number: 8110780
    Abstract: To provide a photo-irradiation type heat treatment apparatus that eliminates the adverse influence of a light transmitting window on the temperature distribution of an article to be treated without losing the original function of a reflecting mirror a photo-irradiation type heat treatment apparatus in which heat treating of an article is performed by irradiating the article with light emitted from multiple filament lamps through a light transmitting window, by providing the apparatus with a reflecting mirror having an opening at its central area so that cooling air can pass therethrough and by providing an air permeable reflector so as to cover the opening in the reflecting mirror.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: February 7, 2012
    Assignee: Ushiodenki Kabushiki Kaisha
    Inventors: Shinji Suzuki, Akinobu Nakashima
  • Publication number: 20120018096
    Abstract: The invention relates to a plasma chamber (10, 20, 30) having a first receiving device for a substrate (14, 24, 34) fastened to a first side and having a plasma generation unit for generating a plasma in the plasma chamber, wherein the plasma generation unit is connected or can be connected to a high frequency voltage supply (11, 21, 31). The high frequency voltage supply is designed to generate a modulated, high-frequency alternating voltage and to output said voltage to the plasma generation unit. The plasma generation unit is designed to generate the plasma using the modulated, high-frequency alternating voltage.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Inventor: Roland Gesche
  • Publication number: 20120009354
    Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Inventors: CHIEN-MIN WENG, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
  • Patent number: 8089031
    Abstract: The present invention provides a heating apparatus for heating objects to be processed, which can detect a temperature of the objects to be processed with higher precision and accuracy, thereby to achieve higher precision temperature control. A heating apparatus 2 includes a processing vessel 8 configured to contain therein a plurality of objects W to be processed, the objects W including objects 58a to 58e to be processed for temperature measurement, each object 58a to 58e having each corresponding elastic wave element 60a to 60e, a heating means 10 adapted for heating the objects W to be processed, and a holding means 22 adapted to hold the objects W to be processed. To the processing vessel 8, a transmitter antenna 52 adapted to transmit an electric wave for measurement toward each elastic wave element 60a to 60e, and a receiver antenna 52 adapted to receive an electric wave having a frequency corresponding to the temperature and generated from each elastic wave element 60a to 60e are provided.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: January 3, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Kenichi Yamaga
  • Patent number: 8082876
    Abstract: A manufacturing method of an active matrix organic light emitting diode (AMOLED) display and an apparatus for manufacturing the AMOLED display, where the display has improved surface flatness and thickness uniformity as well as an improved image quality at edge regions of a pattern. According to the exemplary embodiment of the present invention, an anode electrode is formed on a lower structure of a substrate, an organic layer is formed on the anode electrode by imaging a complex laser beam on a donor film disposed on the substrate having light emitting materials, the complex laser beam having energy distribution inclination over 2%/?m at a threshold energy. The donor film is removed, and a cathode electrode is formed on the organic layer.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: December 27, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Seong Taek Lee, Jang Hyuk Kwon, Tae Min Kang, Joon Young Park
  • Patent number: 8080767
    Abstract: A thermal processing apparatus comprising a processing vessel containing, in addition to a plurality of objects subject to heat treatment, an acoustic wave device for temperature measurement. A holding unit holds the plurality of objects to be processed and an object for temperature measurement utilizing an acoustic wave device. A heating unit heats the objects to be processed and the object for temperature measurement. A first conductive member functions as an antenna for transmitting an electromagnetic wave toward the acoustic wave device in the processing vessel; a second conductive member functions as a receiver antenna for receiving an electromagnetic wave dependent on a temperature of the acoustic wave device which is emitted from the acoustic wave device. A temperature analysis part obtains a temperature of the object based on the electromagnetic wave received by the receiver antenna, and a temperature control part controls the heating unit.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: December 20, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Kenichi Yamaga, Wenling Wang
  • Patent number: 8076615
    Abstract: A substrate processing apparatus comprises: an outer tube; a manifold connected to the outer tube and made of a non-metal material; an inner tube disposed in the manifold at a more inner side than the outer tube and configured to process a substrate therein; a heating device installed at a more outer side than the outer tube and configured to heat the inside of the outer tube; a lid configured to open and close an opening of the manifold, with a seal member intervened therebetween; and a heat absorption member installed in the manifold, with a bottom end of the inner tube intervened therebetween, and configured to absorb heat from the heating device, the heat absorption member being made of a non-metal material.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: December 13, 2011
    Assignee: Hitachi Kokusai Electric, Inc.
    Inventors: Shinya Morita, Koichi Sada, Takayuki Nakada, Tomoyuki Matsuda
  • Publication number: 20110248323
    Abstract: In the plasma-based ion implantation for accelerating positive ions of a plasma and implanting the positive ions into a substrate to be processed on a holding stage in a processing chamber where the plasma has been excited, ion implantation is achieved in the following manner: an RF power having a frequency of 4 MHz or greater is applied to the holding stage to cause a self-bias voltage to generate on the surface of the substrate. The RF power is applied a plurality of times in the form of pulses.
    Type: Application
    Filed: December 10, 2009
    Publication date: October 13, 2011
    Applicant: NATIONAL UNIVERSITY CORPORATION TOHOKU UNIVERSITY
    Inventors: Tadahiro Ohmi, Tetsuya Goto
  • Patent number: 8028646
    Abstract: Methods and systems for coating at least a portion of a medical device (e.g., a stent structure) include providing a plurality of coating particles (e.g., monodisperse coating particles) in a defined volume. For example, the particles may be provided using one or more nozzle structures, wherein each nozzle structure includes at least one opening terminating at a dispensing end. The plurality of coating particles may be provided in the defined volume by dispensing a plurality of microdroplets having an electrical charge associated therewith from the dispensing ends of the one or more nozzle structures through use of a nonuniform electrical field between the dispensing ends and the medical device. Electrical charge is concentrated on the particle as the microdroplet evaporates. With a plurality of coating particles provided in the defined volume, such particles can be moved towards at least one surface of the medical device to form a coating thereon (e.g.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 4, 2011
    Assignee: Regents of the University of Minnesota
    Inventors: David Y. H. Pui, Da-Ren Chen
  • Publication number: 20110212276
    Abstract: A method for applying or embedding nanoparticles or microparticles of any substance in a defined manner onto or into a layer to be applied to a substrate surface by plasma coating before, during or after the plasma coating operation in a magnetron or plasmatron. The particles are introduced from the outside into the vacuum chamber of the magnetron or plasmatron via at least one pressure stage. The particles are spatially distributed in the plasma space between the target and the substrate. The particles in the plasma space are preferably exposed to an electric field generating a movement of the particles toward the substrate. It is advantageous for this purpose if the particles are electrically charged before being introduced into the plasma space.
    Type: Application
    Filed: October 9, 2009
    Publication date: September 1, 2011
    Inventor: Uwe Beck
  • Publication number: 20110212269
    Abstract: Methods and apparatus are provided for static-biasing a pre-metalized non-conductive substrate within a process chamber. A substrate holder that holds a pre-metalized non-conductive substrate is engaged by a lift mechanism that provides movement of the substrate in a first, upward direction to a contact position within the process chamber and in a second direction to a non-contact position. When the substrate holder is moved to the contact position, the substrate electrically engages a conductive spring-loaded compliance mechanism that is mounted in a fixed position within the process chamber. The spring-loaded compliance mechanism is connected to a bias-voltage feed-through for the process chamber that applies a bias voltage to the substrate via the spring-loaded compliance mechanism.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Inventors: Chang Bok Yi, Tatsuru Tanaka, Chun Wai Joseph Tong, Hongling Liu, Paul S. McLeod
  • Publication number: 20110198559
    Abstract: A method is provided for growth of carbon nanotube (CNT) synthesis at a low temperature. The method includes preparing a catalyst by placing the catalyst between two metal layers of high chemical potential on a substrate, depositing such placed catalyst on a surface of a wafer, and reactivating the catalyst in a high vacuum at a room temperature in a catalyst preparation chamber to prevent a deactivation of the catalyst. The method also includes growing carbon nanotubes on the substrate in the high vacuum in a CNT growth chamber after preparing the catalyst.
    Type: Application
    Filed: April 25, 2011
    Publication date: August 18, 2011
    Applicant: STMICROELECTRONICS ASIA PACIFIC PTE LTD
    Inventors: Shanzhong Wang, Mui Hoon Nai, Zhonglin Miao
  • Patent number: 7985945
    Abstract: Embodiments of the present invention provide apparatus and method for reducing noises in temperature measurement during thermal processing. One embodiment of the present invention provides a chamber for processing a substrate comprising a chamber enclosure defining a processing volume, an energy source configured to direct radiant energy toward the processing volume, a spectral device configured to treat the radiant energy directed from the energy source towards the processing volume, a substrate support disposed in the processing volume and configured to support the substrate during processing, and a sensor assembly configured to measure temperature of the substrate being processed by sensing radiation from the substrate within a selected spectrum.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: July 26, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Blake Koelmel, Joseph Michael Ranish, Aaron Hunter
  • Patent number: 7973266
    Abstract: In a heat treatment apparatus, a reflector is provided to cover a plurality of flash lamps arranged in an array for emitting a flash of light, and a cooling box is provided over the reflector. The cooling box has a buffer space incorporated therein, and a plurality of jet openings in communication with the buffer space are formed through a bottom surface of the cooling box and the reflector. The plurality of jet openings are positioned just over gaps between the plurality of flash lamps in the lamp array. Nitrogen gas ejected from the plurality of jet openings passes through the gaps between adjacent ones of the flash lamps in the lamp array, and is then blown against a lamp light radiation window. The flash lamps are effectively cooled down by the direct cooling using the nitrogen gas and the decrease in temperature of the lamp light radiation window.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: July 5, 2011
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Toshihiro Nakajima, Jun Watanabe
  • Patent number: 7960254
    Abstract: To provide a manufacturing method for an epitaxial wafer that alleviates distortions on a back surface thereof due to sticking between a wafer and a susceptor, thereby preventing decrease in flatness thereof due to a lift pin. A manufacturing method for an epitaxial wafer according to the present invention includes: an oxide film forming step in which an oxide film is formed on a back surface thereof; an etching step in which a hydrophobic portion exposing a back surface of the semiconductor wafer is provided by partially removing the oxide film; a wafer placing step in which the semiconductor wafer is placed; and an epitaxial growth step in which an epitaxial layer is grown on a main surface of the semiconductor wafer; and the diameter of the lift pin installation circle provided on a circle on a bottom face of a susceptor is smaller than that of the hydrophobic portion.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 14, 2011
    Assignee: Sumco Corporation
    Inventors: Naoyuki Wada, Makoto Takemura
  • Publication number: 20110129614
    Abstract: In one embodiment, a system includes a pressure cell adapted for enclosing a porous structure; an inert pressure medium within the pressure cell; and a heat source for heating the porous structure. In another embodiment, a composition of matter includes a crystalline porous structure having a density of about 30 to about 50 mg/cm3. A method according to one embodiment includes positioning an amorphous porous structure in a pressure cell; injecting an inert pressure medium within the pressure cell; and pressurizing the pressure cell to a pressure that thermodynamically favors a crystalline phase of the porous structure over an amorphous phase of the porous structure to transition the amorphous porous structure into a crystalline porous structure. Additional embodiments are also presented.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 2, 2011
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Peter J. Pauzauskie, Jonathan C. Crowhurst, Marcus A. Worsley, Joe H. Satcher, JR.
  • Patent number: 7952054
    Abstract: There is disclosed a heating element 10 comprising: at least a heat-resistant base member 1; a conductive layer 3 having a heater pattern 3a formed on the heat-resistant base member; a protection layer 4 with an insulating property formed on the conductive layer; and a corrosion-resistant layer 4p that is an oxide having an oxygen amount of stoichiometric ratio or less formed on the protection layer. There can be provided a heating element in which a corrosion-resistant layer whose resistivity or hardness is controlled is formed on a protection layer and through which the corrosive gas is difficult to be transmitted even under an environment of a high temperature and a corrosive gas and by which degradation due to corrosion of a conductive layer, particularly, a power-supply-terminal portion can be avoided and additionally which can fulfill a high function as an electrostatic chuck even when having a chuck pattern and which has a long operation life and is capable of being produced at a low cost.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: May 31, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Noboru Kimura, Yoshihiro Kubota, Waichi Yamamura, Shoji Kano
  • Publication number: 20110120368
    Abstract: A device for dispersing a sample of dry powder onto a surface in a dispersion chamber. The device includes a dispersion chamber situated in an environment, and a pressure source that provides a pressure difference between the environment and an inside of the dispersion chamber. The surface is positioned in the dispersion chamber. The sample of dry powder is introduced into the dispersion chamber through a membrane that is interposed between the environment and the inside of the dispersion chamber and on which the sample is disposed. The membrane is rupturable so as to open into the dispersion chamber when a predetermined pressure difference across the membrane is exceeded. This permits entry of a fluid in the environment through the ruptured membrane, and movement of the dry powder sample in an evenly dispersed manner without producing an ordered movement of powder grains in the dispersion chamber.
    Type: Application
    Filed: December 21, 2010
    Publication date: May 26, 2011
    Inventors: Vincent Chapeau, Christian Godino
  • Publication number: 20110117492
    Abstract: A photoresist coating and developing apparatus 1 includes a photoresist film forming unit that forms a photoresist film on a substrate; a heat treatment unit that heats the substrate on which the photoresist film is formed by the photoresist film forming unit; a cooling unit that cools the substrate, on which the photoresist film is formed and which is heated by the heat treatment unit, to normal temperature; a heating unit 61 that heats the substrate, which is cooled to normal temperature by the cooling unit, to a predetermined temperature; a load-lock chamber L1 that unloads the substrate under depressurized atmosphere to expose the photoresist film; and a transfer device 62 that transfers the substrate from the heating unit 61 to the load-lock chamber L1.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 19, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoshiaki Yamada, Yuichi Yamamoto, Hitoshi Kosugi
  • Publication number: 20110091821
    Abstract: A resist treatment unit for performing treatment on a resist film which has been formed on a substrate is disclosed. This resist treatment unit includes: a treatment container capable of maintaining a vacuum therein; a mounting table provided in the treatment container for mounting the substrate on which the resist film has been formed thereon; a gas supply part for jetting a mixture gas containing a first gas and a second gas which are chemically inert toward the mounting table at a predetermined flow rate; and an exhaust part capable of exhausting the treatment container to a degree of vacuum at which the mixture gas jetted from the gas supply part at the predetermined flow rate is able to be a molecular beam in the treatment container.
    Type: Application
    Filed: June 10, 2009
    Publication date: April 21, 2011
    Inventor: Shinji Kobayashi
  • Publication number: 20110059260
    Abstract: A method, in one embodiment, can include inserting a magnetic media into an enclosure. Furthermore, the method can include using a non-thermal physical vapor deposition process to deposit a lubricant onto the magnetic media within the enclosure.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 10, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Michael J. Stirniman
  • Patent number: 7879400
    Abstract: There is provided a substrate processing apparatus equipped with a metallic component, with at least a part of its metallic surface exposed to an inside of a processing chamber and subjected to baking treatment at a pressure less than atmospheric pressure. As a result of this baking treatment, a film which does not react with various types of reactive gases, and which can block the out diffusion of metals, is formed on the surface of the above-mentioned metallic component.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Kokusal Electric Inc.
    Inventors: Takahiro Maeda, Kiyohiko Maeda, Takashi Ozaki
  • Publication number: 20110008530
    Abstract: A system and method for direct manufacturing and stress relieving a metal part without removing the metal part from a vacuumed chamber. The system may comprise the chamber, a wire feeder for depositing a metal wire onto a metal plate, an electron beam (EB) source for providing an electron beam to melt the metal wire during deposition, and a current-providing apparatus for joule heating the metal plate to provide heat treatment to the metal part. The method may comprise depositing the metal wire onto the metal plate within the vacuumed chamber, then providing intermediate stress relief after a portion of the metal wire is deposited onto the metal plate by applying an electrical current to the metal part. The electron beam may also be set at a temperature below a melting point of a particular metal of the metal part for relieving stress in the metal part.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 13, 2011
    Applicant: SPIRIT AEROSYSTEMS, INC.
    Inventors: Bryan David Woods, Rahbar Nasserrafi, Helen Ehlers
  • Publication number: 20100330425
    Abstract: A system and method for fabricating lithium-ion batteries using thin-film deposition processes that form three-dimensional structures is provided. In one embodiment, an anodic structure used to form an energy storage device is provided. The anodic structure comprises a conductive substrate, a plurality of conductive microstructures formed on the substrate, a passivation film formed over the conductive microstructures, and an insulative separator layer formed over the conductive microstructures, wherein the conductive microstructures comprise columnar projections.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 30, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sergey D. Lopatin, Dmitri A. Brevnov, Ruben Babayants, Robert Z. Bachrach
  • Publication number: 20100307414
    Abstract: [Object] To provide a take-up type vacuum deposition apparatus capable of preventing a thermal deformation of a base material due to charged particles leaked from a neutralization unit without an increase in size of the apparatus. [Solving Means] A take-up type vacuum deposition apparatus according to the present invention includes a charge capturing body provided between a cooling can roller and a neutralization unit that captures charged particles floating from the neutralization unit toward the can roller. Accordingly, the charged particles leaked from the neutralization unit are prevented from reaching the can roller, which suppresses variation in a bias potential applied to the can roller for bringing it into close contact with a base material, and keeps stable electrostatic force with respect to the base material. Accordingly, adhesion force between the base material and the cooling roller can be kept stable, and thus a thermal deformation of the base material can be suppressed.
    Type: Application
    Filed: April 14, 2008
    Publication date: December 9, 2010
    Applicant: ULVAC, INC.
    Inventors: Shin Yokoi, Tsunehito Nomura, Atsushi Nakatsuka, Isao Tada
  • Patent number: 7847218
    Abstract: An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 7, 2010
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans
  • Patent number: 7812286
    Abstract: A method and apparatus for thermally processing a substrate is described. The apparatus includes a substrate support configured to move linearly and/or rotationally by a magnetic drive. The substrate support is also configured to receive a radiant heat source to provide heating region in a portion of the chamber. An active cooling region comprising a cooling plate is disposed opposite the heating region. The substrate may move between the two regions to facilitate rapidly controlled heating and cooling of the substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 12, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Khurshed Sorabji, Alexander N. Lerner
  • Publication number: 20100244262
    Abstract: A deposition method of fine particles, includes the steps of irradiating a fine particle beam formed by size-classified fine particles to an irradiated subject under a vacuum state, and depositing the fine particles on a bottom part of a groove structure formed at the irradiated subject.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Yuji Awano, Noriyoshi Shimizu, Shintaro Sato
  • Patent number: 7785419
    Abstract: An epitaxial apparatus, including a supporting member to support a substrate; an external wall provided to surround the supporting member from the sides; an inner lid member provided in a removable manner on the external wall and covering at least a part of a gap between the supporting member and the external wall; an upper lid member that covers the substrate in a region surrounded by the external wall; a holding member that is held by the external wall, holds the upper lid member so that the upper lid member is sandwiched between the holding member and the external wall, and has a cooling unit to cool down a portion that holds the upper lid member; a heating unit; and a covering member provided so as to cover the surface of at least one of the upper lid member and the holding member.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 31, 2010
    Assignee: Sumco Corporation
    Inventors: Shizuka Tateishi, Yusuke Kurozumi, Yasuhiro Rikihisa
  • Patent number: 7778533
    Abstract: During fabrication, a rotating semiconductor substrate is radiated in accordance with a thermal recipe. Temperature measurements of the semiconductor substrate are obtained along with the position of the semiconductor substrate at the time of each temperature measurement. It is then determined for the position of the semiconductor substrate whether at least one particular temperature measurement of the temperature measurements should be filtered. If so, at least one filtered temperature measurement is obtained. The radiation of the semiconductor substrate is subsequently controlled based on the temperature measurements, the at least one filtered temperature measurement, and the thermal recipe.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang R. Aderhold, Balasubramanian Ramachandran, Leonid M. Tertitski, Patrick F. Stone
  • Patent number: 7758928
    Abstract: This invention relates to a method of functionalizing a powdered substrate. The method comprises the following steps, which method comprises passing a gas into a means for forming excited and/or unstable gas species, typically an atmospheric pressure plasma or the like and treating the gas such that, upon leaving said means, the gas comprises excited and/or unstable gas species which are substantially free of electric charge. The gas comprising the excited and/or unstable gas species which are substantially free of electric charge is then used to treat a powdered substrate and a functionalizing precursor in a downstream region external to the means for forming excited and/or unstable gas, wherein neither the powdered substrate nor the functionalizing precursor have been subjected to steps (i) and (ii) and wherein said functionalizing precursor is introduced simultaneously with or subsequent to introduction of the powdered substrate. Preferably the method takes place in a fluidized bed.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: July 20, 2010
    Assignee: Dow Corning Corporation
    Inventors: Timothy Rex Bunce, Bhukandas Parbhoo, Pierre Chevalier
  • Patent number: 7745762
    Abstract: An approach for optimizing the thermal budget during a pulsed heating process is disclosed. A heat sink or thermal transfer plate is configured and positioned near an object, such as a semiconductor wafer, undergoing thermal treatment. The heat sink is configured to enhance the thermal transfer rate from the object so that the object is rapidly brought down from the peak temperature after an energy pulse. High thermally-conductive material may be positioned between the plate and the object. The plate may include protrusions, ribs, holes, recesses, and other discontinuities to enhance heat transfer and avoid physical damage to the object during the thermal cycle. Additionally, the optical properties of the plate may be selected to allow for temperature measurements via energy measurements from the plate, or to provide for a different thermal response to the energy pulse. The plate may also allow for pre-heating or active cooling of the wafer.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 29, 2010
    Assignee: Mattson Technology, Inc.
    Inventor: Paul Janis Timans