Yielding Or Resilient Walls Patents (Class 123/41.5)
  • Patent number: 11644247
    Abstract: A fluid coil includes a tube bundle having a series of straight tubing runs and a series of return bends extending between and fluidically connecting ones of the straight tubing runs, an expansion header fluidically connected to at least some of the return bends and a polymeric material disposed in the expansion header. The polymeric material has an initial shape and is compressible to repeatedly expand and contract between a first volume in which water is present in the tube bundle and a second volume in which the water undergoes a phase change. Contraction of the polymeric material absorbs an increase in volume as the water undergoes the phase change to prevent stressing and rupture of the tube bundle and upon an opposite phase change, the polymeric material returns to its initial shape. The polymeric material can be a pressurizable bladder. A system and method to prevent the rupture of a tube bundle in a fluid coil are also disclosed.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: May 9, 2023
    Assignee: Coil Master Corporation
    Inventors: Long Phan, Christian Sorensen
  • Patent number: 9303549
    Abstract: Various embodiments for a thermal management system are provided. In one example, a thermal management system includes a coolant pump that provides coolant to a first cooling circuit and a second cooling circuit in parallel. The first cooling circuit includes an air-to-coolant radiator system and the second cooling circuit includes an engine coolant jacket. The thermal management system further comprises a fan and a cooling shutter for controlling a flow of air through the air-to-coolant radiator system.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 5, 2016
    Assignee: General Electric Company
    Inventors: Gokulnath Chellan, Gregory Alan Marsh, Hemant Patni
  • Patent number: 8397681
    Abstract: An expansion tank (10) for a vehicle cooling system (18) of an engine using a liquid coolant (16) includes a tank body (12) defining a first volume (V1) containing coolant (16), wherein the coolant defines a variable coolant elevation level (CEL) within the tank body. The tank body (12) also defines an upper volume (20) containing air. A bladder (14) is disposed in the tank body (12) and defines a second volume (V2) containing air. The bladder (14) includes a flexible membrane (36) actuated by an actuator (46). When the engine is stopped or is below a predetermined temperature, the flexible membrane (36) is moveable to a first position (FP) which lowers the coolant elevation level (CEL), and when the engine is started or reaches a predetermined temperature, the flexible membrane (36) is moveable to a second position (SP) which raises the coolant elevation level. A communicating line (38) is in fluid communication between the upper volume (20) and the second volume (V2) to fluidly communicate air therebetween.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 19, 2013
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Peter Popadiuc, Martin R. Zielke, Luis Carlos Cattani, Robert L. Rowells, George L. Banta, III, Ernst Duerr
  • Patent number: 8065980
    Abstract: An engine cooling system is provided with a cooling circuit including a coolant pump for supplying an engine with a coolant and for circulating the coolant in the cooling circuit, and at least one heat exchanger for cooling said coolant downstream of the engine, wherein an expansion tank is connected to the cooling circuit upstream of the coolant pump. The cooling system is pressurized by a pressure regulating arrangement arranged to pressurize coolant supplied to the cooling circuit from the expansion tank during at least one predetermined operating mode of the engine and the expansion tank is closed to the ambient atmosphere during all normal engine operation modes.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Volvo Lastvagnar AB
    Inventors: Erik Dahl, Katarina Jemt
  • Patent number: 8003271
    Abstract: A heat exchanger that can mechanically automatically control a level of cooling water according to heat generation of the fuel cell. The heat exchanger includes a housing having a cooling water inlet and an outlet connected to a fuel cell stack, a moving plate which moves reciprocally in the housing and discharges cooling water filled in the housing to the stack when it moves in a one direction and when it receives a steam pressure from the stack it moves in an opposite direction, and an elastic member that applies a force to the moving plate in the one direction. The heat exchanger can automatically maintain the level of cooling water despite a difference in heat generated between a full and a partial load operation of the fuel cell obviating complicated electronics such as a thermo-sensor, a valve, or a controller. Also, under a partial load, the exposure of flow channels to superheated steam is avoided, thereby extending the lifetime of the fuel cell.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 23, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-won Song, Seung-jae Lee
  • Publication number: 20110048345
    Abstract: An expansion tank (10) for a vehicle cooling system (18) of an engine using a liquid coolant (16) includes a tank body (12) defining a first volume (V1) containing coolant (16), wherein the coolant defines a variable coolant elevation level (CEL) within the tank body. The tank body (12) also defines an upper volume (20) containing air. A bladder (14) is disposed in the tank body (12) and defines a second volume (V2) containing air. The bladder (14) includes a flexible membrane (36) actuated by an actuator (46). When the engine is stopped or is below a predetermined temperature, the flexible membrane (36) is moveable to a first position (FP) which lowers the coolant elevation level (CEL), and when the engine is started or reaches a predetermined temperature, the flexible membrane (36) is moveable to a second position (SP) which raises the coolant elevation level. A communicating line (38) is in fluid communication between the upper volume (20) and the second volume (V2) to fluidly communicate air therebetween.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 3, 2011
    Applicant: International Engine Intellectual Property Company, LLC.
    Inventors: Peter Popadiuc, Martin R. Zielke, Luis Carlos Cattani, Robert L. Rowells, George L. Banta, III, Ernst Duerr
  • Patent number: 6230669
    Abstract: In a heat transfer system (10), an upper coolant chamber (31) and a lower coolant chamber (24) of a typical engine, such as an internal combustion engine, fuel cell, boiler, or other engine for converting fuel to thermal energy, are formed adjacent to the heat-rejecting components of the engine and are hermetically sealed to prevent exposure of heat-transfer liquid within the chambers to the engine's ambient atmosphere. The heat-transfer liquid is preferably a substantially anhydrous, boilable liquid having a saturation temperature higher than that of water, and the heat-transfer liquid is pumped at a predetermined flow rate, and distributed through the heat-transfer fluid chamber so that the liquid within the chambers substantially condenses the heat-transfer liquid vaporized by the heat-rejecting components of the engine.
    Type: Grant
    Filed: May 13, 1999
    Date of Patent: May 15, 2001
    Assignee: Evans Cooling Systems, Inc.
    Inventor: John W. Evans
  • Patent number: 6176205
    Abstract: The present invention provides an airtight reservoir in fluid communication with a cooling system of an internal combustion engine. This cooling system allows coolant to flow into the overflow bottle, thereby compressing air therein, and causing increases pressure. When the coolant again cools, the pressurized coolant flows back into the cooling system, thereby maintaining the system pressure above ambient.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: January 23, 2001
    Assignee: DaimlerChrysler Corporation
    Inventor: Gary M. Smith