Cylinder Offset From Crankshaft Axis Patents (Class 123/53.1)
  • Patent number: 11454164
    Abstract: An example embodiment of an all-stroke-variable internal combustion engine may include a piston slidably positioned within an engine cylinder for asymmetrical reciprocation and a primary crankshaft and a half-speed crankshaft to be operatively engaged for rotation of the half-speed crankshaft at half of a speed of the primary crankshaft, wherein the rotation of the half-speed crankshaft at half of the speed of the primary crankshaft to result in the asymmetrical reciprocation of the piston so as to produce a stroke length that is independently variable over four distinct strokes of a full cycle of the all-stroke-variable internal combustion engine.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: September 27, 2022
    Inventor: Robert P. Hogan
  • Patent number: 10947847
    Abstract: A crank and connecting rod mechanism, comprising at least one piston, which reciprocates within at least one cylinder, comprising: at least one connecting rod, comprising: a piston end pivotally connected to the at least one piston, a crank end; at least one gear set, comprising: a crankpin, the crank end pivotally connected to the crankpin; a crank gear; a crank gear shaft, the crank gear rotatably mounted on the crank gear shaft, the crankpin located between centerline of the crank gear shaft and radius of the pitch circle of the crank gear; a stationary gear, the crank gear meshing with the stationary gear, the crank end driving the crankpin, which drives the crank gear and the crank gear shaft about the stationary gear; the crank pin and the crank end rotating about the stationary gear and following the path of a roulette of a centered trochoid about the stationary gear.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: March 16, 2021
    Inventor: Anton Giger
  • Patent number: 10480450
    Abstract: A reciprocating internal combustion engine having a line of cylinders arranged in parallel which are joined via connecting rods and pistons by means of a crank drive that is jointly mounted in a crankshaft bearing, whereby the crankshaft bearing of the crank drive can have been offset relative to the cylinder axis.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: November 19, 2019
    Assignee: Deutz Aktiengesellschaft
    Inventors: Andreas Boehmer, Harald Reuter, Werner Lemme
  • Patent number: 9631550
    Abstract: An internal combustion engine enabling asymmetric port timing has an engine mechanism including a crankshaft having a crankpin to which each piston of an opposed pair of pistons is connected and by which the pistons are reciprocatable in a respective one of axially inline cylinders. The mechanism also includes a crosshead having opposite ends on each of which a respective piston is mounted, and a coupling between the crosshead and the crankpin by which the pistons are caused to oscillate circumferentially as the pistons are driven to reciprocate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: April 25, 2017
    Assignee: Scalzo Automotive Research PTY LTD
    Inventor: Joseph Scalzo
  • Patent number: 9574491
    Abstract: A single-shaft dual expansion internal combustion engine includes first and second power cylinders and an expander cylinder. The cylinder head fluidly couples the first and second power cylinders and the expander cylinder. First and second power pistons reciprocate in the first and second power cylinders and connect to a first crankpin of the crankshaft. A multi-link connecting rod assembly includes a rigid main arm supporting a first pivot pin, a second pivot pin and a third pivot pin. The first pivot pin connects to an expander piston reciprocating in the third cylinder. The third pivot pin couples to a first end of a swing arm, and a second end of the swing arm rotatably couples to a fourth pivot pin that couples to a distal end of a rotating arm that attaches to a rotating shaft coupled to rotation of the crankshaft.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: February 21, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Russell P. Durrett, Paul M. Najt, Peter Andruskiewicz, Steve Miller, Ian Whiteside, Steve Anstey
  • Patent number: 8925501
    Abstract: A crankshaft for an internal combustion engine comprises at least four main journals aligned on a crankshaft axis of rotation and at least three crankpins, each crankpin being disposed about a respective crankpin axis and positioned between the main journals. Each of the respective crankpin axes is oriented parallel to, and spaced radially from, the crankshaft axis of rotation. Each of the crankpins is joined to a pair of crank arms for force transmission between the crankpin and the pair of crank arms. Each pair of crank arms is joined to a respective main journal for transmitting torque between the pair of crank arms and the main journal. At least two of the crankpins are spaced radially a first semi-stroke distance from the crankshaft axis of rotation, and a third crankpin is spaced radially a second semi-stroke distance from the crankshaft axis of rotation.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Alan W. Hayman
  • Patent number: 8820275
    Abstract: Torque multiplier engines, and associated methods and systems, are disclosed herein. An internal combustion engine in accordance with a particular embodiment can include a connecting rod operably coupling a pair of opposing pistons. The engine can further include a first bearing coupled to the connecting rod and positioned to engage a first cam groove of an inner cam drum. A second bearing coupled to the connecting rod can be positioned to engage a second cam groove on an outer cam drum. The first and second bearings can translate linear motion of the opposing pistons to rotation of the cam drums.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 2, 2014
    Assignee: McAlister Technologies, LLC
    Inventors: Roy Edward McAlister, Roy Edward McAlister
  • Patent number: 8813695
    Abstract: Methods, systems, and devices are disclosed that generally involve split-cycle engines in which a combustion event is initiated in a crossover passage that interconnects a compression cylinder and an expansion cylinder of the split-cycle engine. In one embodiment, the compression piston leads the expansion piston by a phase shift angle so that, for example, a substantial amount of the combustion event can occur in the crossover passage at a constant volume.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 26, 2014
    Assignee: Scuderi Group, LLC
    Inventor: Riccardo Meldolesi
  • Patent number: 8800506
    Abstract: The engine includes a cylinder; a first piston and a second piston that reciprocate in the cylinder wherein the first piston has a first end piston head; a first piston rod attached to the first piston at a second end of the first piston opposite the first end; wherein the second piston has a first end forming a second piston head; a second piston rod attached to the second piston at a second end opposite the first end of the second piston; a first connecting rod connected to the first piston rod and coupled to a power output shaft; and a second connecting rod connected to the second piston rod and coupled to the power output shaft. The first and second piston head move away from each other on a first power stroke of the first piston and a second power stroke of the second piston.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: August 12, 2014
    Inventor: Thomas J. Dougherty
  • Patent number: 8485161
    Abstract: In an opposed piston, compression ignition engine two crankshafts are single-side mounted with respect to a row of cylinders, which is to say that the crankshafts are mounted so that their axes of rotation lie in a plane that is spaced apart from and parallel to a plane in which the axes of the cylinders lie. Each piston of the engine is coupled to one of the crankshafts by a single linkage guided by a crosshead. The piston has a piston rod affixed at one end to the piston. The other end of the piston rod is affixed to the crosshead pin. One end of a connecting rod swings on the pin and the other end is coupled to a throw on a crankshaft. Each crosshead is constrained to reciprocate between fixed guides, in alignment with the piston rod to which it is coupled.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 16, 2013
    Assignee: Achates Power, Inc.
    Inventor: James U. Lemke
  • Patent number: 8474435
    Abstract: In an opposed piston, compression ignition engine two crankshafts are single-side mounted with respect to a row of cylinders, which is to say that the crankshafts are mounted so that their axes of rotation lie in a plane that is spaced apart from and parallel to a plane in which the axes of the cylinders lie. Each piston of the engine is coupled to one of the crankshafts by a single linkage guided by a crosshead. The piston has a piston rod affixed at one end to the piston. The other end of the piston rod is affixed to the crosshead pin. One end of a connecting rod swings on the pin and the other end is coupled to a throw on a crankshaft. Each crosshead is constrained to reciprocate between fixed guides, in alignment with the piston rod to which it is coupled.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 2, 2013
    Assignee: Achates Power, Inc.
    Inventor: James U. Lemke
  • Patent number: 8464671
    Abstract: The horizontally opposed center fired engine improves on the traditional design of the horizontally opposed engines and center fired engines with a better engine geometry. The present invention utilizes four pairs of opposing pistons to compress a larger volume of air-fuel mixture within four different cylinders. The four different cylinders are radially positioned around a center axle in order to achieve a perfectly symmetric engine geometry. The center axle consists of two different shafts spinning in two different directions, which could drastically reduce engine vibrations in the present invention. Engine vibrations are caused by a change in engine speed and result in a loss of energy. Due to the design, the present invention will only experience energy loss in the form of entropy and friction. Thus, the present invention can convert a higher percentage of chemical energy into mechanical energy than any other internal combustion engine.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: June 18, 2013
    Inventor: Bo Zhou
  • Patent number: 8443778
    Abstract: A dual crankshaft internal combustion engine having two rotating offset crankshafts respectively attached to connecting rods. Each of the connecting rods, in turn, are pivotally attached to piston rods, which are located an equidistance between the crankshafts. The piston rods are attached to a piston reciprocally disposed in a cylinder. The crankshafts are aligned in parallel and are geared together, either directly or indirectly, thus causing the crankshafts to rotate in the same or opposite directions, depending upon the linkage gear configuration. The dual crankshaft internal combustion engine utilizes leverage from the wedge-effect of the offset crankshafts to provide increased torque, power duration and fuel efficiency.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 21, 2013
    Inventor: Arthur E. Dalke
  • Patent number: 8245672
    Abstract: A single-cylinder or in-line multi-cylinder engine is provided. The engine includes a crankshaft, a piston, a cylinder body, a cylinder head, and a gear change mechanism. The piston is connected to the crankshaft. A cylinder is formed in the cylinder body. The piston is housed in the cylinder. The cylinder head is attached to an end of the cylinder body. The gear change mechanism is disposed to the rear of the crankshaft. An axis of the cylinder extends upward obliquely to the rear from the crankshaft side. The axis of the cylinder passes in front of an axis of the crankshaft when viewed from a direction in which the crankshaft extends.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 21, 2012
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Masato Yokoi, Shidehiko Miyashiro
  • Patent number: 8245683
    Abstract: A vehicle engine includes the crankcase for supporting thereon the crankshaft, the input shaft and the output shaft, with the crankcase being composed of a left case half and a right case half which are joined to each other at a plane orthogonal to the axis of the crankshaft. A starter motor together with a speed sensor, for detecting the vehicle speed from the rotation of a gear in a transmission, are mounted to an upper surface of the crankcase. The starter motor is arranged at a portion, just above the input shaft, of the upper surface of the crankcase, while the speed sensor for detecting the rotation of a gear on the output shaft is arranged at a portion, just above the output shaft, of the upper surface of the crankcase. The crankcase is formed with a raised wall for covering one side surface of the speed sensor.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: August 21, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masafumi Taki, Hisashi Sakuyama
  • Patent number: 8215269
    Abstract: A two-stroke engine has a scavenging port for introduction of a working gas containing fuel, into a combustion chamber, and an exhaust port for discharge of gas in the combustion chamber therefrom, in which a piston connected to a crankshaft through a connecting rod reciprocates in the combustion chamber with rotary drive of the crankshaft, to control opening and closing of the scavenging port and the exhaust port, in which as the piston moves from a top dead center to a bottom dead center, the exhaust port and the scavenging port open in the order named, and in which as the piston moves from the bottom dead center to the top dead center, the scavenging port and the exhaust port close in the order named.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: July 10, 2012
    Assignee: Maruyama Mfg. Co., Inc.
    Inventor: Terutaka Yasuda
  • Patent number: 8047178
    Abstract: A force transfer mechanism is provided for an internal-combustion engine. In the most preferred configuration, the force transfer mechanism comprises two inter-connected first class levers that are driven by four pistons. Each of the pistons is driven through its non-powered strokes by the action of the piston in its powered stroke on the first class levers. The force transfer mechanism also drives the crankshaft through a single connecting rod. The force transfer mechanism provides for less frictional loss, and greater efficiency, than a typical internal combustion engine.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 1, 2011
    Inventor: Michael Dennis Brickley
  • Patent number: 7810459
    Abstract: An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: October 12, 2010
    Assignee: Scuderi Group, LLC
    Inventors: David P. Branyon, Jeremy D. Eubanks
  • Patent number: 7628126
    Abstract: An engine includes a crankshaft, rotating about a crankshaft axis of the engine. A power piston is received within a first cylinder and operatively connected to the crankshaft such that the power piston reciprocates through a power stroke and an exhaust stroke during a single rotation of the crankshaft. A compression piston is received within a second cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke during a single rotation of the crankshaft. A gas passage interconnects the first and second cylinders. The gas passage includes an inlet valve and an outlet valve defining a pressure chamber therebetween. The outlet valve permits substantially one-way flow of compressed gas from the pressure chamber to the first cylinder. The power piston descends to a firing position from its top dead center position.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: December 8, 2009
    Assignee: Scuderi Group, LLC
    Inventor: Carmelo J. Scuderi
  • Patent number: 7588001
    Abstract: An engine has a crankshaft, rotating about a crankshaft axis of the engine. An expansion piston is slidably received within an expansion cylinder and operatively connected to the crankshaft such that the expansion piston reciprocates through an expansion stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A ratio of cylinder volumes from BDC to TDC for either one of the expansion cylinder and compression cylinder is fixed at substantially 26 to 1 or greater.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: September 15, 2009
    Assignee: Scuderi Group, LLC
    Inventors: David P. Branyon, Jeremy D. Eubanks
  • Patent number: 7258086
    Abstract: A four-cycle, four-cylinder, premixed charge compression ignition internal combustion reciprocating free piston engine with a variable piston stroke and a compression ratio that varies as needed to provide charge ignition, to offer the potential of higher efficiency, lower emissions, and multi-fuel operation. The engine does not have a crankshaft, and therefore does not provide direct rotary output. Instead its free pistons oscillate, in a manner similar to a two cycle free piston engine. For many applications, such as piston pumps and compressors, the engine provides an output directly driven by the oscillating pistons. In other applications, such as but not limited to use as a gas generator for a power turbine, the engine provides an indirect means of producing rotary power. When the engine is used with high-speed power turbines, the power turbine may be directly coupled to a high-speed alternator for electrical power output.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 21, 2007
    Inventor: John William Fitzgerald
  • Patent number: 7219647
    Abstract: A multiple watt-linkage force transfer mechanism is provided for an internal-combustion engine. The force transfer mechanism comprises two “bell cranks” that are used to drive a single crankshaft through a watt linkage mechanism. Each bell crank, in turn, is driven by two pistons through corresponding watt linkage mechanisms. The watt linkages connected to the pistons enable the connection ends of the pistons to travel along substantially straight paths, significantly reducing side loads against the piston walls. Also, all four pistons preferably drive a single connecting rod. This changes the role of the crankshaft—and the corresponding strength and rigidity requirements for the crankshaft—by reducing the necessary number of rod journals and main journals on the crankshaft.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: May 22, 2007
    Inventor: Michael Dennis Brickley
  • Patent number: 7159558
    Abstract: An engine is constructed such that respective centers of gravity of a crank shaft, a balancer shaft and a cylinder are positioned close to one another and the mass of the engine is thus centralized. The engine includes a shaft center of a cylinder that is offset to one side with respect to a shaft center of a crank shaft, and a balancer shaft is disposed on a side of the engine where the cylinder shaft center is offset with respect to a first parallel line which intersects with the crank shaft center and extends substantially parallel to the cylinder shaft center.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 9, 2007
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Mamoru Suzuki, Masashi Omoto, Tatsuya Masuda
  • Patent number: 6904888
    Abstract: A reciprocating piston engine (or motor) includes plural reciprocating pistons operatively connected to a single intermediate oscillating shaft, and a crankshaft having a single crank pin operatively connected to the oscillating shaft, so that the crankshaft experiences one complete revolution for each back-and-forth reciprocation of the pistons. The connection between the pistons and the oscillating shaft can include a rack-pinion drive system or a link-lever drive system. The connection between the oscillating shaft and the crankshaft can include a sector gear in mesh with a toothed rack that operates a connecting rod attached to the crank pin; alternately a lever-connecting rod drive mechanism can be used between the oscillating shaft and the crankshaft.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: June 14, 2005
    Inventor: Nuhim Heifets
  • Patent number: 6851401
    Abstract: A device for converting a rectilinear movement into a rotary movement, comprising at least one piston-cylinder mechanism having a cylinder and a piston moveable arranged in the cylinder for rectilinear movement, a crankshaft for rotary movement, and a connecting rod connecting the piston and the crankshaft, the centre of rotation of the crankshaft being arranged displaced at a distance from the line along which the piston is moveable and that the crankshaft has a direction of rotation so that the part of the crankshaft which in relation to the movement line of the piston is located on the other side of the centre of rotation of the crank shaft, looked at the device in the longitudinal direction of the crankshaft has a movement component which is parallel with the movement line of the piston and directed away from the cylinder.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: February 8, 2005
    Inventor: Rune Nyström
  • Patent number: 6722127
    Abstract: A four stroke engine including a crankshaft. A power piston within a first cylinder connected to the crankshaft such that the power piston reciprocates through a power stroke and an exhaust stroke. A compression piston within a second cylinder is connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke. A gas passage interconnects the first and second cylinders and includes an inlet valve and an outlet valve defining a pressure chamber therebetween. An inlet manifold is in fluid communication with an inlet valve of the second cylinder. A bypass valve is in fluid communication with the second cylinder and the inlet manifold, wherein during a compression stroke the bypass valve allows a portion of the air to bypass the inlet valve and exhaust into the inlet manifold to provide a variable compression ratio.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: April 20, 2004
    Inventors: Carmelo J. Scuderi, James V. Masi
  • Patent number: 6647935
    Abstract: In a rockable-cam equipped reciprocating internal combustion engine, a rockable cam is rotatably fitted on the outer periphery of an intake-valve drive shaft that is rotatable in synchronism with rotation of a crankshaft. The rockable cam oscillates within predetermined limits during rotation of the intake-valve drive shaft so as to directly push an intake-valve lifter. As viewed from an axial direction of the crankshaft, an axis of the intake-valve drive shaft is offset from a centerline of the intake-valve stem in a first direction that is normal to both the cylinder centerline and the crankshaft axis and directed from the cylinder centerline to the intake valve side. The crankshaft axis is also offset from the cylinder centerline in the first direction.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: November 18, 2003
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shunichi Aoyama, Katsuya Moteki, Kenshi Ushijima, Ryosuke Hiyoshi
  • Patent number: 6609371
    Abstract: A four stroke cycle internal combustion engine including a crankshaft, rotating about a crankshaft axis of the engine. A power piston is slidably received within a first cylinder and operatively connected to the crankshaft such that the power piston reciprocates through a power stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a second cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. The power piston reciprocates along a first piston-cylinder axis which is offset from the crankshaft axis. The offset substantially aligns a point of maximum combustion pressure applied to the power piston with a point of maximum torque applied to the crankshaft during the power stroke.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: August 26, 2003
    Assignee: Scuderi Group LLC
    Inventor: Carmelo J. Scuderi
  • Patent number: 6543225
    Abstract: A four stroke cycle internal combustion engine including a crankshaft, rotating about a crankshaft axis of the engine. A power piston is slidably received within a first cylinder and operatively connected to the crankshaft such that the power piston reciprocates through a power stroke and an exhaust stroke of a four stroke cycle during a single rotation of the crankshaft. A compression piston is slidably received within a second cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke of the same four stroke cycle during the same rotation of the crankshaft. A gas passage interconnects the first and second cylinders. The gas passage includes an inlet valve and an outlet valve defining a pressure chamber therebetween.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: April 8, 2003
    Assignee: Scuderi Group LLC
    Inventor: Carmelo J. Scuderi