Including Exhaust Gas Condition Responsive Means Patents (Class 123/672)
  • Patent number: 8965665
    Abstract: An air-fuel ratio imbalance among cylinders determining apparatus according to the present invention obtains an output Vabyfs of an air-fuel ratio sensor disposed at a portion downstream of an exhaust gas aggregated portion of an exhaust gas passage, and obtains a second-order differential value d2AF (a change rate of a change rate of a detected air-fuel ratio abyfs) of a detected air-fuel ratio abyfs represented by the air-fuel ratio sensor output Vabyfs. The imbalance determining apparatus determines that an air-fuel ratio imbalance state among cylinders is occurring when a detected air-fuel ratio second-order differential corresponding value (for example, a second-order differential value d2AF per se) obtained in accordance with the second-order differential value d2AF is larger than a first threshold value.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: February 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Iwazaki, Hiroshi Miyamoto, Fumihiko Nakamura, Hiroshi Sawada, Toru Kidokoro
  • Patent number: 8944037
    Abstract: An exhaust gas purifying apparatus for an internal combustion engine includes a lean control unit and a rich control unit. The lean control unit executes lean spike operation, in which an air-fuel ratio is temporarily changed in a lean direction by a lean change width relative to a reference air-fuel ratio. The rich control unit changes the air-fuel ratio in a rich direction by a rich change width relative to the reference air-fuel ratio after the lean control unit executes the lean spike operation such that the air-fuel ratio stays in a predetermined slightly rich region. The rich change width is smaller than the lean change width.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 3, 2015
    Assignee: Denso Corporation
    Inventors: Yutaka Yonekawa, Tomoaki Nakano
  • Patent number: 8924130
    Abstract: A method for monitoring an exhaust gas sensor coupled in an engine exhaust is provided. In one embodiment, the method comprises indicating exhaust gas sensor degradation based on a time delay and line length of each sample of a set of exhaust gas sensor responses collected during a commanded change in air-fuel ratio. In this way, the exhaust gas sensor may be monitored utilizing robust parameters in a non-intrusive manner.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 30, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Adam Nathan Banker, James Michael Kerns, Imad Hassan Makki
  • Patent number: 8903629
    Abstract: A method for adapting a mixture for a pilot control process for setting a fuel/air mixture for operating an internal combustion engine. The method includes determining a current measuring point from an air and fuel quantity in which a predefined lambda is achieved, determining a current operating range in which the measuring point lies, determining a deviation of the measuring point from the operating point lying in the current operating range, determining a corrected operating point between the operating point and the measuring point, and determining corrected parameters of a parameterized relationship from the corrected operating point and the operating points and parameter values of the preceding adaptation step not lying in the current operating range, and permits adaptation of a mixture without separation of load/rotational speed ranges for adaptation of the offset and of the factor of the linear relationship of air quantity and fuel quantity.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Kesch, Holger Jessen, Kai Jakobs
  • Publication number: 20140345584
    Abstract: Methods and systems are provided for converting an asymmetric degradation response of an exhaust gas sensor to a more symmetric degradation response. In one example, a method includes adjusting fuel injection responsive to a modified exhaust oxygen feedback signal from an exhaust gas sensor, the modified exhaust oxygen feedback signal modified by transforming an asymmetric response of the exhaust gas sensor to a more symmetric response. Further, the method may include adjusting one or more parameters of an anticipatory controller of the exhaust gas sensor based on the modified symmetric response.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Michael James Uhrich, Michael Casedy
  • Publication number: 20140331980
    Abstract: The present invention relates to a method for measuring the content of at least one compound in an exhaust gas stream resulting from internal combustion. A first relative proportion of a first compound in the exhaust gas stream is measured by means of a first sensor, and a defined flow of a first gas is added to said exhaust gas stream downstream said first sensor. A second relative proportion of said first compound in the combined stream of said exhaust gas stream and said added gas is measured by means of a second sensor, and a mass flow of said first compound in said exhaust gas stream resulting from said combustion in said internal combustion is determined by means of said first and second relative proportions and said defined flow of said first gas. The invention also relates to a system and vehicle dynamometer.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 13, 2014
    Applicant: Rototest International AB
    Inventor: Christian Engström
  • Publication number: 20140261348
    Abstract: An exhaust gas sensor device for recording a concentration of at least one exhaust gas component in an exhaust system of an internal combustion engine includes at least one exhaust gas sensor with intrinsic signal amplification. The at least one exhaust gas sensor records the concentration of at least one exhaust gas component.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Thomas Wahl, Richard Fix, Denis Kunz, Alexander Martin
  • Publication number: 20140238368
    Abstract: Methods and systems are provided for adjusting an anticipatory controller of an exhaust gas sensor coupled in an engine exhaust. In one embodiment, the method comprises adjusting fuel injection responsive to exhaust oxygen feedback from the anticipatory controller of the exhaust gas sensor and adjusting one or more parameters of the anticipatory controller responsive to a type of oxygen sensor degradation. In this way, the anticipatory controller may be adapted based on the type and magnitude of the degradation behavior to increase performance of the air-fuel control system.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Dimitar Petrov Filev, Adam Nathan Banker, Michael James Uhrich, Michael Casedy
  • Patent number: 8806913
    Abstract: A system for calibrating a response to an exhaust-stream NOx level in a motor vehicle is provided. The system comprises a NOx sensor that includes an electrode, a current from the electrode responsive to the exhaust-stream NOx level while a bias voltage is applied to the electrode. The system further comprises a controller configured to interrupt the bias voltage and to adjust a motor-vehicle response to the current based at least partly on an attained voltage of the electrode while the bias voltage is interrupted. Other embodiments provide a method of calibrating a NOx sensor response in terms of gain and offset parameters.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: August 19, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Yi Ding
  • Patent number: 8798892
    Abstract: A method for the dynamic monitoring of a first lambda probe arranged in an exhaust-gas duct of an internal combustion engine upstream of an exhaust-gas purification system. A period of an output signal of the first lambda probe is determined in a controller of the internal combustion engine, and a lambda regulating signal is determined from an output signal of a second lambda probe connected downstream of the exhaust-gas purification system. A first threshold value for a lengthening of the period of the output signal of the first lambda probe is predefined, in that a characteristic signal (46) is derived from the lambda regulating signal, in that a second threshold value for an inadmissible deviation of the characteristic signal (46) is predefined, and in that an inadmissible asymmetric delay of the first lambda probe is inferred if the lengthening of the period exceeds the first threshold value and the characteristic signal (46) deviates from the second threshold value outside predetermined limits.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Kersten Wehmeier, Michael Pfeil, Siyun Chu, Albrecht Clement
  • Publication number: 20140165979
    Abstract: According to the invention, a particulate matter sensor is installed in an exhaust passage of an internal-combustion engine. A control unit for this internal-combustion engine detects a particulate amount in an exhaust gas through the exhaust passage in response to an output from the particulate matter sensor. Further, the control unit for the internal-combustion engine forms a particulate layer on electrode surfaces of the particulate matter sensor by applying a particulate capturing voltage between the electrodes during a first period. Further, the control unit maintains the formed particulate layer during a second period. It is noted here that the phrase “maintain the formed particulate layer” includes the meanings “maintaining the formed particulate layer as it is” and “inhibiting control to remove the particulate layer”.
    Type: Application
    Filed: August 4, 2011
    Publication date: June 19, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki Nishijima, Tatsuhiro Hashida
  • Publication number: 20140144416
    Abstract: The internal combustion engine includes at least one cylinder, an exhaust gas tract having a measuring device, and a tank ventilation system having a purge air line, which provides pneumatic communication between the tank ventilation system and the cylinder. The purge air line has a sensor for ascertaining a hydrocarbon content of a gas flow from the tank ventilation system to the at least one cylinder. Fuel metering into the cylinder is controlled dependent on the ascertained hydrocarbon content. An exhaust gas characteristic of an exhaust gas flow that flows in the exhaust gas tract is detected by the measuring device and compared with a specified target value. If the ascertained difference between the detected exhaust gas characteristic and the specified target value exceeds a specified threshold, a test is carried out to determine whether the sensor has a malfunction.
    Type: Application
    Filed: October 13, 2011
    Publication date: May 29, 2014
    Inventors: Stephan Heinrich, Brian Woods, David W. Balsdon, Philippe Grass
  • Patent number: 8731802
    Abstract: A method for compensating for thermal transient conditions of an engine that can cause valve growth or contraction is disclosed. In one example, the method provides cylinder air amount compensation during non-blow-through and blow-through conditions. The approach may improve cylinder air amount estimates, thereby improving engine emissions.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: May 20, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: David G. Hagner, Mrdjan Jankovic, Marcus Fried
  • Patent number: 8723614
    Abstract: A method adjusts a pulse width of a signal. The method provides a fixed voltage input trigger pulse (34), of a certain pulse width, to a pulse width generator circuit (10) and provides an output pulse (52) from the pulse width generator circuit such that a pulse width of the output pulse is longer than the certain pulse width, without changing a voltage or frequency of the input trigger pulse. The method is used to drive an injector of a diesel reductant delivery system to inject fluid into an exhaust flow path.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 13, 2014
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Douglas Edward Cosby, Perry Robert Czimmek
  • Patent number: 8712667
    Abstract: A air-fuel ratio control apparatus, applied to an internal combustion engine having a catalyst disposed in an exhaust passage of the engine, includes a downstream air-fuel ratio sensor (oxygen concentration cell type oxygen concentration sensor) disposed at a position downstream of the catalyst, and air-fuel ratio control means for controlling, based on an output value of the downstream air-fuel ratio sensor, an air-fuel ratio of a mixture supplied to the engine so as to change an air-fuel ratio of a catalyst inflow gas. Further, the air-fuel ratio control means controls the air-fuel ratio of the mixture supplied to the engine.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: April 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Nakano, Takahiko Fujiwara
  • Patent number: 8706424
    Abstract: A system for estimating gas concentrations in a mixed atmosphere includes (a) a plurality of sensors for providing a set of measurements, at least one of the sensors sensitive to an internal concentration of hydrogen; and (b) a processor for receiving the set of measurements and for executing a sequential estimation filter that includes a plurality of states having a corresponding set of values. The processor responsively adjusts at least a portion of the set of values in response to the set of measurements. The plurality of sensors can include a resistive sensor and a capacitive gas sensor, both of which are sensitive to hydrogen concentration. The plurality of states can include states representative of hydrogen pressure in the mixed atmosphere, hydrogen concentration in a bulk material of at least one of the sensors, and hydrogen concentration in an interface layer of at least one of the sensors.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 22, 2014
    Assignee: H2Scan Corporation
    Inventor: Scott Stephens
  • Patent number: 8700288
    Abstract: A method for assessing a method of functioning of a fuel injector in response to the application of a control voltage to at least one actuator of the fuel injector, including the steps of applying the control voltage to the at least one actuator of the fuel injector for a no-torque-generating injection into an engine, determining a fuel content in an exhaust tract disposed at an engine, comparing the determined fuel content with a specified comparison value, and assessing the method of functioning of the fuel injector based on the comparison result. Furthermore, also described is an evaluation device for assessing a method of functioning of a fuel injector in response to the application of a control voltage.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: April 15, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Huber, Thomas Breitbach, Rainer Peck, Christian Kriechbaum
  • Patent number: 8682566
    Abstract: Various methods are described for controlling engine operation for an engine having a turbocharger and direction injection. One example method includes performing at least a first and second injection during a cylinder cycle, the first injection generating a lean combustion and the second injection injected after combustion such that it exits the cylinder unburned into the exhaust upstream of a turbine of the turbocharger; and adjusting at least the first injection based on engine speed, where the at least first and second injection are performed responsive to turbocharger speed.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: March 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Tobias John Pallett, Eric Matthew Storhok, Gopichandra Surnilla
  • Patent number: 8670919
    Abstract: A method for diagnosing a condition of a system for supplying fuel to a fuel injected controlled-ignition internal combustion engine, of a type including an electric control device that makes use of an oxygen probe for closed-loop regulation of a value of an air/fuel ratio admitted to the combustion chambers of the engine, and according to which a signal delivered by the oxygen probe is analyzed, the method a) deducing from the signal a change in injection time correction factor ALPHACL_MEAN making it possible to regulate richness of exhaust gases leaving the engine; b) comparing ALPHACL_MEAN against predetermined minimum and maximum threshold values THRESHOLD_MIN and THRESHOLD_MAX; c) diagnosing a defective condition when ALPHACL_MEAN is outside of a window included between THRESHOLD_MIN and THRESHOLD_MAX.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 11, 2014
    Assignee: Renault S.A.S.
    Inventors: Nicolas Protin, Michel Leporcq
  • Patent number: 8670920
    Abstract: A method of determining an air-fuel ratio of an internal combustion engine in real-time includes: calibrating sensitivity of a universal exhaust gas oxygen sensor to a plurality of gases; inputting to a universal exhaust gas oxygen sensor controller a molecular composition of Hydrogen, Carbon, Oxygen, and Nitrogen which comprise a combustion fuel in use in the internal combustion engine; calculating with the universal exhaust gas oxygen sensor controller an air-to-fuel ratio by performing a chemical balance equation calculation based on the universal exhaust gas oxygen sensor sensitivity calibration and the input combustion fuel molecular composition; and transmitting the calculated air-to-fuel ratio to an engine control unit in real-time.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 11, 2014
    Assignee: BG Soflex, LLC
    Inventors: Bruce A. Bowling, Albert C. Grippo
  • Publication number: 20140060506
    Abstract: A physically-based, generalizable method to estimate the in-cylinder oxygen fraction from production viable measurements or estimates of exhaust oxygen fraction, fresh air flow, charge flow, fuel flow, turbine flow and EGR flow. The oxygen fraction estimates can be sensitive to errors in the EGR and turbine flow, and in other embodiments, a high-gain observer is implemented to improve the estimate of EGR flow. The observer is applicable to engines utilizing high pressure cooled exhaust gas recirculation, variable geometry turbocharging and flexible intake valve actuation as well as other engines.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 6, 2014
    Applicant: Purdue Research Foundation
    Inventor: Gregory M. Shaver
  • Patent number: 8649956
    Abstract: The fact that “with respect to a process in which the output value of a downstream air-fuel ratio sensor (sensor output value) is inverted from the minimum output value to the maximum output value during execution of an active control, the local maximum and minimum values of the secondary differential value of the sensor output value is widely affected by the size of the response delay of the downstream air-fuel ratio sensor and the size of the degree of the degradation of the three-way catalyst” is utilized. By preliminarily acquiring and memorizing, as maps, these relations obtained through an experiment, and applying the “local maximum and minimum values of the secondary differential value of the sensor output value” calculated from the transition of the sensor output value acquired during execution of the active control to the maps, the response delay (time constant) of the downstream air-fuel ratio sensor is acquired.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yusuke Kawamura, Takuya Matsumoto, Takashi Nakamura, Makoto Sato, Toru Kidokoro, Hiroshi Sawada, Yasushi Iwazaki
  • Patent number: 8627648
    Abstract: An engine control system for an engine equipped with a catalyst that purifies exhaust gas includes: a catalyst temperature acquisition section that acquires the temperature of the catalyst; and a control section that controls an engine such that a rate of increase in engine output speed is changed in accordance with the temperature of the catalyst.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: January 14, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hideaki Goda
  • Patent number: 8594907
    Abstract: A method to control an internal combustion engine includes operating the engine with a fuel blend of a first fuel and a second fuel, monitoring a value of a first combustion parameter during engine operation, monitoring a first value for a second combustion parameter during engine operation, determining a second value for the second combustion parameter in accordance with a predetermined correspondence among the first combustion parameter, the second combustion parameter, and a predetermined fuel blend of the first fuel and the second fuel, determining the fuel blend based upon a difference between the first and second values for the second combustion parameter, and controlling the engine based upon the fuel blend.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: November 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara
  • Patent number: 8589055
    Abstract: The invention provides an inter-cylinder air/fuel ratio imbalance determination apparatus and method. The determination apparatus includes a “limiting current type air/fuel ratio sensor”, and acquires a pre-correction index quantity that is greater the greater the degree of non-uniformity of the cylinder-by-cylinder air/fuel ratios, on the basis of a time differential value of the output value of the air/fuel ratio sensor. The determination apparatus obtains as the correction-purpose output value an average value of the output value obtained during a fuel-cut operation. The correction-purpose output value is greater the higher the responsiveness of the air/fuel ratio sensor. The determination apparatus acquires an air/fuel ratio imbalance index value by correcting the pre-correction index quantity so that the pre-correction index quantity is smaller the greater the correction-purpose output value.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: November 19, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masashi Hakariya, Masahide Okada
  • Patent number: 8583348
    Abstract: A fuel injection amount control system acquires an air-fuel ratio imbalance index value that increases as the degree of ununiformity in the air-fuel ratio among cylinders increases, based on an output value of an upstream air-fuel ratio sensor, and acquires an imbalance index learned value by performing a first-order lag filtering operation for removing noise, on the air-fuel ratio imbalance index value. Also, the fuel injection amount is increased based on the imbalance index learned value. In the filtering operation, the time constant of the filter is set to a smaller value when a magnitude of a difference between the current value and the last value of the air-fuel ratio imbalance index value is equal to or larger than a threshold value.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: November 12, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Iwazaki, Hiroshi Miyamoto
  • Patent number: 8571785
    Abstract: A fuel control system of an engine system comprises a pre-catalyst exhaust gas oxygen (EGO) sensor, a setpoint generator module, a sensor offset module, and a control module. The pre-catalyst EGO sensor generates a pre-catalyst EGO signal based on an air-fuel ratio of an exhaust gas. The setpoint generator module generates a desired pre-catalyst equivalence ratio (EQR) signal based on a desired EQR of the exhaust gas. The sensor offset module determines an offset value of the pre-catalyst EGO sensor. The control module generates an expected pre-catalyst EGO signal based on the desired pre-catalyst EQR signal and the offset value.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 29, 2013
    Inventors: Sai S. V. Rajagopalan, Kenneth P. Dudek, Sharon Liu, Stephen Yurkovich, Shawn W. Midlam-Mohler, Yann G. Guezennec, Yiran Hu
  • Patent number: 8560208
    Abstract: An inter-cylinder air-fuel ratio imbalance determination apparatus (determination apparatus) according to the present invention obtains, as an “EGR supplying state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt of a detected air-fuel ratio abyfs represented by an output value of an air-fuel ratio sensor when an EGR gas is being supplied, and obtains, as an “EGR stop state imbalance determination parameter”, a value corresponding to a differential value d(abyfs)dt when an EGR gas supply is being stopped. The determination apparatus obtains an “EGR-causing imbalance determination parameter Pegr” by subtracting the EGR stop state imbalance determination parameter Poff from the EGR supplying state imbalance determination parameter Pon, and determines that an inter-cylinder air-fuel ratio imbalance state has occurred due to the supply of the EGR gas when the parameter Pegr is larger than a threshold Pegrth.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Miyamoto, Yasushi Iwazaki, Hiroshi Sawada
  • Patent number: 8554450
    Abstract: A control apparatus for an internal combustion engine includes: a first detector that detects air/fuel ratio in an exhaust passageway on an upstream of an exhaust gas-controlling catalyst in multi-cylinder internal combustion engine; a second detector that detects the air/fuel ratio in the exhaust passageway on a downstream of the catalyst; a feedback controller that executes a feedback control so that a first detected value based on the first detector output follows to be equal as a first predetermined target value and so that a second detected value based on the second detector output follows to be equal as a second predetermined target value that corresponds to the first predetermined target value during an initial state; an abnormality detection device configured to detect a variation abnormality in the air/fuel ratio among the cylinders; and a change device that changes the second predetermined target value when the variation abnormality is detected.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norifumi Takada, Tomoaki Honda
  • Patent number: 8554447
    Abstract: Provided is an internal combustion engine system controller, including a sub-feedback learning section, a state determining section, and a learning update-speed setting section. The state determining section determines, to which of at least three states including: (a) a stable state in which a fluctuating state of a sub-feedback learning value is stable; (b) an unstable state in which the fluctuating state greatly fluctuates; and (c) an intermediate state between the stable state and the instable state (may be referred to as sub-stable state), the fluctuating state corresponds. The learning update-speed setting section sets an update speed of the sub-feedback learning value in accordance with the result of determination by the state determining section. Further, the learning update-speed setting section suppresses the occurrence of hunting of the sub-feedback learning value.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Koji Ide
  • Patent number: 8534265
    Abstract: The present invention relates to a fuel supply control apparatus and a fuel supply control method for controlling an electric fuel pump, in an internal combustion engine provided with the electric fuel pump for pumping fuel to a fuel injection valve and a pressure regulator for regulating fuel pressure at set pressure. When a learning condition of a drive voltage for the electric fuel pump is established, the drive voltage is temporarily reduced and a change amount ?AF of an air-fuel ratio at the time is detected. Then, if the change amount ?AF is within a first threshold ?AF1, the drive voltage is reduced, whereas, if the change amount ?AF is greater than a second threshold ?AF2 which is equal to or greater than the first threshold ?AF1, the drive voltage is increased.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 17, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventor: Masayuki Saruwatari
  • Patent number: 8494753
    Abstract: An internal combustion engine can be operated by a fuel mixture consisting of a base fuel and an alternative fuel. Concentration values (ETH_PERC) of the alternative fuel are determined in at least two different ways for operating the internal combustion engine. A reliable concentration value of the alternative fuel is determined depending on the various determined concentration values (ETH_PERC).
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: July 23, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Frank Hacker, Gerhard Haft
  • Publication number: 20130180510
    Abstract: A method of monitoring an exhaust gas sensor coupled in an engine exhaust is provided. The method comprises indicating exhaust gas sensor degradation based on a difference between a first set of estimated parameters of a rich operation model and a second set of estimated parameters of a lean operation model, the estimated parameters based on commanded lambda and determined lambda values collected during selected operating conditions. In this way, sensor degradation may be indicated with data collected in a non-intrusive manner.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Imad Hassan Makki, James Michael Kerns, Michael Casedy, Hassene Jammoussi
  • Publication number: 20130180509
    Abstract: A method for monitoring an exhaust gas sensor coupled in an engine exhaust is provided. In one embodiment, the method comprises indicating exhaust gas sensor degradation based on characteristics of a distribution of extreme values of a plurality of sets of lambda differentials collected during selected operating conditions. In this way, the exhaust gas sensor may be monitored in a non-intrusive manner.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Imad Hassan Makki, Pankaj Kumar, James Michael Kerns, Hassene Jammoussi
  • Patent number: 8463532
    Abstract: Provided is a control device for an engine which is capable of purifying NOx with high efficiency at a restart after an idle stop without deteriorating purification efficiency of HC and CO. At the restart after the idle stop, an air-fuel ratio is controlled to be rich, and an atmosphere inside of a catalyst is estimated on the basis of a required time ?T from a time point at which an output value (VO2—2) of first oxygen concentration detection means upstream of the catalyst exceeds a predetermined value A1 to a time point at which an output value (VO2—2) of second oxygen concentration detection means downstream of the catalyst exceeds a predetermined value A2, whereby an air-fuel ratio at next and subsequent restarts is corrected so that the atmosphere inside of the catalyst is optimized at the next and subsequent restarts.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: June 11, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinji Nakagawa, Kazuhiko Kanetoshi, Kouzo Katougi, Takanobu Ichihara, Minoru Ohsuga, Hiroyuki Takamura
  • Patent number: 8443601
    Abstract: A method for controlling the wastegate in a turbocharged internal combustion engine including the steps of: determining, during a design phase, a control law which provides an objective opening of a controlling actuator of the wastegate according to the supercharging pressure; determining an objective supercharging pressure; measuring an actual supercharging pressure; determining a first open loop contribution of an objective position of a controlling actuator of the wastegate by means of the control law and according to the objective supercharging pressure; determining a second closed loop contribution of the objective position of the controlling actuator of the wastegate; and calculating the objective position of the controlling actuator of the wastegate by adding the two contributions.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 21, 2013
    Assignee: Magneti Marelli S.p.A.
    Inventors: Marco Panciroli, Francesco Alunni, Stefano Sgatti
  • Publication number: 20130118461
    Abstract: A method for controlling combustion in an engine is provided. The method comprises under a first condition, adjusting an EGR amount of a total cylinder charge in response to engine out NOx levels being below a first threshold. In this way, NOx levels may be used as feedback to control combustion stability.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Peter Mitchell, Chris Riffle, Michiel J. Van Nieuwstadt, Frank M. Korpics, Jeff Reich, Dean Pennala
  • Patent number: 8442744
    Abstract: To partially supplant the use of fossil fuels in diesel engines, oxygen-containing fuels, such as biodiesels, are proposed as blending agents in diesel fuel. Engine calibration coefficients to control EGR rate, timings and quantities of fuel injection pulses, turbocharger boost, etc, can be determined to compensate for the lower energy content of such oxygenate blends compared to diesel fuels. According to an embodiment of the disclosure, the fuel quantity of each of multiple injection pulses is increased proportionally to compensate for the impact of oxygenates. An adjustment in the fuel injection quantity is performed in response to a new tank of fuel and the adjustment is applied for that tank of fuel. A fuel compensation factor (FCF) can be determined based on the actual amount of fuel injected compared to the expected amount of diesel fuel at the present operating condition.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: May 14, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Kurtz, Douglas Glen Kuhel, Jianwen James Wi, Christian Winge Viglid
  • Patent number: 8402943
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine spark is controlled such that soot held by a particulate filter may be oxidized even during low engine loads.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 26, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven
  • Patent number: 8406980
    Abstract: An air-fuel ratio control device includes an air-fuel ratio sensor provided upstream from a three-way catalyst, and an oxygen sensor provided downstream from the three-way catalyst. The air-fuel ratio control device controls the fuel supply amount based on the output from the air-fuel ratio sensor, and compensates for errors in the air-fuel ratio sensor by correcting the fuel supply amount based on the output from the oxygen sensor. The fuel supply correction amount is calculated based on an integral term that integrates the deviation between the output from the downstream air-fuel ratio sensor and the target air-fuel ratio. When a fuel supply adjustment control is executed, the value of the integral term in the sub-feedback control is not updated for a predetermined period after the fuel supply adjustment control ends. The actual air-fuel ratio is thus brought to the target air-fuel ratio in an appropriate manner.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norihisa Nakagawa, Takahiko Fujiwara, Taiga Hagimoto, Junichi Kako, Naoto Kato, Shuntaro Okazaki
  • Patent number: 8406983
    Abstract: Various methods are described for controlling engine operation for an engine having a turbocharger and direction injection. One example method includes performing at least a first and second injection in response to a driver action. The first and second injection may be performed during a cylinder cycle, the first injection generating a lean combustion and the second injection injected after combustion such that it exits the cylinder unburned into the exhaust upstream of a turbine of the turbocharger.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: March 26, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Tobias John Pallett, Gopichandra Surnilla
  • Patent number: 8387592
    Abstract: An internal combustion engine has at least one cylinder, with which an injection valve for metering fuel is associated and an exhaust system with an exhaust gas catalytic converter. A first exhaust gas probe is disposed upstream of or in the exhaust gas catalytic converter, and a second exhaust gas probe is downstream. A lambda controller determines a regulating variable as a function of the first probe and a control variable acting on a fuel mass to be metered using the injection valve. A trim regulator determines a regulating variable thereof as a function of the second probe and the first trim control variable thereof as a function of a P regulator component and the second trim control variable thereof as a function of an I regulator component. A function of a predetermined evaluation of the first trim control variable decides whether the second trim control variable is adapted.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: March 5, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Paul Rodatz, Gerd Rösel
  • Publication number: 20130042846
    Abstract: An engine system for determining an alcohol concentration in fuel is disclosed. In one example, engine throttle position, fuel pulse width, and air-fuel ratio form a basis for determining alcohol concentration of a fuel combusted in an engine. The system and its related method may improve engine operation in conjunction with detecting an alcohol concentration of a fuel.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Gopichandra Surnilla, Stephen B. Smith, Rohit Arvind Zope, Brandon M. Dawson
  • Patent number: 8360040
    Abstract: A system for controlling fuel to an engine to minimize emissions in an exhaust of the engine. There may be a controller connected to an actuator, for example a fuel control actuator, of the engine and to emissions sensors, such as an NOx and/or PM sensor, proximate to an exhaust output of the engine. The controller, for example a speed controller, may have an input connected to an output of a pedal or desired speed setting mechanism. A speed sensor at a power output of the engine may be connected to an input of the controller.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: January 29, 2013
    Assignee: Honeywell International Inc.
    Inventors: Gregory E. Stewart, Michael L. Rhodes
  • Patent number: 8352158
    Abstract: A method for compensating for thermal transient conditions of an engine that can cause valve growth or contraction is disclosed. In one example, the method provides cylinder air amount compensation during non-blow-through and blow-through conditions. The approach may improve cylinder air amount estimates, thereby improving engine emissions.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 8, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Dave G. Hagner, Mrdjan J. Jankovic, Marcus William Fried
  • Publication number: 20120311998
    Abstract: A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: Min Sun, Kevin L. Perry, Chang H. Kim
  • Patent number: 8291893
    Abstract: The invention has an object to provide a device for determining activation of an exhaust gas sensor which accurately determines a time at which an exhaust gas sensor output is usable, and can suppress an adverse effect caused by use of the exhaust gas sensor output including a large effect of adsorbed species. A time is measured from a time point when a temperature of an air-fuel ratio sensor 48 reaches a predetermined temperature T1, while the air-fuel ratio sensor 48 is warmed up. When the time becomes a predetermined target holding time Te or more, the air-fuel ratio sensor 48 is determined as being in an activation state. The target holding time Te is preferably set at such a length that all adsorbed species adsorbed onto the air-fuel ratio sensor 48 are desorbed, and areas around a sensor element section 50 are completely replaced with an exhaust gas.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Keiichiro Aoki
  • Patent number: 8286610
    Abstract: In an internal combustion engine control device having an air-fuel ratio control device that controls the fuel injection amount so that the air-fuel ratio of exhaust gas of an internal combustion engine approaches a target stoichiometric air-fuel ratio, the control device further includes a device that calculates the lower calorific value of fuel, and a device that sets the target stoichiometric air-fuel ratio from the calculated lower calorific value based on a known relationship between the lower calorific value and the stoichiometric air-fuel ratio. It becomes possible to perform the air-fuel ratio control according to the fuel property by utilizing the relationship between the calorific value and the stoichiometric air-fuel ratio.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hidenori Moriya
  • Publication number: 20120255532
    Abstract: In view of a difference in detectability of an air-fuel ratio sensor with respect to each cylinder, a first exhaust system model and a second exhaust system model are defined. The first exhaust system model outputs an air-fuel ratio at the confluent portion based on an air-fuel ratio in a cylinder. The second exhaust system model outputs a detection value of the exhaust gas sensor based on the air-fuel ratio at the confluent portion. A confluent-portion-air-fuel ratio estimating portion designed based on the second exhaust system model estimates the air-fuel ratio at the confluent portion. A combust-air-fuel ratio estimating portion designed based on the first exhaust system model estimates a combust-air-fuel ratio in each cylinder.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 11, 2012
    Applicant: DENSO CORPORATION
    Inventor: Yasuhiro KAWAKATSU
  • Publication number: 20120216533
    Abstract: An apparatus and method for improving vehicle performance by application of pneumatic boost to vehicle engines, including diesel engines having at least one turbocharger supplying air to the engine, in a manner which increases engine torque output while minimizing the potential for exceed various operating limits to the maximum practicable extent. The vehicle's pneumatic booster system controller implements strategies for shaping the rate of the air injection during a boost event, tailoring the air injection to obtain maximum engine torque output while respecting the operating limits, by controlling the timing, duration, quantity and/or injection pattern during a boost event to achieve a refined distribution of compressed air injection over the course of the boost event to provide desired engine torque output and fuel efficiency while minimizing the potential for exceeding a wide variety of operation limits, regulatory, engineering and passenger comfort limits.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicant: Bendix Commercial Vehicle Systems LLC
    Inventors: William J. SCHAFFELD, Nicholas Asmis, Mark W. McCollough, Richard Beyer