Inflatable Reflector Patents (Class 126/697)
  • Patent number: 9559232
    Abstract: A folding deployment system for solar panels provides a portable solar collecting power station that can be easily packaged and deployed for use in diverse environments. A solar array frame extends and contracts in accordion fashion. Solar panels mounted on the solar array frame are pivotally moveable from an upright position in a stowed position inside a container to a substantially horizontal position outside the container in a deployed position.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: January 31, 2017
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Steven F. Naud, Robert C. Woodall, Jr., David H. Wilbanks, Amy N. Satterlee
  • Patent number: 8695341
    Abstract: The present disclosure provides systems and methods for collecting and converting solar energy into electrical energy. The present invention includes solar collectors that concentrate solar energy and mechanisms for transporting and transferring the concentrated solar energy directly into closed cycle thermodynamic engines without heating the outside surface of the engines. Additionally, the present invention includes multiple thermodynamic engines and mechanisms to direct solar energy into each of the thermodynamic engines to increase overall system efficiency by maximizing the use of collected solar energy. Advantageously, the delivery system of the present invention avoids heating an outside surface of the engine as is done in conventional designs, provides a closed design to protect the collectors, and maximizes efficiency through multiple engines.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: April 15, 2014
    Assignee: Pulsar Energy, Inc.
    Inventor: Cristian Penciu
  • Patent number: 8469023
    Abstract: Disclosed is a radiation collector comprising a pressure cell which is subdivided into a first pressure chamber and a second pressure chamber by means of the concentrator. The small pressure difference between the pressure chambers keeps the concentrator operational in a beam-concentrating form and reduces the wear on the reflective layer of the concentrator. The radiation collector further comprises adequately designed means for establishing the desired pressure in the respective pressure chamber, said means making it possible to compensate changes of the pressure chamber volume resulting from wind load, for example.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 25, 2013
    Assignee: Airlight Energy IP SA
    Inventor: Andrea Pedretti
  • Patent number: 8307820
    Abstract: A solar reflector assembly is provided for generating energy from solar radiation. The solar reflector assembly is configured to be deployed on a supporting body of liquid and to reflect solar radiation to a solar collector. A solar reflector assembly comprises an inflatable elongated tube having an upper portion formed at least partially of flexible material and a lower ballast portion formed at least partially of flexible material. A reflective sheet is coupled to a wall of the tube to reflect solar radiation. The elongated tube has an axis of rotation oriented generally parallel to a surface of a supporting body of liquid.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: November 13, 2012
    Assignee: Combined Power LLC
    Inventors: John D. H. King, Thomas E. Oliver, Nicholas A. Kramer, Keeney D. Willis
  • Patent number: 8235035
    Abstract: An inflatable solar energy collector. The device uses two elongated and pressure-stabilized air chambers with a trough-shaped reflecting surface in between. The curvature of the reflecting surface is adjusted by adjusting the differential pressure between the two air chambers. The device can be configured to provide a focal point outside the air chambers or inside the air chambers. For the version using the external focal point an external energy receiver is appropriately positioned. For the version using the internal focal point, the receiver is mounted inside one of the air chambers.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 7, 2012
    Assignee: Florida State University Research Foundation
    Inventors: Ian L. Winger, Sean A. Barton
  • Patent number: 8127760
    Abstract: Increased utilization of solar power is highly desirable as solar power is a readily available renewable resource with power potential far exceeding total global needs; and as solar power does not contribute to environmentally harmful pollutants associated with fossil fuel power, such as unburned hydrocarbons, NOx and carbon dioxide. The present invention is motivated by the fact that heliostats are the single biggest cost element for utility-scale central receiver solar thermal powerplants. This invention provides a low-cost heliostatic mirror with protective inflation stabilizable surface element means for providing adverse weather performance & survival, where the inflation stabilizable surface element means include inflation stabilizable near-spherical surface element means and may include inflation stabilizable near-cylindrical surface element means.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: March 6, 2012
    Assignee: RIC Enterprises
    Inventor: Mithra M. K. V. Sankrithi
  • Patent number: 8074638
    Abstract: Embodiments of the present invention relate to concentrating solar radiation using an assembly of at least one clear and one reflective film that inflates into a shape reflecting parallel rays of light to a concentrated focus in the interior or immediate proximity of the assembly. Embodiments of the present invention can be assembled in a substantially flat stack with bonds or welds between the films, compatible with conventional high-throughput film manufacturing processes. Embodiments in accordance with the present invention may employ external circumferential rings or a “harness” assembly to support and point the balloon against wind forces and the like without severe stress localization. Embodiments in accordance with the present invention may also employ film attachments to facilitate feedthroughs, reduce stress concentrations, and modify the inflated shape. Embodiments in accordance with the present invention may also employ film modifiers, including laminated films, adhesives, printing, etc.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: December 13, 2011
    Assignee: CoolEarth Solar
    Inventor: Eric Bryant Cummings
  • Patent number: 7997264
    Abstract: Increased utilization of solar power is highly desirable as solar power is a readily available renewable resource with power potential far exceeding total global needs; and as solar power does not contribute to pollutants associated with fossil fuel power, such as unburned hydrocarbons, NOx and carbon dioxide. The present invention provides low-cost inflatable heliostatic solar power collectors, which can be stand-alone units suitable for flexible utilization in small, medium, or utility scale applications. The inflatable heliostatic power collectors use a reflective surface or membrane “sandwiched” between two inflated chambers, and attached solar power receivers which may be of photovoltaic and/or solar thermal types. Modest concentration ratios enable benefits in both reduced cost and increased conversion efficiency, relative to simple prior-art flat plate solar collectors.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 16, 2011
    Assignee: RIC Enterprises
    Inventor: Mithra M. K. V. Sankrithi
  • Publication number: 20110180057
    Abstract: Solar energy may be harvested utilizing arrays of solar collectors, supported and articulated to follow movement of the sun. Particular systems include arrays of solar collectors mounted on an elevation-azimuth tracking structure. From the ground up, embodiments of this system may include a Ground Interface, a Base, an Upper Truss, and a Collector. The system is designed to transmit loads with minimal deflection from the surface of the collector to the ground, while tracking the position of the sun across the sky. The use of structural, actuator, and collector elements with a minimum amount of low-cost materials, and which are able to be mass produced, allows large scale deployment of the system at reduced cost.
    Type: Application
    Filed: January 27, 2011
    Publication date: July 28, 2011
    Applicant: CoolEarth Solar
    Inventors: James S. Page, Robert L. Lamkin, Eric Cummings, Jacques J. Belanger, Kyle Theile
  • Publication number: 20110088686
    Abstract: A lightweight solar concentrator of the reflecting parabolic or trough type is realized via a thin reflecting film, an inflatable structural housing and tensioned fibers. The reflector element itself is a thin, flexible, specularly-reflecting sheet or film. The film is maintained in the parabolic trough shape by means of a plurality of tensioned fibers arranged to be parallel to the longitudinal axis of the parabola. Fiber ends are terminated in two spaced anchorplates, each containing a plurality of holes, which lie on a desired parabolic contour. In a preferred embodiment, these fibers are arrayed in pairs with one fiber contacting the front side of the reflecting film and the other contacting the back side of the reflecting film. The reflective surface is thereby slidably captured between arrays of fibers, which control the shape, and position of the reflective film. Gas pressure in the inflatable housing generates fiber tension to achieve a truer parabolic shape.
    Type: Application
    Filed: November 19, 2005
    Publication date: April 21, 2011
    Inventors: Eric B. Hochberg, Michael K. Costen
  • Publication number: 20100252027
    Abstract: Increased utilization of solar power is highly desirable as solar power is a readily available renewable resource with power potential far exceeding total global needs; and as solar power does not contribute to environmentally harmful pollutants associated with fossil fuel power, such as unburned hydrocarbons, NOx and carbon dioxide. The present invention is motivated by the fact that heliostats are the single biggest cost element for utility-scale central receiver solar thermal powerplants. This invention provides a low-cost heliostatic mirror with protective inflation stabilizable surface element means for providing adverse weather performance & survival, where the inflation stabilizable surface element means include inflation stabilizable near-spherical surface element means and may include inflation stabilizable near-cylindrical surface element means.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 7, 2010
    Inventor: Mithra M.K.V. Sankrithi
  • Publication number: 20100108057
    Abstract: Embodiments of the present invention relate to concentrating solar radiation using an assembly of at least one clear and one reflective film that inflates into a shape reflecting parallel rays of light to a concentrated focus in the interior or immediate proximity of the assembly. Embodiments of the present invention can be assembled in a substantially flat stack with bonds or welds between the films, compatible with conventional high-throughput film manufacturing processes. Embodiments in accordance with the present invention may employ external circumferential rings or a “harness” assembly to support and point the balloon against wind forces and the like without severe stress localization. Embodiments in accordance with the present invention may also employ film attachments to facilitate feedthroughs, reduce stress concentrations, and modify the inflated shape. Embodiments in accordance with the present invention may also employ film modifiers, including laminated films, adhesives, printing, etc.
    Type: Application
    Filed: August 26, 2009
    Publication date: May 6, 2010
    Applicant: CoolEarth Solar
    Inventors: Eric Bryant Cummings, Robert L. Lamkin
  • Patent number: 7658071
    Abstract: Solar generators have Fresnel lenses and spaced heat absorbers or photovoltaic cells for receiving focused solar rays. Heat is removed from their backs by boiling liquid in conical receivers. Pins or fins extend rearward into the receivers from the heat absorbers or photovoltaic cells. Liquid supply to the receivers is controlled by valves and floats or sensors. Tubes remove steam or vapor from the receivers for driving generators or for cooling photovoltaic cells. Hinged tubes which form the foldable support conduct the steam to generators and condense the vapor. Liquid is returned to a holding tank, is pumped to a distribution tank and is conducted by some of the structural tubes back to the valved receivers.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: February 9, 2010
    Inventor: Patrick P. McDermott
  • Publication number: 20090272375
    Abstract: Disclosed is a radiation collector comprising a pressure cell which is subdivided into a first pressure chamber and a second pressure chamber by means of the concentrator. The small pressure difference between the pressure chambers keeps the concentrator operational in a beam-concentrating form and reduces the wear on the reflective layer of the concentrator. The radiation collector further comprises adequately designed means for establishing the desired pressure in the respective pressure chamber, said means making it possible to compensate changes of the pressure chamber volume resulting from wind load, for example.
    Type: Application
    Filed: September 28, 2007
    Publication date: November 5, 2009
    Inventor: Andrea Pedretti
  • Patent number: 6111190
    Abstract: A novel, high-efficiency, extremely light-weight, inflatable refractive solar concentrator for space power is described. It consists of a flexible Fresnel lens, flexible sides, and a back surface, together enclosing a volume of space which can be filled with low pressure gas to deploy the concentrator on orbit. The back surface supports the energy receiver/converter located in the focal region of the Fresnel lens. The back surface can also serve as the waste heat radiator. Prior to deployment, the deflated flexible lens and sides are folded against the back surface to form a flat, low-volume package for efficient launch into space. The inflatable concentrator can be configured to provide either a line focus or a point focus of sunlight. The new inflatable concentrator approach will provide significant advantages over the prior art in two different space power areas: photovoltaic concentrator arrays and high-temperature solar thermal conversion systems.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: August 29, 2000
    Assignee: Entech, Inc.
    Inventor: Mark Joseph O'Neill
  • Patent number: 5404868
    Abstract: The invention provides a family of apparatus using a balloon supported reflective surface for reflecting light from the Sun. A basic embodiment of such an apparatus is a light weight, low cost heliostat using a balloon supported reflective surface. Another embodiment is a solar power concentration apparatus using multiple heliostats with balloon supported reflective surfaces. Yet another embodiment is a solar electric power apparatus, also using multiple heliostats with balloon supported reflective surfaces. Variant embodiments of these apparatus can be sited on land or water surfaces or in the air or in space.
    Type: Grant
    Filed: March 31, 1992
    Date of Patent: April 11, 1995
    Assignee: Vedanta Society of Western Washington
    Inventor: Mithra M. K. V. Sankrithi
  • Patent number: 5365920
    Abstract: The solar concentrator arrangement has a concentrating mirror (2) consisting of a metallised plastic shell to reflect parallel incident light. The concentrating mirror ( 2 ) forms part of a foil tube (1) and co-operates with a secondary concentrator (5) which deflects the parallel incident light beams (3,4) from the concentrating mirror concentrically on a heat exchanger. The heat exchanger (7) is placed on the focal line of the secondary concentrator (5) are rigidly secured together and can be automatically moved in relation to the heat exchanger (7) according to the position of the sun.
    Type: Grant
    Filed: August 22, 1991
    Date of Patent: November 22, 1994
    Assignee: Bomin Solar GmbH & Co. KG
    Inventor: Rudolf Lechner