Of Selected Surface Area (e.g., Zone, Top Only, Etc.) Patents (Class 148/210)
  • Patent number: 11377729
    Abstract: Disclosed is a post-processing method for improving anti-wear and friction-reducing properties of a CrN coating. According to the method, the CrN coating is subjected to a thermal cycling treatment in a temperature range of ?20° C. to 60° C. under a humidity environment of 60%-80% R.H. The post-processing method can substantially improve the anti-wear and friction-reducing properties of the CrN coating, so that friction pair parts deposited with the coating achieve a stable operation for a long time.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 5, 2022
    Assignee: NINGBO INSTITUTE OF MATERIALS TECHNOLOGY & ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Yongxin Wang, Zechao Li, Jingwen Zhang, Zhixiang Zeng, Jinlong Li, Xia Lu, Liping Wang
  • Patent number: 10337095
    Abstract: In one or more embodiments, a shielding device is provided to shield a bore of a shaft against surface treatment, the shielding device including a sleeve to be at least partially received within the bore, the sleeve defining on its side wall a through-aperture and being of a first cross-sectional dimension when the through-aperture is at a rest position, and a pin to be at least partially received within the sleeve, the sleeve being of a second cross-sectional dimension greater than the first cross-sectional dimension when the through-aperture is at an expanded position with the pin being at least partially received within the sleeve.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: July 2, 2019
    Assignee: Ford Motor Company
    Inventors: Kerry Zhang, Michael Puleri, Jinfeng Chen
  • Patent number: 10260630
    Abstract: Steel plungers for hydraulic fracturing pumps having enhanced surface hardness properties, preferably made of alloyed steel and a method for manufacturing said plungers, comprising an ion nitriding process.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: April 16, 2019
    Assignees: YPF TECNOLOGIA SA, IONAR SA
    Inventors: Guillermo Rodolfo Carfi, Pablo Gabriel Cirimello, Amado Cabo
  • Patent number: 9751162
    Abstract: A regenerating system for a forge die (1) according to the invention comprises a detecting device (10) of a shape (2) of a die (1) to be regenerated, a welding system (30) configured such as to deposit welding material in the die (1), and a processor (20) configured such as to define welding pathways (11) in order to activate the welding system (30), wherein the welding pathways (11) are defined according to the shape (2) detected and a predefined shape of the die (1).
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: September 5, 2017
    Assignee: NEWELD S.A.
    Inventors: Luca Giamberini, Andrea Tonoli
  • Patent number: 8894778
    Abstract: The present invention relates to a mechanical part, which is obtained by: processing a steel into a shape of a part, the steel having an alloy composition containing, by weight percent, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.030% or less, S: 0.030% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr: 0.20 to 1.00%, Al: 0.20% or less, N: 0.05% or less, and the remainder of Fe and inevitable impurities, and the alloy composition satisfying the following condition: [Si %]+[Ni %]+[Cu %]?[Cr %]>0.50, in which [Si %], [Ni %], [Cu %] and [Cr %] represent the concentration of Si, the concentration of Ni, the concentration of Cu and the concentration of Cr in the alloy composition, respectively; subjecting the steel to a carburizing treatment in a vacuum, followed by gradually cooling the steel; and subsequently subjecting the steel to a high-frequency hardening to thereby harden a surface of the steel.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 25, 2014
    Assignees: Daido Tokushuko Kabushiki Kaisha, Aisin Aw Co., Ltd.
    Inventors: Toshiyuki Morita, Kouji Ohbayashi, Masaki Kuwabara, Taro Matsukawa, Yutaka Eto, Kohki Mizuno
  • Patent number: 8747519
    Abstract: A method selectively recovers a useful substance from waste including a chlorine-containing synthetic resin and metal copper in a mixed state. Metal copper is recovered from coated copper-wire waste. The method includes the steps of heat-treating the waste in form of coated copper wires, each having a coating material made of a chlorine-containing synthetic resin, in oil or under a non-oxygen condition. Here, the coating material is carbonized and a chlorine content of the coating material is reduced. Then the coating material and the copper wire are separated from each other the copper wire is recovered. The chlorine-containing synthetic resin can be treated without generating dioxin.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 10, 2014
    Assignees: Institute of National Colleges of Technology, Japan, Polytech Kagawa, Co., Ltd.
    Inventors: Hiroshi Okano, Gou Sajiki, Mitsunori Deguchi, Sadao Tanimoto
  • Patent number: 8636947
    Abstract: The present invention provides an improved metal separator for a fuel cell and a method for preparing same. More particularly, the invention provides a metal separator for a fuel cell, whereby the separator has a surface structure that imparts reduced contact resistance, improved corrosion resistance, and stable electrical conductivity. The invention further provides a surface treatment method for making the metal separator of the invention. The inventive method comprises sintering Fe—Cr—B—V-based powder on the surface of a metal foam to form an alloy layer; and forming a nitride layer of a (Cr—V—B)N-based material while supplying nitrogen gas on the surface of the alloy layer.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 28, 2014
    Assignee: Hyundai Motor Company
    Inventors: Young Min Nam, Yoo Chang Yang, Suk Min Baeck, Seung Gyun Ahn
  • Publication number: 20130319154
    Abstract: A steel gear 1 includes a generally cylindrical outer peripheral ring portion 2, on an outer peripheral surface 20a of which a toothed shape 10 is formed, and a flange portion 3 provided to extend radially inward from an inner peripheral surface 20b of the outer peripheral ring portion 2. The outer peripheral ring portion 2 includes a first projecting portion 21 that projects toward one side in the axial direction with respect to a coupling position at which the first projecting portion 21 is coupled to the flange portion 3, and a second projecting portion 22 that projects toward the other side in the axial direction with respect to a coupling position at which the second projecting portion 22 is coupled to the flange portion 3. The axial length of the first projecting portion 21 is longer than the axial length of the second projecting portion 22.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 5, 2013
    Applicant: AISIN AW CO., LTD.
    Inventors: Koji Obayashi, Keita Taguchi, Yasutaka Miyake, Takaaki Ogiso
  • Patent number: 8529708
    Abstract: A method for making armor plate that is resistant to armor piercing small arms ammunition is provided. The armor plate includes a steel plate having a nominal chemical composition in weight percent of 0.4C-1.8Ni-0.8Cr-0.25Mo. The steel plate is carburized on one side and produces a carburized side and a non-carburized side. The carburized side of the steel plate has a carbon concentration of at least 0.9% by weight and the non-carburized side has a carbon concentration of between 0.38 and 0.45% by weight. After the steel plate has been carburized, it is subsequently thermally processed such that the carburized side has a hardness of at least 58 Rockwell Hardness C (HRC), and the non-carburized side has a hardness of between >=50 and <=55 HRC.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: September 10, 2013
    Inventor: Jay Carl Locke
  • Patent number: 8398929
    Abstract: The disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound. In particular, the disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound by reacting a green tubular structure made of a refractory metal with at least one reactive gas.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: March 19, 2013
    Assignee: Nitride Solutions, Inc.
    Inventor: Jason Schmitt
  • Patent number: 8394207
    Abstract: The invention relates to a method for producing a cylinder jacket, comprising the following steps: producing a cylindrical starting product from a steel material having a carbon content of not more than 0.8% by weight and a ferritic or ferritic/pearlitic structure; enriching, by carburization, the surface layer of the inner peripheral surface of the cylindrical starting product with carbon in the form of carbides that are deposited on the grain boundaries; slowly cooling the cylindrical starting product in such a manner that a pearlitic structure having a carbide network is formed in the surface layer; finishing the cylindrical starting product to give a cylinder jacket. The invention also relates to a cylinder jacket produced by said method.
    Type: Grant
    Filed: August 23, 2008
    Date of Patent: March 12, 2013
    Assignee: MAHLE International GmbH
    Inventor: Stefan Spangenberg
  • Patent number: 8337639
    Abstract: A mixed powder layer is applied by coating to a cavity of a forging die made of an Fe-base alloy, at least to the region of the cavity to be reinforced or repaired, the mixed powder layer comprising the first element powder capable of being converted into a carbide to enhance the hardness of the forging die and the second element powder having a melting point lower than that of the first element powder. Die reinforcing is carried out by forging a work by using a forging die covered with the mixed powder layer and heat-treating the die by utilizing the working heat generated in the forging to thereby make the layer reflow and diffuse the carbide in the die.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 25, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toshimasa Kumaki, Mitsuo Kuwabara, Kazuo Matsushita
  • Publication number: 20120247249
    Abstract: A method of manufacturing a gear, and the resulting gear, the method resulting such that the surface layer portions of the tooth portions and a tooth root portion are made to be a carburized layer, the remaining portion of the tooth portions and a portion of a disk portion lying below the carburized layer be a quench-hardened layer, and a region of the disk portion lying deeper than the quench-hardened layer be an unquenched layer. The gear is manufactured using raw material steel having the following chemical composition: C: 0.1% to 0.40% (% by mass), Si: 0.35% to 3.0%, Mn: 0.1% to 3.0%, Cr: less than 0.2%, Mo: 0.1% or less, P: 0.03% or less, S: 0.15% or less, Al: 0.05% or less, N: 0.03% or less, and Fe and unavoidable impurities.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 4, 2012
    Applicants: NIPPON STEEL CORPORATION, AISIN AW CO., LTD.
    Inventors: Koji Obayashi, Keita Taguchi, Susumu Kato, Shuji Kozawa, Manabu Kubota, Yuji Adachi, Hirokazu Sato
  • Patent number: 8246761
    Abstract: A workpiece is designed for rolling stresses and includes a body having a core zone and a carbonitrided surface zone which surrounds the core zone. The workpiece body is formed of a fully hardening steel. The core zone has a bainite microstructure as its main constituent. The surface zone of the workpiece has a mixed microstructure comprising martensite and bainite and the martensite in the surface zone constitutes a proportion of at least twenty percent by volume.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 21, 2012
    Assignee: Aktiebolaget SKF
    Inventors: Johann Volkmuth, Michael Jung
  • Patent number: 8172957
    Abstract: To provide a method of manufacturing a carburized part contributable to cost reduction, a portion intended for a non-carburizing portion is treated to a surface roughness corresponding to Rz 50 like a first work surface and a portion intended for a carburizing portion is treated to a surface roughness corresponding to Rz 1.5 like a second work surface.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 8, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideyuki Sakaue, Koji Inagaki, Masahiko Mitsubayashi, Takuya Shimizu
  • Publication number: 20120060977
    Abstract: To provide a method of manufacturing a carburized part contributable to cost reduction, a portion intended for a non-carburizing portion is treated to a surface roughness corresponding to Rz 50 like a first work surface and a portion intended for a carburizing portion is treated to a surface roughness corresponding to Rz 1.5 like a second work surface.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Sakaue, Koji Inagaki, Masahiko Mitsubayashi, Takuya Shimizu
  • Publication number: 20110197745
    Abstract: A method for making armor plate that is resistant to armor piercing small arms ammunition is provided. The armor plate includes a steel plate having a nominal chemical composition in weight percent of 0.4C-1.8Ni-0.8Cr-0.25Mo. The steel plate is carburized on one side and produces a carburized side and a non-carburized side. The carburized side of the steel plate has a carbon concentration of at least 0.9% by weight and the non-carburized side has a carbon concentration of between 0.38 and 0.45% by weight. After the steel plate has been carburized, it is subsequently thermally processed such that the carburized side has a hardness of at least 58 Rockwell Hardness C (HRC), and the non-carburized side has a hardness of between >=50 and <=55 HRC.
    Type: Application
    Filed: December 27, 2010
    Publication date: August 18, 2011
    Inventor: Jay Carl Locke
  • Patent number: 7846272
    Abstract: A treated austenitic steel and method for treating same includes an austenitic steel and a non-metal chemical element incorporated into a surface of the steel. The surface has a bi-layered structure of a compound layer at a top and an underlying diffusion layer, which protects said surface against hydrogen embrittlement.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: December 7, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Thorsten Michler
  • Publication number: 20100263765
    Abstract: The invention relates to a method for producing a cylinder jacket, comprising the following steps: producing a cylindrical starting product from a steel material having a carbon content of not more than 0.8% by weight and a ferritic or ferritic/pearlitic structure; enriching, by carburization, the surface layer of the inner peripheral surface of the cylindrical starting product with carbon in the form of carbides that are deposited on the grain boundaries; slowly cooling the cylindrical starting product in such a manner that a pearlitic structure having a carbide network is formed in the surface layer; finishing the cylindrical starting product to give a cylinder jacket. The invention also relates to a cylinder jacket produced by said method.
    Type: Application
    Filed: August 23, 2008
    Publication date: October 21, 2010
    Inventor: Stefan Spangenberg
  • Patent number: 7811390
    Abstract: A method for producing a carburized part by carburizing a steel member under a vacuum in a decompression furnace while feeding carburizing gas comprises a step for forming an oxide film on at least a part of a surface of the steel member, a step for generating carbon by reducing the oxide film with the carburizing gas, and a step for carburizing the surface of the steel member under a vacuum by diffusing the carbon.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 12, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kazuo Ishii, Tatsumi Tanaka
  • Publication number: 20100154936
    Abstract: A coating (4) that is metallurgically bonded to a metal substrate (2) to protect the substrate includes carbide precipitates (10) of irregular and angular shape and a matrix (12) in which the precipitates are embedded. In a flame spraying procedure that utilizes a wire having a metal case and a core containing metal carbides, metals are deposited on the substrate as a basic coating. When that coating is subjected to a carbon rich environment, the carbon unites with the more reactive metals in the basic coating to form carbide precipitates of those metals, leaving the remaining metals to form the matrix. The carbide precipitates possess irregular and angular configurations and remain firmly embedded in the matrix, even though some of the matrix may disappear through the effects of erosion, corrosion, abrasion or wear.
    Type: Application
    Filed: March 27, 2008
    Publication date: June 24, 2010
    Applicant: ARCMELT COMPANY, LC
    Inventor: David J. Urevich
  • Patent number: 7718116
    Abstract: A method for obtaining a selectively non-carburized powdered metal part. The steps include compacting, sintering, removing, forging and cooling. A metal powder is compacted to form a preform having at least one first surface in which a forged part is required to have a case depth and at least one second surface in which a carburized portion is required to be removed prior to forging. The preform is then sintered and carburized. After carburizing the at least one second surface of the preform is removed and subsequently forged and cooled. The forged part has at least one second surface having improved post forging properties and at least one first surface having improved performance features. A part made from the present method is also provided.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: May 18, 2010
    Assignee: GKN Sinter Metals, Inc.
    Inventor: Timothy E. Geiman
  • Patent number: 7650710
    Abstract: A body of iron, steel or other such ferrous material is protected from thermochemical erosion by a layer of an iron nitride having a relatively low nitrogen content. The atomic percentage of nitrogen in the iron nitride layer is no greater than 20%, and in specific embodiments is in the range of 10-15%. The nitride layer may have a layer of a refractory material deposited thereatop. Some refractory materials include metals such as chromium. The invention has specific utility for protecting gun barrels, turbines, internal combustion engines, drilling equipment, machine tools, aerospace systems and chemical reactors which are exposed to extreme conditions of temperature and pressure. Specifically disclosed is a gun barrel which incorporates the invention.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: January 26, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Paul J. Conroy, James M. Garner, Charles Leveritt
  • Publication number: 20090205752
    Abstract: A mixed powder layer is applied by coating to a cavity of a forging die made of an Fe-base alloy, at least to the region of the cavity to be reinforced or repaired, the mixed powder layer comprising the first element powder capable of being converted into a carbide to enhance the hardness of the forging die and the second element powder having a melting point lower than that of the first element powder. Die reinforcing is carried out by forging a work by using a forging die covered with the mixed powder layer and heat-treating the die by utilizing the working heat generated in the forging to thereby make the layer reflow and diffuse the carbide in the die.
    Type: Application
    Filed: October 26, 2006
    Publication date: August 20, 2009
    Inventors: Toshimasa Kumaki, Mitsuo Kuwabara, Kazuo Matsushita
  • Patent number: 7544631
    Abstract: The present invention provides for titanium oxide-based photocatalysts having a general formula of TiO2-X-?CXN? and self-cleaning materials that are prepared by substituting O of pure TiO2 with C and N. A preparation method comprising a process for forming thin films of TiO2-X-?CXN? by using gases such as Ar, N2, CO2, CO and O are used for reactive sputtering, and a process of heat treating at around 500° C., thereby crystallizing, is provided. The titanium oxide-based photocatalysts having a general formula of TiO2-X-?CXN? and self-cleaning materials according to the present invention have a smaller optical bandgap compared to pure titanium oxides, and therefore, the photocatalysts can be activated under the visible light range. In addition, they comprise only pure anatase crystallization phase, and since the crystallized particles are small in size, the efficiency and self-cleaning effect of the photocatalysts are very high.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: June 9, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Won-Kook Choi, Yeon-Sik Jung, Dong-Heon Kang, Kyung-Ju Lee
  • Patent number: 7524791
    Abstract: A method for producing a substrate having a carbon-doped titanium oxide layer, which is excellent in durability (high hardness, scratch resistance, wear resistance, chemical resistance, heat resistance) and functions as a visible light responding photocatalyst, is provided. The surface of a substrate, which has at least a surface layer comprising titanium, a titanium alloy, a titanium alloy oxide, or titanium oxide, is heat-treated in a combustion gas atmosphere of a gas consisting essentially of a hydrocarbon, or in a gas atmosphere consisting essentially of a hydrocarbon, such that the surface temperature of the substrate is 900 to 1,500° C.; or a combustion flame of a gas consisting essentially of a hydrocarbon, is directly struck against the surface of the substrate for heat treatment such that the surface temperature of the substrate is 900 to 1,500° C., thereby forming a carbon-doped titanium oxide layer, whereby the substrate having the carbon-doped titanium oxide layer is obtained.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 28, 2009
    Assignee: Central Research Institute of Electric Power Industry
    Inventor: Masahiro Furuya
  • Patent number: 7521081
    Abstract: Methods are presented for reducing reactivity of ferroalloys used in the manufacture of stick welding electrodes with ferroalloy coatings, in which surface metal silicon of ferroalloy powder is stabilized by dissolving or prereacting the surface silicon or silicon dioxide to provide stabilized ferroalloy powder with decreased surface reactivity to caustic silicate solutions that can be mixed with silicate solution to form a slurry for coating precut welding rods.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: April 21, 2009
    Assignee: Lincoln Global, Inc.
    Inventors: Kevin Butler, David M. Fedor
  • Publication number: 20090078339
    Abstract: A workpiece is designed for rolling stresses and includes a body having a core zone and a carbonitrided surface zone which surrounds the core zone. The workpiece body is formed of a fully hardening steel. The core zone has a bainite microstructure as its main constituent. The surface zone of the workpiece has a mixed microstructure comprising martensite and bainite and the martensite in the surface zone constitutes a proportion of at least twenty percent by volume.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 26, 2009
    Applicant: Aktiebolaget SKF
    Inventors: Johann Volkmuth, Michael Jung
  • Patent number: 7264682
    Abstract: A borided titanium article can include a titanium mass having titanium monoboride whiskers infiltrating inward from a surface of the titanium mass to form an integral surface hardened region. The titanium mass can be almost any titanium based metal or alloy such as high purity titanium, commercial grade titanium, ?-titanium alloy, ?+? titanium alloy, ?-titanium alloy, titanium composite, and combinations thereof. Borided titanium articles can be formed by methods which include providing a titanium mass, contacting a surface of the titanium mass with a boron source medium, and heating the titanium mass and boron source medium to a temperature from about 700° C. to about 1600° C. The boron source medium can include a boron source and an activator selected to provide growth of titanium monoboride whiskers.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: September 4, 2007
    Assignee: University of Utah Research Foundation
    Inventors: K. S. Ravi Chandran, Shampa Aich
  • Patent number: 6982120
    Abstract: The invention relates to components made of steel, more particularly outer joint parts and inner joint parts of constant velocity joints, and to a process of heat treating such components made of steel. The heat treatment operation includes the process stages of nitriding, induction surface layer hardening and tempering, which processes follow one another. As a result of the nitriding operation, the joint parts are provided with a surface layer (15) including nitrides and a diffusion layer (18) positioned thereunderneath. The subsequent induction hardening process causes the diffusion layer (18) to be hardened, so that it comprises good supporting characteristics for supporting the surface layer (15) positioned above same.
    Type: Grant
    Filed: July 20, 2002
    Date of Patent: January 3, 2006
    Assignee: GKN Driveline Duetschland GmbH
    Inventor: Manfred Schuster
  • Patent number: 6964712
    Abstract: Hardening protection compositions based on substances which form boron glass for partial carburization of metallic components, which contain magnesium-silicon compounds as an additive. These hardening protection compositions can be used very advantageously in processes for the partial carburization of metallic components and in particular are outstandingly suitable for vacuum carburization.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: November 15, 2005
    Assignee: Durferrit GmbH
    Inventors: Stefan Wigger, Ulrich Baudis
  • Patent number: 6605160
    Abstract: This invention pertains to the repair of parts comprising metals, and surfaces and coatings of these parts using reactive metals coating processes. Processes such as chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma spray, and reactive coating (boronizing, carburizing, nitridizing, carbonitridizing, etc.) are known for producing durable coatings or surfaces on metal parts, and the present invention provides a means to spot-repair these coatings or surfaces without excessive buildup of repair material on undamaged areas.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: August 12, 2003
    Inventor: Robert Frank Hoskin
  • Patent number: 6552280
    Abstract: A precision weight (1) has greater permanence of mass due to a hardened surface layer that provides greater wear and scratch resistance as well as greater corrosion resistance. The hardened surface layer is a diffusion layer of increased carbon and/or nitrogen concentration resulting from a heat treatment under gas atmosphere.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: April 22, 2003
    Assignee: Mettler-Toledo GmbH
    Inventor: Jean-Maurice Tellenbach
  • Publication number: 20030047241
    Abstract: In the partial thermochemical vacuum treatment of metallic workpieces (1), in particular in the carburization and case hardening of workpieces (1) of case-hardening steel in a carbon-containing atmosphere, surface regions (3, 4, 5, 6) to be treated and surface regions not to be treated abut one another. In order to restrict the surface treatment to the cavities (2) of the workpieces (1) the external surface regions not to be treated are covered by reusable dismountable mould bodies (11) of a temperature-resistant material with at least one mould cavity (15). In this connection the mould body (11) consisting of a lower part (12) and an upper part (13) with openings (12b, 13b) encloses several workpieces (1) in such a way that no treatment takes place on the external surface regions of the workpieces (1). An electrically conducting mould body (11) is suitable in particular for a thermochemical treatment under the action of a plasma. Graphite or CFC is used as material for the mould bodies (11).
    Type: Application
    Filed: February 22, 2002
    Publication date: March 13, 2003
    Inventors: Udo Bardelmeier, Peter Minarski
  • Patent number: 6458220
    Abstract: Steel alloys susceptible to case and core hardening comprise 0.05 to 0.24 weight percent carbon; 15 to 28 weight percent cobalt and 1.5 to 9.5 weight percent in nickel, small percentages of one or more additives: chromium, molybdenum, and vanadium; and the balance iron. Blades for ice skating or other sports equipment made from such alloys provide predictable and reproducible characteristics and permit fabrication with hardened edges on a ductile, strong substrate or base.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: October 1, 2002
    Assignee: Northwestern University
    Inventors: Charles J. Kuehmann, Priscilla A. Bernikowicz, Gregory B. Olson, John P. Wise, Carelyn E. Campbell
  • Publication number: 20020020471
    Abstract: Hardening protection compositions based on substances which form boron glass for partial carburization of metallic components, which contain magnesium-silicon compounds as an additive. These hardening protection compositions can be used very advantageously in processes for the partial carburization of metallic components and in particular are outstandingly suitable for vacuum carburization.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 21, 2002
    Inventors: Stefan Wigger, Ulrich Baudis
  • Patent number: 6302971
    Abstract: A pulley useable with a driving belt in a continuously variable transmission, including a moveable pulley half having an integral cylinder portion integrally formed therewith by plastic working. The moveable pulley half includes an axially extending hollow shaft portion, a radially outwardly extending flange portion having a contact surface frictionally contacted with the driving belt, and the integral cylinder portion axially extending at near an outer peripheral portion of the flange portion. The plastic working includes forming a workpiece, machining the workpiece, spinning the workpiece to form the integral cylinder portion, heat-treating the workpiece and finishing the workpiece to complete the moveable pulley half.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: October 16, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yujiro Ohara, Fumitaka Nishimura
  • Patent number: 5910223
    Abstract: A steel article is formed of a steel material containing from about 0.08 to about 0.35 carbon and is characterized by having a plurality of carbides dispersed on at least one pre-selected surface area of the article, with the surface carbides being dispersed within a predominantly lower bainitic matrix. A method for forming the steel article having high hardness and higher toughness includes carburizing the article at a temperature and for a period of time, in an atmosphere having a carbon potential, sufficient to form carbides and austenite on at least one preselected surface of the article, and then quenching the carburized article to a temperature below the Ar.sub.1 temperature and above the M.sub.s temperature of the steel material for a time sufficient to transform a major portion of the austenite in the preselected surface area microstructure to lower bainite.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: June 8, 1999
    Assignee: Caterpillar Inc.
    Inventors: Sheryl A. Tipton, Gary D. Keil
  • Patent number: 5669988
    Abstract: Object: Prevention of generation of press marks as well as increase of wear resistance at a corrugation tip portion and thereby providing a corrugating roll having a much improved life.Construction: A manufacturing method of a corrugating roll useful for forming a wave-shaped core paper of corrugated board, characterized in that the corrugating roll is worked to form tooth-shaped corrugation portions on the outer circumference and applying a nitriding treatment or a carbo-nitriding treatment, and then applying to the corrugation portion of the corrugating roll a quenching and tempering treatment, and further forming a wear resistant coating on the surface of the corrugation portion.
    Type: Grant
    Filed: August 9, 1995
    Date of Patent: September 23, 1997
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Hiroyuki Takenaka, Yorishige Tosaka, Yasunobu Sahara, Yoshiaki Maruyama, Hidenori Yamane, Akio Izuwa
  • Patent number: 5573604
    Abstract: The process serves for the manufacture of an erosion-resistant turbine blade which is preferably used in the low-pressure stage of a steam turbine and is made of a vanadium-containing (.alpha./.beta.)-titanium base alloy. This involves the formation, by remelt alloying of a blade section which is situated in the region of the blade tip and comprises the leading edge of the blade, in a boron-, carbon- and/or nitrogen-containing gas atmosphere, with the aid of a high-power energy source, of an erosion-resistant protective layer made of a titanium boride, titanium carbide and/or titanium nitride. The remelt alloyed blade section is subjected to a heat treatment at a temperature between 600.degree. and 750.degree. C. with the formation of a vanadium-rich .beta.-titanium phase.
    Type: Grant
    Filed: June 28, 1995
    Date of Patent: November 12, 1996
    Assignee: ABB Management AG
    Inventor: Claus Gerdes
  • Patent number: 5571341
    Abstract: A process for the thermochemical treatment of thin-walled structural elements made of steel comprising enriching an edge zone of a thin-walled structural element with nitrogen and carbon at 590.degree. to 700.degree. C. to harden the edge zone whereby an intermediate layer (3) is formed in the diffusion zone (2), said intermediate layer comprising 1 to 3% by weight of nitrogen and at most 0.8% by weight of carbon and cooling the said thin-walled structural element under an inert atmosphere at a rate of 50.degree. to 100.degree. C. per minute to room temperature to form a nitrogen austenite and/or braunite phase between the connection layer (1) and the basic structure (4) with increased fatigue strength.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: November 5, 1996
    Assignee: Ina Walzlager Schaeffler KG
    Inventor: Dieter Jackel
  • Patent number: 5498299
    Abstract: The surface oxidation under carburization temperatures of steels during the carburization with carbon-containing gas mixtures is avoided by heating the steels to the carburization temperature under a nitrogen/hydrogen mixture or pure hydrogen. For carburization, these gases are replaced by a carbon-containing gas mixture whose oxygen activity is smaller than that required for the formation of manganese(II) oxide or chromium(III) oxide.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: March 12, 1996
    Assignee: Messer Griesheim GmbH
    Inventor: Hans-Peter Schmidt
  • Patent number: 5342455
    Abstract: A process for generating in-situ low-cost atmospheres suitable for annealing and heat treating ferrous and non-ferrous metals and alloys, brazing metals, sealing glass to metals, and sintering metal and ceramic powders in a continuous furnace from non-cryogenically produced nitrogen containing up to 5% residual oxygen is presented. The disclosed process involves mixing nitrogen gas containing residual oxygen with a predetermined amount of a hydrocarbon gas, feeding the gaseous mixture through a nonconventional device into the hot zone of a continuous heat treating furnace, converting residual oxygen to an acceptable form such as a mixture of moisture and carbon dioxide, a mixture of moisture, hydrogen, carbon monoxide, and carbon dioxide, or a mixture of carbon monoxide, moisture, and hydrogen, and using the resultant gaseous mixture for annealing and heat treating metals and alloys, brazing metals, sintering metal and ceramic powders, and sealing glass to metals.
    Type: Grant
    Filed: October 26, 1992
    Date of Patent: August 30, 1994
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Brian B. Bonner, Diwakar Garg, Donald P. Eichelberger, Donald J. Bowe
  • Patent number: 5272015
    Abstract: Hyper-eutectic aluminum-silicon alloys are surface treated with nitrogen and carbon by ion implantation means so as to form hard, wear resistant particles of silicon nitride and silicon carbide which are surrounded by a hard matrix of aluminum nitride and aluminum carbide, depending on the species implanted. During applications where wear resistance is required, the hard silicon-based particles provide the wear resistant phase, thereby shielding the surrounding aluminum-based matrix. Yet the modified aluminum-based matrix is also sufficiently hard so as to provide strength and support for the silicon-based particles. Substantial improvements in wear resistance are obtained for these hyper-eutectic aluminum-silicon alloys, as compared to conventional alloys which have not been treated in accordance with this invention.
    Type: Grant
    Filed: December 19, 1991
    Date of Patent: December 21, 1993
    Assignee: General Motors Corporation
    Inventors: Aboud H. Hamdi, Gerard W. Malaczynski, Alaa A. Elmoursi
  • Patent number: 5259893
    Abstract: A process for generating in-situ low-cost atmospheres suitable for annealing and heat treating ferrous and non-ferrous metals and alloys, brazing metals, sealing glass to metals, and sintering metal and ceramic powders in a continuous furnace from non-cryogenically produced nitrogen containing up to 5% residual oxygen is presented. The disclosed process involves mixing nitrogen gas containing residual oxygen with a predetermined amount of a hydrocarbon gas, feeding the gaseous mixture through a nonconventional device into the hot zone of a continuous heat treating furnace, converting residual oxygen to an acceptable form such as a mixture of moisture and carbon dioxide, a mixture of moisture, hydrogen, carbon monoxide, and carbon dioxide, or a mixture of carbon monoxide, moisture, and hydrogen, and using the resultant gaseous mixture for annealing and heat treating metals and alloys, brazing metals, sintering metal and ceramic powders, and sealing glass to metals.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: November 9, 1993
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Brian B. Bonner, Diwakar Garg, Donald P. Eichelberger
  • Patent number: 5221369
    Abstract: A process for generating in-situ low-cost atmospheres suitable for annealing and heat treating ferrous and non-ferrous metals and alloys, brazing metals and ceramics, sealing glass to metals, and sintering metal and ceramic powders in a continuous furnace from non-cryogenically produced nitrogen containing up to 5% residual oxygen is presented. The disclosed process involves mixing nitrogen gas containing residual oxygen with a pre-determined amount of a reducing gas such as hydrogen, a hydrocarbon, or a mixture thereof, feeding the gaseous mixture through a non-conventional device into the hot zone of a continuous heat treating furnace, converting residual oxygen to an acceptable form such as moisture, a mixture of moisture and carbon dioxide, or a mixture of moisture, hydrogen, carbon monoxide and carbon dioxide, and using the resultant gaseous mixture for annealing and heat treating metals and alloys, brazing metals and ceramics, sintering metal and ceramic powders, and sealing glass to metals.
    Type: Grant
    Filed: July 8, 1991
    Date of Patent: June 22, 1993
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Donald J. Bowe, Brian B. Bonner, Diwakar Garg
  • Patent number: 5131585
    Abstract: A ferric article is brazed by a copper solder at a temperature of or higher than 1,100.degree. C. in a heat-treatment furnace, parts of the article which are desired to be carburized, are carburized simultaneously with the brazing by covering with organic materials such as an old newspaper and the like.
    Type: Grant
    Filed: June 5, 1991
    Date of Patent: July 21, 1992
    Assignee: Kanto Yakin Kogyo K.K.
    Inventor: Susumu Takahashi