Contains An Atom Of Hafnium, Titanium Or Zirconium (excludes Activating Composition) Patents (Class 148/247)
  • Patent number: 8097093
    Abstract: Disclosed are methods for treating and coating a ferrous metal substrate, such as cold rolled steel, hot rolled steel, and electrogalvanized steel. These methods include contacting the ferrous metal substrate with an aqueous pretreatment composition comprising: (a) a Group IIIB and/or IVB metal compound; (b) phosphate ions; and (c) water.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: January 17, 2012
    Assignee: PPG Industries Ohio, Inc
    Inventors: Randall J. Brent, Nicephoros A. Fotinos, John F. McIntyre, David A. Raney, Richard M. Vargas
  • Patent number: 8092617
    Abstract: Corrosion resistant coatings are formed on aluminum by contacting with aqueous solutions containing trivalent chromium ions and fluorometallate ions, the solutions being substantially free of hexavalent chromium. Trivalent chromium films formed on the aluminum surface when tested in 5% NaCl salt spray chamber showed corrosion resistance in excess of 168 hours. Trivalent chromium coated aluminum also serves as an effective base for paint primers.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: January 10, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventors: Kirk Kramer, Lisa Salet
  • Patent number: 8075708
    Abstract: It is an object of the present invention to provide a pretreatment method for coating, which does not limit a coating method, places a less burden on the environment and can apply good chemical conversion treatment to all metals such as iron, zinc, aluminum and so on. A pretreatment method for coating comprising treating a substance to be treated by a chemical conversion coating agent to form a chemical conversion coat, wherein the chemical conversion coating agent comprises: at least one kind selected from the group consisting of zirconium, titanium and hafnium; fluorine; and at least one kind selected from the group consisting of amino group-containing silane coupling agents, hydrolysates thereof and polymers thereof.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: December 13, 2011
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Masahiko Matsukawa, Kazuhiro Makino, Toshiaki Shimakura, Masanobu Futsuhara, Jiping Yang
  • Publication number: 20110247728
    Abstract: Trivalent chromium conversion coatings are provided on a metal substrate wherein the trivalent chromium conversion coating has a halogen content of 1 atom % maximum.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 13, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Mark R. Jaworowski, Sarah Arsenault, James T. Beals
  • Publication number: 20110214784
    Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.
    Type: Application
    Filed: September 7, 2010
    Publication date: September 8, 2011
    Applicants: NIPPON PAINT CO., LTD., Chemetail GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Publication number: 20110198000
    Abstract: A method for treating or pre-treating parts, profiled-pieces, strips, sheet metals or wires having metallic surfaces, in which at least 5% of these surfaces consists of aluminum or of at least one aluminum alloy with an acid aqueous solution which contains fluoride, zinc and phosphate and which has the following dissolved contents in the phosphatizing solution: sodium virtually none, from 0.04 to less than 2 g/L; potassium virtually none or in a concentration ranging from 0.025 to 2.5 g/L; sodium and potassium in a concentration ranging from 0.025 to 2.5 g/L as sodium, whereby the potassium content is converted to sodium on a molar basis; zinc 0.2 to 4 g/L zinc, 5 to 65 g/L calculated as PO4; 0.03 to 0.5 g/L phosphate free fluoride wherein the total fluoride is present in a concentration ranging from 0.1 to 5 g/L. A zinc-containing phosphate layer is thereby deposited onto the metallic surfaces with a layer weight ranging from 0.5 to 10 g/m2.
    Type: Application
    Filed: April 6, 2011
    Publication date: August 18, 2011
    Inventors: Jürgen SPECHT, Peter Schubach, Rüdiger Rein, Peter Claude
  • Publication number: 20110189401
    Abstract: The present invention relates to a method for improving the corrosion-protecting pre-treatment of metal surfaces and using rinse water in a manner to conserve resources in such a corrosion-protecting pre-treatment, comprising a conversion treatment step using an aqueous composition comprising at least 50 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds at a pH value of 3 to 5.5, wherein a minimum fraction of 10 ppm of the elements B, Si, Ti, Zr and/or Hf in the form of water-soluble compounds is present in the last pre-rinse step and a portion of the aqueous composition of the conversion treatment step is contained in the first post-rinse step. The resource-conserving use of the rinse water is accomplished according to the invention by way of a cascaded return of rinse water from the last rinse step to the first rinse step.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 4, 2011
    Applicant: Henkel AG & Co. KGaA
    Inventors: Franz-Adolf Czika, Sophie Cornen, Jens Kroemer, Michael Frank, Nicole Teubert, Jan-Willem Brouwer
  • Publication number: 20110132497
    Abstract: A chromium-free aqueous treatment solution for coating metal surfaces is described. The treatment solution contains fluorocomplex ions of titanium and/or zirconium and molybdate ions, vanadium ions and one or more aromatic carboxylic acids with at least one carboxyl groups and at least two further functional groups, wherein the two further functional groups are selected from the group comprising carboxyl groups, hydroxyl groups, amino groups and nitro groups.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 9, 2011
    Inventor: Stephanie Greber
  • Publication number: 20110094630
    Abstract: The present invention provides a chemical conversion solution and the surface treating method for realizing high corrosion resistance and high coating adhesion of the metal surface, as well as high throwing power during electrodeposition, and generating no sludge. A chemical conversion solution comprising (A) at least one compound selected from water-soluble germanium compound, water-soluble tin compound, and water-soluble copper compound, (B) at least one compound selected from water-soluble titanium compound and water-soluble zirconium compound, (C) at least one water-soluble nitrate compound, (D) at least one compound selected from water-soluble aluminum compound and water-soluble magnesium compound, (E) at least one water-soluble zinc compound, and (F) at least one fluorine compound, and, the coating process for the metal structure.
    Type: Application
    Filed: December 30, 2010
    Publication date: April 28, 2011
    Applicant: Henkel AG & Co. KGaA
    Inventors: Masayuki Yoshida, Yasuhiko Nagashima, Ryosuke Kawagoshi
  • Publication number: 20110076505
    Abstract: A metallic material is provided that is superior to an iron-based metallic material in all of adhesion, heat resistance, electrical conductivity, and corrosion resistance, and a method of manufacturing the metallic material is also provided. A metallic material is provided that includes an iron-based metallic material and an oxide layer formed on the surface of the iron-based metallic material. The oxide layer includes Fe and at least one kind of metal (A) selected from a group consisting of Zr, Ti, and Hf. There is also provided a method of manufacturing the metallic material.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 31, 2011
    Applicant: Henkel AG & Co., KGaA
    Inventors: Hitoshi Ishii, Yasuhiko Nagashima, Ryosuke Kawagoshi
  • Patent number: 7909944
    Abstract: A surface conditioning composition is provided in which a titanium phosphate compound can be stored in the state of a dispersion liquid for a long period of time while being stably present in the dispersion liquid, with favorable stability also in the bath, and with the composition being capable of forming a conversion coating film in a sufficient amount of the film even in the case of application to conversion resistant metal materials such as high-tensile steel sheets.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: March 22, 2011
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Yusuke Wada, Masahiko Matsukawa, Kotaro Kikuchi
  • Publication number: 20110048584
    Abstract: In a process which is before a treatment process of forming a chemical conversion, TiO2 fine particles as an electron releasing-related substance (electron releasing substance) are attached onto a surface of a vehicle body. Then, a chemical conversion treatment is applied to the vehicle body having the TiO2 fine particles attached thereto. Thereby, an energy band gap of a finally-formed chemical conversion film can be smaller than that of a chemical conversion film formed by using only a chemical conversion treatment agent. Accordingly, the number of electrons (free electrons) which can be supplied onto the surface of a chemical conversion film can be increased during a voltage application in an electrodeposition coating process, and reducing reaction at a cathode can be promoted.
    Type: Application
    Filed: July 19, 2010
    Publication date: March 3, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Daiji KATSURA, Tsutomu SHIGENAGA
  • Publication number: 20110041958
    Abstract: An acidic chromium-free solution for treating a metal surface containing: a vanadium cation source and/or a vanadyl cation source; an organic acid as an anion source; and at least one oxoacid as another anion source is provided. The oxoacid is selected from oxoacids of nitrogen, sulfur, phosphorus, boron, and chlorine. A metal component composed of, for example, aluminum or magnesium is brought into contact with the chromium-free solution to form a vanadium coating film of a surface of the metal component. A surface treating process using this chromium-free solution is useful for formation of a coating film having low corrosion resistance and low electric resistance.
    Type: Application
    Filed: October 27, 2010
    Publication date: February 24, 2011
    Applicant: Nihon Hyomen Kagaku Kabushiki Kaisha
    Inventors: Takaaki Sato, Misa Suzuki
  • Publication number: 20110041957
    Abstract: The present invention relates to a chromium-free aqueous agent based on water-soluble compounds of titanium and/or zirconium and a source of fluoride ions, copper ions and metal ions selected from the group consisting of calcium, magnesium, aluminum, boron, zinc, iron, manganese and/or tungstene and to a method for the anti-corrosive conversion treatment of metal surfaces. The chromium-free aqueous agent is suitable for the treatment of various metal materials, joined in composite structures, amongst others of steel or galvanized steel or the alloys thereof or any combinations of said materials. Furthermore, surfaces of aluminum and alloys thereof can be treated in an anti-corrosive manner using the agent according to the invention. The anti-corrosive treatment is intended in particular as a pretreatment for a subsequent dip-coating.
    Type: Application
    Filed: September 17, 2010
    Publication date: February 24, 2011
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Kroemer, Sophie Cornen, Michael Frank, Nicole Teubert, Franz-Adolf Czika
  • Patent number: 7879157
    Abstract: Described here is a method for pretreating the surfaces of weld parts of aluminum or alloys thereof, and weld parts produced with said method. Prior to welding, the weld parts are subjected to a treatment (17) in an acidic, aqueous solution, wherein the acidic, aqueous solution contains ions of the elements boron and/or silicon and/or titanium and/or zirconium and/or hafnium. The invention consists in that a polishing step (9) is carried out prior to the treatment in the acidic, aqueous solution to make for better sliding in a feed apparatus during the welding process.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: February 1, 2011
    Assignee: Newfrey LLC
    Inventor: Frank Drexler
  • Patent number: 7833332
    Abstract: An aqueous metal treatment composition designed to improve adhesion and corrosion resistance of the metal surface includes an organofunctional silane in combination with a fluorozirconic or fluorotitanic acid, methanesulfonic acid and nitric acid. The methanesulfonic acid acts to reduce sludge formation. Preferably, the composition also includes a fluorosilicic acid which likewise reduces sludge and improves corrosion resistance.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: November 16, 2010
    Assignee: Dubois Chemicals, Inc.
    Inventor: Richard Moore
  • Patent number: 7829151
    Abstract: The invention relates to a method for modifying piece surfaces consisting in bringing pieces into contact with at least one type of a modifying agent in such a way that the modification of the surface is carried out.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 9, 2010
    Assignee: BEHR GmbH & Co. KG
    Inventors: Snjezana Boger, Peter Englert, Mathias Pfitzer, Ingo Trautwein, Sabine Sedlmeir
  • Patent number: 7819989
    Abstract: A composition for surface treatment of aluminium, aluminum alloys, magnesium or magnesium alloys and the treating solutions being diluted to the desired concentration are defined. The composition contains (1) compound A containing at least one metal element selected from the group consisting of Hf(IV), Ti(IV) and Zr(IV), (2) a fluorine-containing compound of sufficient amount to make fluorine exist in the composition in an amount of at least 5 times the molarity of the total molarity of the metal contained in the above-mentioned compound A, (3) at least one metal ion B selected from the group of alkaline earth metals, (4) at least one metal ion C selected from the group consisting of Al, Zn, Mg, Mn and Cu, and (5) nitric ion and the mol concentration of compound A is 0.1-50 mmol/L as the metal element of Hf(IV), Ti(IV) and Zr(IV). A metal treated with the treating method of the present invention solution has an excellent resistance to various corrosive environments.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: October 26, 2010
    Assignees: Nihon Parkerizing Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Ishikura, Michiro Kurosawa, Takaomi Nakayama, Hiroyuki Sato, Tadashi Matsushita, Eisaku Okada, Fumiya Yoshida, Katsuhiro Shiota
  • Patent number: 7815751
    Abstract: The invention provides a method and composition for coating a ferrous metal surface with a zirconium/vanadium conversion coating which is substantially free of an organic film forming composition and tannins. The method is a low temperature method which contemplates an aqueous conversion coating composition which is low in phosphates and which comprises zirconium, vanadium, fluoride, as well as phosphate ions in a ratio and a concentration effective for providing a conversion-coated ferrous metal surface.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: October 19, 2010
    Assignee: Coral Chemical Company
    Inventors: Joseph D. Pemberton, John P. Jandrists
  • Patent number: 7811391
    Abstract: This invention comprises an acidic aqueous solution for treating metal substrates to improve the adhesion bonding and corrosion protection of the metal surface which comprises effective amounts of water soluble trivalent chromium compounds, fluorozirconates, effective amounts of at least one corrosion inhibitors such as benzotriazole, fluorometallic compounds, zinc compounds, thickeners, surfactants, and at least about 0.001 mole per liter of the acidic solution of a polyhydroxy and/or carboxylic compound as a stabilizing agent for the aqueous solution.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: October 12, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Craig A. Matzdorf, William C. Nickerson, Jr.
  • Patent number: 7811366
    Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: October 12, 2010
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 7749368
    Abstract: Disclosed are methods for coating a metal substrate with a yttrium-containing coating, including ferrous substrates, such as cold rolled steel and electrogalvanized steel. Also disclosed are coated substrates produced thereby.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 6, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Neil D. McMurdie, Mark W. McMillen, Edward F. Rakiewicz, Michelle S. Miles, Richard F. Karabin
  • Publication number: 20100132843
    Abstract: A low sludge trivalent chromium based conversion coating bath is provided which forms corrosion resistant coatings on aluminum and aluminum alloys by immersion in aqueous solutions containing trivalent chromium ions and fluorometallate ions followed by optional rinsing. Trivalent chromium coated aluminum also serves as an effective base for paint primers.
    Type: Application
    Filed: May 10, 2007
    Publication date: June 3, 2010
    Inventor: Kirk Kramer
  • Publication number: 20100126633
    Abstract: An agent for the production of anti-corrosion layers on metal surfaces, produced by the following steps: A) producing an aqueous solution which contains at least the following: a) oxo-cations selected from MnO3+, VO3+, VO2+, WO22+, MoO22+, TiO2+, ZrO2+ and mixtures thereof, and b) halogen complex anions of the structure MXab?, wherein M is selected from B, Ti, Zr, Si, Al, X is selected from F, Cl, Br, I, a is an integer of between 3 and 6 and b is an integer of between 1 and 4, and B) forming nanoparticles having a mean particle diameter of <500 nm in the solution in situ by physical and/or chemical treatment of the solution, wherein the physical and/or chemical treatment is selected among a change in temperature, a change in the ion concentration, a change in the pH-value, a change in the pressure, supersaturation of the solution, agitation of the solution, adding an oxidising agent and/or adding a reducing agent.
    Type: Application
    Filed: March 20, 2008
    Publication date: May 27, 2010
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Hermann Donsbach, Udo Hofmann, Joerg Unger
  • Publication number: 20100032060
    Abstract: Process of coating magnesium alloys to improve the corrosion resistance and adhesive bonding strengths of the alloys. The process comprises treating the magnesium alloys with an acidic aqueous solution comprising, per liter of solution, from about 0.01 to 10 grams of a water soluble trivalent chromium compound, about 0.01 to 10 grams of hexafluorozirconate, about 0.0 to 5.0 grams of at least one hexafluorosilicate and/or a tetrafluoroborate, from about 0.0 to 5.0 grams of at least one water soluble divalent zinc compound and from 0.0 to 10 grams of a water soluble thickener and/or 0.0 to 10 grams of a water soluble surfactant.
    Type: Application
    Filed: February 15, 2005
    Publication date: February 11, 2010
    Inventors: Craig A. Matzdorf, William C. Nickerson, James L. Green
  • Publication number: 20090288738
    Abstract: A method for recovering demineralized water from zirconium-containing rinse water having a pH lower than 6.0, wherein a) the rinse water has added to it an aqueous solution of Ca(OH)2 containing no more than 0.1 wt% undissolved Ca(OH)2, in a quantity such that the pH of the rinse water rises to a value in the range from 6.2 to 8.0, b) a precipitate that forms is separated from the rinse water, and c) the rinse water from which the precipitate was removed in step b) is subjected to an ion exchange method or to reverse osmosis.
    Type: Application
    Filed: August 5, 2009
    Publication date: November 26, 2009
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer
  • Patent number: 7575694
    Abstract: A process for chemically stripping a metallic coating on an external surface of a substrate without attacking an internal surface defined by an internal passage within the substrate. Processing steps include depositing within the internal passage a thermally-decomposable wax having a melting temperature above 75° C. so as to mask the internal surface of the substrate, and then treating the substrate with an aqueous solution containing an acid having the formula HxAF6 where A is silicon, germanium, titanium, zirconium, aluminum, or gallium, and x has a value of one to six. The aqueous solution is at a temperature below the melting temperature of the wax and substantially removes the metallic coating from the external surface of the substrate, while the wax is substantially unreactive with the aqueous solution and prevents the aqueous solution from contacting the internal surface of the substrate. Thereafter, the substrate is heated to thermally decompose the wax without producing hazardous byproducts.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 18, 2009
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Stephen Francis Rutkowski
  • Patent number: 7575644
    Abstract: A solution for treating a surface of an iron material includes (a) zirconium fluoride; (b) ion of a rare earth element and/or a compound containing a rare earth element; (c) a polyallylamine; (d) aluminum ion; and (e) free fluorine ion. Zirconium in the component (a) is at a weight concentration A of 10 to 1000 ppm. The ratio K of the weight concentration B of the rare earth element in the component (b) to the weight concentration A (B/A) is 0.1 to 30. The component (d) is at a weight concentration D of 50 to 250 ppm. The component (e) is at a weight concentration E of 0.5 to 30 ppm. A coating having excellent corrosion resistance before and after the subsequent coating can be deposited on the surface of an iron material by using the surface treating solution which does not contain environmentally harmful ingredients.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 18, 2009
    Assignees: Nihon Parkerizing Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Hideki Takakuwa, Yuko Takanashi, Katsutoshi Ando, Yasuhito Murai
  • Patent number: 7531051
    Abstract: The present invention is the method for surface treatment of a metal material containing iron and/or zinc, containing component (A) and component (B); where (A) is a compound containing at least one metal element selected from the group consisting of Ti, Zr, Hf and Si, (B) is a compound containing fluorine as a supplying source of HF, wherein the ratio K=A/B between the total mole weight A of metal elements of Ti, Zr, Hf and Si in the compound of component (A) and the mole weight B which when the total fluorine atoms in the fluorine-containing compound of component (B) is converted to HF is within the range of 0.06?K?0.18, and the concentration of component (A) indicated by the total mole concentration of metal elements of Ti, Zr, Hf and Si is within the region of 0.05 to 100 m mol/L. To the treating solution for surface treatment, at least one compound containing at least one metal element selected from the group consisting of Ag, Al, Cu, Fe, Mn, Mg, Ni, Co and Zn can be blended.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: May 12, 2009
    Assignees: Nihon Parkerizing Co., Ltd., Toyota Jidosha Kabushiki Kaisha, Daihatsu Motor Co., Ltd.
    Inventors: Takaomi Nakayama, Hiroyuki Sato, Tetsuo Ootsuki, Tadashi Matsushita, Eisaku Okada, Fumiya Yoshida, Katsuhiro Shiota
  • Patent number: 7510612
    Abstract: The present invention disclosure provides a chemical conversion coating agent which places a less burden on the environment and can apply good chemical conversion treatment to all metals such as iron, zinc and aluminum, and a surface-treated metal obtained using the same.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: March 31, 2009
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Masahiko Matsukawa, Kazuhiro Makino, Toshiaki Shimakura
  • Publication number: 20090032144
    Abstract: Disclosed are methods for treating metal substrates, including ferrous substrates, such as cold rolled steel and electrogalvanized steel. The methods include contacting the substrate with a pretreatment composition that includes: (a) a group IIIB and/or IVB metal; (b) free fluorine; (c) a metal fluoride salt formed from a metal which forms a fluoride salt having a pKsp of at least 11; and (d) water.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 5, 2009
    Inventors: Mark W. McMillen, Edward F. Rakiewicz
  • Publication number: 20080245444
    Abstract: Chromate-free and metal phosphate free treatments and compositions for applying a conversion or passivation coating for metals, more particularly, steel, zinc coated steel, and aluminum surfaces. The methods of the invention comprise contacting the requisite metal surface with a treatment composition comprising a member or members comprising one or more Group IV B elements, fluoride, and phosphonic acid or phosphonate. Optionally, a silane may be added as a treatment component.
    Type: Application
    Filed: June 10, 2008
    Publication date: October 9, 2008
    Applicant: General Electric Company
    Inventors: Edward A. Rodzewich, Jeffrey I. Melzer, Philip D. Deck, Donald W. Whisenhunt, William S. Carey, David B. Engel, Bret Chisholm, Christopher M. Carter
  • Patent number: 7422793
    Abstract: Rinsing or sealing solutions comprising a rare earth element and a valence stabilizer for barrier films. The treated films contain a rare earth/valence stabilizer complex. The rare earth element is selected from cerium, praseodymium, terbium, or combinations thereof, and at least one rare earth element is in the tetravalent oxidation state. The rinsing or sealing solution may also contain an optional preparative or solubility control agent. The oxidized rare earth element is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. A number of rare earth/valence stabilizer combinations that match the performance of conventional hexavalent chromium systems are presented.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: September 9, 2008
    Assignee: University of Dayton
    Inventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
  • Patent number: 7407711
    Abstract: Conversion coatings comprising a rare earth element and a valence stabilizer combined to form a rare earth/valence stabilizer complex are described for substrate metals. The rare earth element is selected from cerium, praseodymium, terbium, or combinations thereof, and at least one rare earth element is in the tetravalent oxidation state. The coating bath may also contain a preparative or solubility control agent. The oxidized cerium, praseodymium or terbium is present in the coating in a “sparingly soluble” form. The valence stabilizers can be either inorganic or organic in nature. A number of cerium, praseodymium, or terbium/valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium systems.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: August 5, 2008
    Assignee: University of Dayton
    Inventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
  • Patent number: 7402214
    Abstract: An aqueous composition for pretreating and depositing a coating on metal substrates is provided. The coating composition includes from about 1,500 to about 55,000 ppm based on the aqueous composition of a Group IIA dissolved metal ion, from about 100 to about 200,000 ppm based on the aqueous composition of a dissolved complex metal fluoride ion wherein the metal atom is selected from Group IIIA, Group IVA, Group IVB metals, Group VA, Group VB metals; and water. The composition is free of Group IIA metal fluoride precipitate achieved by including in the composition a complex metal salt different than the salt associated with the complex metal fluoride ion, with the complex metal salt being capable of complexing free fluoride ions to prevent a precipitation reaction. A process for coating a metal substrate with such an aqueous composition is further provided.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: July 22, 2008
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Jeffrey Allen Greene, Donald Robb Vonk
  • Patent number: 7291217
    Abstract: A corrosion-inhibiting pigment comprising a rare earth element and a valence stabilizer combinded to form a rare earth/valence stabilizer complex. The rare earth element is selected from cerium, terbium, praseodymium, or a combination thereof, and at least one rare earth element is in the tetravalent oxidation state. An inorganic or organic material is used to stabilize the tetravalent rare earth ion to form a compound that is sparingly soluble in water. Specific stabilizers are chosen to control the release rate of tetravalent cerium, terbium, or praseodymium during exposure to water and to tailor the compatibility of the powder when used as a pigment in a chosen binder system. Stabilizers may also modify the processing and handling characteristics of the formed powders. Many rare earth-valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium systems.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: November 6, 2007
    Assignee: University of Dayton
    Inventors: Andrew Wells Phelps, Jeffrey Allen Sturgill, Joseph Thomas Swartzbaugh
  • Publication number: 20070187001
    Abstract: Corrosion resistant coatings are formed on aluminum by contacting with aqueous solutions containing trivalent chromium ions and fluorometallate ions, the solutions being substantially free of hexavalent chromium. Trivalent chromium films formed on the aluminum surface when tested in 5% NaCl salt spray chamber showed corrosion resistance in excess of 168 hours. Trivalent chromium coated aluminum also serves as an effective base for paint primers.
    Type: Application
    Filed: February 13, 2007
    Publication date: August 16, 2007
    Inventors: Kirk Kramer, Lisa Salet
  • Patent number: 7156905
    Abstract: The invention relates to a composition and method for treating a magnesium alloy. The inventive composition comprises an acid aqueous solution containing niobium pentoxide, a water-soluble cerium salt and, optionally, a zirconium salt and/or hydroflouric acid. Said method consists in submerging a magnesium alloy part in said composition. The invention can be used to protect magnesium alloy parts against corrosion.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 2, 2007
    Assignee: Universite Pierre & Marie Curie
    Inventors: Hélène Ardelean, Philippe Marcus
  • Patent number: 7153348
    Abstract: A hexavalent chromium-free surface treating agent for Sn- or Al-based coated steel sheet, comprising a trivalent chromium compound (A), a water-dispersible silica (B), a lubricity imparting component (C) made of one or more waxes of polyolefin wax, fluorine-containing wax and paraffin wax, and water, a mass ratio on the solid content basis of the water-dispersible silica (B) to the lubricity imparting component (C), (B)/(C), being within a range from 5/95 to 95/5.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: December 26, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Teruaki Izaki, Masahiro Fuda, Mitsuru Nakamura, Katsuyuki Kawakami, Kensuke Mizuno
  • Patent number: 7030183
    Abstract: A plating solution containing zinc, an electrically conductive salt, an adsorbent, and at least one of mono- to hexavalent metal ions. A treatment using either a solution which contains, all per liter, 2–60 g Zn, 40–300 g caustic alkali, 0.01–50 g adsorbent, 0.002–10 g Fe, 0.002–10 g Co, 0.05–30 g Mn, 0.001–2 g Cu, 0.005–10 g Ni, 0.002–3 g of at least one chosen from among Mo, W, V, Ti, Al, Ca, Ba, and Sn, and 0.01–30 g aliphatic amine or aliphatic amine polymer or a solution which contains, all per liter, 2–40 g Zn, 40–170 g caustic alkali, 0.01–50 g adsorbent, either 0.001–3 g Fe and 0.001–3 g Co or 0.005–5 g Fe and 0.005–5 g Ni, and 0.01–30 g aliphatic amine or aliphatic amine polymer.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: April 18, 2006
    Assignee: Nihon Hyomen Kagaku Kabushiki Kaisha
    Inventors: Masaaki Yamamuro, Mitsuomi Katori
  • Patent number: 6946201
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 20, 2005
    Assignee: SurTec International GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6860687
    Abstract: A weld-on part made of aluminum or an aluminum alloy, such as but not limited to a stud (1), which has a surface which is at least partially provided with a layer (5) which contains a titanium containing material. The stud (1) is treated with a chrome-free passivating solution which imparts corrosion resistance while simultaneously causing a layer (5) of titanium containing material to be formed on at least a portion of the surface of the stud (1). The layer (5) of titanium containing material permits the stud (1) to be satisfactorily welded to a surface, without the occurrence of arc jumping or blowing, in part, by lowering contact resistance during the welding process.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: March 1, 2005
    Assignee: Newfrey LLC
    Inventors: Klaus G. Schmitt, Michael Krengel
  • Patent number: 6841009
    Abstract: Disclosed is a reaction vessel used for oxidizing and decomposing equipment suitable for processing with supercritical water, and methods of manufacturing the reaction vessel. The reaction vessel comprises an oxide film containing a platinum group metal oxide for example having a fine crystalline structure, and a high corrosion resistance in both oxidizing and reducing atmosphere. The film is formed on a surface of the vessel by performing a pyrolysis reaction in an atmosphere containing water vapor. The oxide film is comprised of at least one platinum group metal oxide selected from Ir, Ru or Rh oxide, and at least one oxide of a metal selected from Ti and Ta.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: January 11, 2005
    Assignee: Furuyametal Co., Ltd.
    Inventors: Takahito Furuya, Takayuki Shimamune
  • Publication number: 20040244874
    Abstract: The present invention is the method for surface treatment of a metal material containing iron and/or zinc, comprising component (A) and component (B);
    Type: Application
    Filed: July 19, 2004
    Publication date: December 9, 2004
    Inventors: Takaomi Nakayama, Hiroyuki Sato, Tetsuo Ootsuki, Tadashi Matsushita, Eisaku Okada, Fumiya Yoshida, Katsuhiro Shiota
  • Publication number: 20040244875
    Abstract: It is an object of the present invention to provide a method of metal surface treatment and a surface treated metal thereby, which has excellent corrosion resistance and can form a coat having high corrosion resistance on metal substrates such as iron, zinc, aluminum and magnesium.
    Type: Application
    Filed: June 8, 2004
    Publication date: December 9, 2004
    Inventors: Mitsuhiro Yasuda, Toshio Inbe, Norizumi Matsui, Katsuyoshi Yamasoe
  • Patent number: 6821633
    Abstract: In at least one aspect, the invention relates to an entirely or substantially chromium-free conversion coating composition and process for conversion coating metal surfaces that provides corrosion resistance. In at least another aspect, the present invention relates to an article having a metal surface that is at least partially coated with an entirely or substantially chromium-free conversion coating that provides corrosion resistance. In certain embodiments, the conversion coating composition comprises water and (A) dissolved fluorometallate anions selected from the group consisting of TiF6−2, ZrF6−2, HfF6−2, SiF6−2, AlF6−3, GeF6−2, SnF6−2, BF4−, and mixtures thereof and (B) a water-soluble polymer which is a Mannich adduct of poly(4-vinyl phenol) and N-methyl ethanolamine. In other embodiments, the composition also comprises (C) a water-soluble polymer which is a Mannich adduct of poly(4-vinyl phenol) and N-methyl glucamine.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: November 23, 2004
    Assignee: Henkel Kommanditgesellschaft auf Aktien (Henkel KGaA)
    Inventors: Jianping Liu, Patrick A. Scalera, Shawn E. Dolan
  • Patent number: 6818313
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: November 16, 2004
    Assignee: University of Dayton
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Publication number: 20040187967
    Abstract: It is an object of the present invention to provide a chemical conversion coating agent which places a less burden on the environment and can apply good chemical conversion treatment to all metals such as iron, zinc and aluminum.
    Type: Application
    Filed: December 23, 2003
    Publication date: September 30, 2004
    Applicant: Nippon Paint Co., Ltd.
    Inventors: Masahiko Matsukawa, Kazuhiro Makino, Toshiaki Shimakura
  • Publication number: 20040168748
    Abstract: The invention relates to an addition product that can be produced from hexafluorosilicic acid, hexafluorotitanic acid, and/or hexafluorozirconic acid by an acid-base reaction with one or several organic bases and a method for production and use thereof. The addition products according to the invention guarantee a rapid and lasting inhibition of corrosion processes; they are in particular suitable for inhibiting the corrosion of light metals.
    Type: Application
    Filed: September 24, 2003
    Publication date: September 2, 2004
    Inventors: Andreas Hartwig, Kerstin Albinsky
  • Patent number: RE40406
    Abstract: A composition and method for coating and touching up a metal surface is provided. The composition contains from about 0.5 to about 240 millimoles per kilogram of a fluorometallate ion, from about 0.5 grams/liters to about 10 grams/liter of phosphorous-containing inorganic oxy anions calculated at their stoichiometric equivalent as H3PO4; from about 0.05 g/l to about 3.5 g/l of hexavalent chromium and from about 0.10 g/l to about 2.20 g/l of trivalent chromium ions and a surfactant.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: July 1, 2008
    Assignee: Henkel KGaA
    Inventors: David R. McCormick, Andreas Lindert