Having At Least Three Contiguous Layers Of Semiconductive Material Patents (Class 148/33.5)
  • Patent number: 11705300
    Abstract: A method comprising the irradiation of a wafer by an ion beam that passes through an implantation filter. The wafer is heated to a temperature of more than 200° C. The wafer is a semiconductor wafer including SiC, and the ion beam includes aluminum ions.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: July 18, 2023
    Assignee: MI2-FACTORY GMBH
    Inventors: Florian Krippendorf, Constantin Csato
  • Patent number: 11342498
    Abstract: In accordance with one embodiment, a method includes forming a cleavable donor substrate, the substrate including monocrystalline Si, forming a dielectric layer above the substrate in a film thickness direction, and cleaving the substrate into an upper portion having the dielectric layer and a lower portion. In one embodiment, the cleavable substrate is formed using a sacrificial buffer layer above the substrate in the film thickness direction, and forming a strained Si layer above the sacrificial buffer layer in the film thickness direction, followed by etching away the sacrificial buffer layer to cleave the substrate. In another embodiment, the cleavable substrate is formed by implanting ions into the substrate to a peak implant position located below an upper surface of the substrate, annealing the substrate and dielectric layer in an inert environment to form blisters at the peak implant position, and cleaving the substrate using the blisters.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 24, 2022
    Assignee: Integrated Silicon Solution (Cayman) Inc.
    Inventors: Marcin Gajek, Kuk-Hwan Kim, Dafna Beery, Amitay Levi
  • Patent number: 11114333
    Abstract: Methods for depositing a gapfill dielectric film that may be utilized for multi-colored patterning processes are provided. In one implementation, a method for processing a substrate is provided. The method comprises filling the one or more features of a substrate with a dielectric material. The dielectric material is a doped silicate glass selected from borophosphosilicate glass (BPSG), phosphosilicate glass (PSG), and borosilicate glass (BSG). The method further comprises treating the substrate with a high-pressure anneal in the presence of an oxidizer to heal seams within the dielectric material. The high-pressure anneal comprises supplying an oxygen-containing gas mixture on a substrate in a processing chamber, maintaining the oxygen-containing gas mixture in the processing chamber at a process pressure at greater than 2 bar and thermally annealing the dielectric material in the presence of the oxygen-containing gas mixture.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: September 7, 2021
    Assignee: Micromaterials, LLC
    Inventors: Srinivas D. Nemani, Ellie Y. Yieh, Chentsau Ying
  • Patent number: 11053606
    Abstract: A method of producing a silicon single crystal, including pulling a silicon single crystal by Czochralski method while a magnetic field is applied to a raw material melt, including: setting a diameter on pulling the silicon single crystal to 300 mm or more, setting a growth axis direction of the silicon single crystal to <111>, and growing the silicon single crystal so as to satisfy a relation of 1096/D?(0.134×M+80×R)/D>0.7, wherein D [mm] is the diameter on pulling the silicon single crystal, M [Gauss] is a central magnetic field strength at a surface of the raw material melt, and R [rpm] is a rotation rate of the silicon single crystal. This makes it possible to produce a <111> crystal with favorable macroscopic RRG distribution and microscopic variation of resistivity.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: July 6, 2021
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Kosei Sugawara, Ryoji Hoshi
  • Patent number: 10522667
    Abstract: The SiC-IGBT includes a p-type collector layer, an n?-type voltage-blocking-layer provided on the collector layer, p-type base regions provided on the n?-type voltage-blocking-layer, n+-type emitter regions provided in an upper portion of the p-type base region, a gate insulating film provided in an upper portion of the voltage-blocking-layer, and a gate electrode provided on the gate insulating film. The p-type buffer layer has thickness of five micrometers or more and 20 micrometers or less and is doped with Al at impurity concentration of 5×1017 cm?3 or more and 5×1018 cm?3 or less and doped with B at impurity concentration of 2×1016 cm?3 or more and less than 5×1017 cm?3.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: December 31, 2019
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takeshi Tawara, Hidekazu Tsuchida, Koichi Murata
  • Patent number: 10043867
    Abstract: An integrated circuit is formed by providing a heavily doped substrate of a first conductivity type, forming a lightly doped lower epitaxial layer of the first conductivity type over the substrate, implanting dopants of the first conductivity type into the lower epitaxial layer in an area for a shallow component and blocking the dopants from an area for a deep component, forming a lightly doped upper epitaxial layer over the lower epitaxial layer and activating the implanted dopants to form a heavily doped region. The shallow component is formed over the heavily doped region, and the deep component is formed outside the heavily doped region, extending through the upper epitaxial layer into the lower epitaxial layer.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: August 7, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Fred Salzman, Charles Clayton Hadsell
  • Patent number: 9991328
    Abstract: A method of forming an integrated circuit device having a nanosheet resistor includes forming a nanosheet structure having alternating sheets of silicon and silicon germanium. An ion implantation is performed on the nanosheet structure. A thermal anneal is performed on the nanosheet structure. A dielectric oxide is placed around the nanosheet structure. A first contact and a second contact are coupled to the nanosheet structure to form a resistor between the first contact and the second contact. Other embodiments are also described herein.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: June 5, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Wei Wang, Zheng Xu
  • Patent number: 9799516
    Abstract: A bonded wafer structure having a handle wafer, a device wafer, and an interface region with an abrupt transition between the conductivity profile of the device wafer and the handle wafer is used for making semiconductor devices. The improved doping profile of the bonded wafer structure is well suited for use in the manufacture of integrated circuits. The bonded wafer structure is especially suited for making radiation-hardened integrated circuits.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: October 24, 2017
    Assignee: Aeroflex Colorado Springs Inc.
    Inventors: David B. Kerwin, Joseph M. Benedetto
  • Patent number: 9799653
    Abstract: A bonded wafer structure having a handle wafer, a device wafer, and an interface region with an abrupt transition between the conductivity profile of the device wafer and the handle wafer is used for making semiconductor devices. The improved doping profile of the bonded wafer structure is well suited for use in the manufacture of integrated circuits. The bonded wafer structure is especially suited for making radiation-hardened integrated circuits.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: October 24, 2017
    Assignee: Aeroflex Colorado Springs Inc.
    Inventors: David B. Kerwin, Joseph M. Benedetto
  • Patent number: 9786608
    Abstract: A bonded wafer structure having a handle wafer, a device wafer, and an interface region with an abrupt transition between the conductivity profile of the device wafer and the handle wafer is used for making semiconductor devices. The improved doping profile of the bonded wafer structure is well suited for use in the manufacture of integrated circuits. The bonded wafer structure is especially suited for making radiation-hardened integrated circuits.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: October 10, 2017
    Assignee: Aeroflex Colorado Springs Inc.
    Inventors: David B. Kerwin, Joseph M. Benedetto
  • Patent number: 9331149
    Abstract: A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: May 3, 2016
    Assignee: ZIPTRONIX, INC.
    Inventors: Qin-Yi Tong, Gaius Gillman Fountain, Jr., Paul M. Enquist
  • Patent number: 9263266
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 16, 2016
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Patent number: 9224596
    Abstract: Semiconductor device structures and methods of fabricating semiconductor devices structures are provided that include a semi-insulating or insulating GaN epitaxial layer on a conductive semiconductor substrate and/or a conductive layer. The semi-insulating or insulating GaN epitaxial layer has a thickness of at least about 4 ?m. GaN semiconductor device structures and methods of fabricating GaN semiconductor device structures are also provided that include an electrically conductive SiC substrate and an insulating or semi-insulating GaN epitaxial layer on the conductive SiC substrate. The GaN epitaxial layer has a thickness of at least about 4 ?m.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: December 29, 2015
    Assignee: Cree, Inc.
    Inventors: Adam William Saxler, Yifeng Wu, Primit Parikh, Umesh Mishra, Richard Peter Smith, Scott T. Sheppard
  • Patent number: 9093365
    Abstract: A method for forming a GaN-containing semiconductor structure is provided. The method comprises a substrate is provided, a nucleation layer is formed above the substrate, a diffusion blocking layer is formed above the nucleation layer, a strain relief layer is formed above the diffusion blocking layer, and a semiconductor layer is formed above the strain relief layer, in which the diffusion blocking layer is deposited on the nucleation layer such that the diffusion blocking layer can prevent the impurities out-diffusion from the substrate.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: July 28, 2015
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yi Chang, Yuen Yee Wong, Chi Feng Hsieh
  • Patent number: 9082890
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: July 14, 2015
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Patent number: 8986464
    Abstract: A semiconductor substrate includes: single crystal silicon; a mask material formed on a surface of the single crystal silicon and having an opening; a silicon carbide film formed on a portion exposed in the opening of the single crystal silicon; and a single crystal silicon carbide film formed so as to cover the silicon carbide film and the mask material. The mask material has a viscosity of 105 Pa·S or more and 1014.5 Pa·S or less in a temperature range of 950 to 1400° C.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Yukimune Watanabe
  • Patent number: 7790574
    Abstract: Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: September 7, 2010
    Assignee: Georgia Tech Research Corporation
    Inventors: Ajeet Rohatgi, Dong Seop Kim, Kenta Nakayashiki, Brian Rounsaville
  • Patent number: 7344604
    Abstract: Disclosed herein is a LED and a lighting apparatus, which employs a LED as a light source of low power and high efficiency for an optical projection system. The lighting apparatus comprises a reflection part together with the LED, and enhances light emitting directionality of the LED, thereby generating parallel light or focused light suitable for the light source of the optical projection system. The LED comprises a negative electrode and a positive electrode formed on an identical plane with different stack constructions, thereby reducing the number of wires between the electrodes occupying a predetermined volume. In addition, the substrate and the electrodes are made of a transparent material to transmit light therethrough, so that the light source using the LED radiates light in all direction as in the light source using the arc discharge, without shielding the light at a rear side by the electrodes.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: March 18, 2008
    Assignee: LG Electronics Inc.
    Inventor: Chan Young Park
  • Publication number: 20070298591
    Abstract: An epitaxial silicon wafer includes a bulk wafer having a first doping concentration, a first epitaxial layer formed over the bulk wafer, the first epitaxial layer having a second doping concentration which is higher than the first doping concentration, and a second epitaxial layer formed over the first epitaxial layer, the second epitaxial layer having a third doping concentration which is lower than the second doping concentration.
    Type: Application
    Filed: April 4, 2007
    Publication date: December 27, 2007
    Inventor: Han-Seob Cha
  • Patent number: 7097718
    Abstract: Epitaxial wafers comprising a single crystal silicon substrate comprising agglomerated vacancy defects and having an axially symmetric region in which silicon self-interstitials are the predominant intrinsic point defect and which is substantially free of agglomerated defects, and an epitaxial layer which is deposited upon a surface of the substrate and which is substantially free of grown-in defects caused by the presence of agglomerated intrinsic point defects on the substrate surface upon which the epitaxial layer is deposited.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: August 29, 2006
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Luciano Mule'Stagno, Lu Fei, Joseph C. Holzer, Harold W. Korb, Robert J. Falster
  • Patent number: 6930026
    Abstract: A Si substrate 1 with a SiGeC crystal layer 8 deposited thereon is annealed to form an annealed SiGeC crystal layer 10 on the Si substrate 1. The annealed SiGeC crystal layer includes a matrix SiGeC crystal layer 7, which is lattice-relieved and hardly has dislocations, and SiC microcrystals 6 dispersed in the matrix SiGeC crystal layer 7. A Si crystal layer is then deposited on the annealed SiGeC crystal layer 10, to form a strained Si crystal layer 4 hardly having dislocations.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: August 16, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihiko Kanzawa, Katsuya Nozawa, Tohru Saitoh, Minoru Kubo
  • Patent number: 6858094
    Abstract: The present invention provides a silicon wafer having a DZ layer near a surface and an oxide precipitate layer in a bulk portion, wherein interstitial oxygen concentrations of the DZ layer, the oxide precipitate layer and a transition region between the DZ layer and the oxide precipitate layer are all 8 ppma or less, and an epitaxial silicon wafer, wherein an epitaxial layer is formed on a surface of the silicon wafer, as well as a method for producing a silicon wafer, which comprises growing a silicon single crystal ingot having an initial interstitial oxygen concentration of 10 to 25 ppma by the Czochralski method, processing the silicon single crystal ingot into a wafer, and subjecting the wafer to a first heat treatment at 950 to 1050° C. for 2 to 5 hours, a second heat treatment at 450 to 550° C. for 4 to 10 hours, a third heat treatment at 750 to 850° C. for 2 to 8 hours, and a fourth heat treatment at 950 to 1100° C. for 8 to 24 hours.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: February 22, 2005
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Wei Feig Qu, Yoshinori Hayamizu, Hiroshi Takeno
  • Patent number: 6645836
    Abstract: A Si substrate 1 with a SiGeC crystal layer 8 deposited thereon is annealed to form an annealed SiGeC crystal layer 10 on the Si substrate 1. The annealed SiGeC crystal layer includes a matrix SiGeC crystal layer 7, which is lattice-relieved and hardly has dislocations, and Sic microcrystals 6 dispersed in the matrix SiGeC crystal layer 7. A Si crystal layer is then deposited on the annealed SiGeC crystal layer 10, to form a strained Si crystal layer 4 hardly having dislocations.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: November 11, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihiko Kanzawa, Katsuya Nozawa, Tohru Saitoh, Minoru Kubo
  • Patent number: 6558802
    Abstract: A hybrid silicon-on-silicon substrate. A thin film (2101) of single-crystal silicon is bonded to a target wafer (46). A high-quality bond is formed between the thin film and the target wafer during a high-temperature annealing process. It is believed that the high-temperature annealing process forms covalent bonds between the layers at the interface (2305). The resulting hybrid wafer is suitable for use in integrated circuit manufacturing processes, similar to wafers with an epitaxial layer.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: May 6, 2003
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan W. Cheung
  • Patent number: 6533874
    Abstract: A method of forming a (gallium, aluminum, indium) nitride base layer on a substrate for subsequent fabrication, e.g., by MOCVD or MBE, of a microelectronic device structure thereon. Vapor-phase (Ga, Al, In) chloride is reacted with a vapor-phase nitrogenous compound in the presence of the substrate, to form (Ga, Al, In) nitride. The (Ga, Al, In) nitride base layer is grown on the substrate by HVPE, to yield a microelectronic device base comprising a substrate with the (Ga, Al, In) nitride base layer thereon. The product of such HVPE process comprises a device quality, single crystal crack-free base layer of (Ga, Al, In) N on the substrate, in which the thickness of the base layer may, for example, be on the order of 2 microns and greater and the defect density of the base layer may, for example, be on the order of 1E8 cm−2 or lower. Microelectronic devices thereby may be formed on the base layer, over a substrate of a foreign (poor lattice match) material, such as sapphire.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: March 18, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert P. Vaudo, Joan M. Redwing, Michael A. Tischler, Duncan W. Brown, Jeffrey S. Flynn
  • Patent number: 6294478
    Abstract: SOI substrates are fabricated with sufficient quality and with good reproducibility. At the same time, conservation of resources and reduction of cost are realized by reuse of the wafer and the like. Carried out to achieve the above are a step of bonding a principal surface of a first substrate to a principal surface of a second substrate, the first substrate being Si substrate in which at least one layer of non-porous thin film is formed through a porous Si layer, a step of exposing the porous Si layer in a side surface of a bonding substrate comprised of the first substrate and the second substrate, a step of dividing the porous Si layer by oxidizing the bonding substrate, and a step of removing the porous Si and oxidized porous Si layer on the second substrate separated by the division of the porous Si layer.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: September 25, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kiyofumi Sakaguchi, Takao Yonehara
  • Patent number: 6284039
    Abstract: The present invention is directed to a set of epitaxial silicon wafers assembled in a wafer cassette, boat or other wafer carrier. Each wafer comprises a single crystal silicon substrate having an axially symmetric region in which silicon self-interstitials are the predominant intrinsic point defect and which is substantially free of agglomerated defects, and an epitaxial layer which is deposited upon a surface of the substrate and which is substantially free of grown-in defects caused by the presence of agglomerated silicon self-interstitial defects on the substrate surface upon which the epitaxial layer is deposited.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: September 4, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Luciano Mule'Stagno, Lu Fei, Joseph C. Holzer, Harold W. Korb, Robert J. Falster
  • Patent number: 6228181
    Abstract: An epitaxial semiconductor wafer characterized by making the P-N junction face which having either flat or uneven face in a manner of uniformed thickness from the top surface, due to making a P or N type first layer by the Chemical Vapor Deposition on the basic plate and also to making a N or P type secondary layer on said first layer, while both of the layers being highly and pure controlled silicon, and the light reflectors being located at the out side of said each P or N type layer for concentrating the incoming light to the P-N junction portion.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: May 8, 2001
    Inventors: Shigeo Yamamoto, Mitsuhiro Maruyama
  • Patent number: 6221776
    Abstract: The present invention advantageously provides a method and apparatus in which a sacrificial anti-reflective coating is used as an etch stop layer to protect a material from being etched. The anti-reflective coating has a relatively high viscosity which allows it to pool in recess regions as it is spin-on deposited across a surface having elevational disparities. This feature of the anti-reflective coating may be taken advantage of when using the anti-reflective coating as an etch stop layer. That is, the anti-reflective coating may be spin-on deposited across a substrate and structures arranged upon the substrate to allow the anti-reflective coating to accumulate in the recess regions interposed between the structures. In this manner, a thicker layer of the anti-reflective coating is formed in the recessed region above the substrate than above the structures which comprises a first layer of material arranged upon a second layer of material.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: April 24, 2001
    Assignee: Cypress Semiconductor Corp.
    Inventor: Eugene C. Smith
  • Patent number: RE48379
    Abstract: An electronic-integration compatible photonic integrated circuit (EIC-PIC) for achieving high-performance computing and signal processing is provided. The electronic-integration compatible photonic integrated circuit comprises a plurality of electronic circuit structures and a plurality of photonic circuit structures. The electronic and photonic circuit structures are integrated by a process referred to as monolithic integration. An electronic circuit structure includes one or more electronic devices and a photonic circuit structure includes one or more photonic devices. The integration steps of electronic and photonic devices are further inserted into standard CMOS process. The photonic circuit structures and the electronic circuit structures are integrated to form the electronic-integration compatible photonic integrated circuit device.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: January 5, 2021
    Assignee: Electronic Photonic IC Inc. (EPIC Inc.)
    Inventors: Seng-Tiong Ho, Yingyan Huang