With Working Patents (Class 148/552)
  • Patent number: 11958266
    Abstract: Provided herein is a rolled composite aerospace product comprising a 2XXX-series core layer and an Al—Cu alloy clad layer coupled to at least one surface of the 2XXX-series core layer, wherein the Al—Cu alloy is an aluminium alloy comprising about 0.06% to 2.8% Cu, and preferably about 0.10% to 1.8% Cu. The rolled composite aerospace product is ideally suitable for structural aerospace parts. Also described herein is a method of manufacturing a rolled composite aerospace product.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: April 16, 2024
    Assignee: NOVELIS KOBLENZ GMBH
    Inventors: Achim Bürger, Sabine Maria Spangel, Philippe Meyer
  • Patent number: 11879167
    Abstract: The invention relates to a rolled composite aerospace product comprising a 2XXX-series core layer and a 6XXX-series aluminium alloy clad layer coupled to at least one surface of the 2XXX-series core layer, wherein the 6XXX-series aluminium alloy comprises, in wt. %, Si 0.3% to 1.0%, Mg 0.3% to 1.1%, Mn 0.04% to 1.0%, Fe 0.03% to 0.4%, Cu up to 0.10%, Cr up to 0.25%, V up to 0.2%, Zr up to 0.2%, Zn up to 0.5%, Ti up to 0.15%, unavoidable impurities each <0.05%, total <0.15%, balance aluminium. The invention further relates to a method of manufacturing such a rolled composite aerospace product.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: January 23, 2024
    Assignee: Novelis Koblenz GmbH
    Inventors: Aleksandar Lozanov Davidkov, Achim Bürger, Sabine Maria Spangel, Philippe Meyer
  • Patent number: 11739405
    Abstract: A method of producing an Al—Mg—Si-based aluminum alloy forged product, includes a solution heat treatment step of performing a solution heat treatment for heating the forged product obtained in the forging step at a temperature rising rate of 5.0° C./min or more from 20° C. to 500° C. and holding the forged product at 530° C. to 560° C. for 0.3 hours to 3 hours, a quench treatment step of quenching the forged product in a water tank by bringing an entire surface of the forged product into contact with quenching water within 5 seconds to 60 seconds after the solution heat treatment step for more than 5 minutes and not more than 40 minutes, and an aging treatment step of performing an aging treatment by heating the forged product after the quench treatment step at a temperature of 180° C. to 220° C. for 0.5 hours to 1.5 hours.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: August 29, 2023
    Assignee: SHOWA DENKO K.K.
    Inventor: Takuya Arayama
  • Patent number: 11667997
    Abstract: The invention relates to a product made of an aluminium-based alloy comprising, by wt. %, Cu: 2.4-3.2; Li: 1.6-2.3; Mg: 0.3-0.9; Mn: 0.2-0.6; Zr: 0.12-0.18; such that Zr??0.06 *Li+0.242; Zn: <1.0; Ag: <0.15; Fe+Si?0.20; optionally, at least one element selected from Ti, Sc, Cr, Hf and V, the content of the element, if selected, being: Ti: 0.01-0.1; Sc: 0.01-0.15; Cr: 0.01-0.3; Hf: 0.01-0.5; V: 0.01-0.3; other elements ?0.05 each and ?0.15 in total; the remainder being aluminium.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: June 6, 2023
    Assignee: CONSTELLIUM ISSOIRE
    Inventors: Juliette Chevy, Philippe Jarry, Soizic Blais, Alireza Arbab
  • Patent number: 11459641
    Abstract: The invention relates to a thin sheet metal for a reinforcing or structural part of a car body, consisting of an aluminum alloy. The invention also relates to the method for producing such a sheet metal and to the use of such a sheet metal for producing a reinforcing or structural part for a car body. The sheet metals according to the invention advantageously have a modulus of elasticity of at least 77 GPa.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: October 4, 2022
    Assignee: CONSTELLIUM NEUF-BRISACH
    Inventors: Petar Ratchev, Jean-Philippe Masse, Christophe Chabriol, Ravi Shahani, Lukasz Dolega
  • Patent number: 11352686
    Abstract: Provided is a method for producing an aluminium alloy strip from a non-precipitation-hardenable aluminium alloy having the following alloying constituents in wt %: 3.6%?Mg?6%, Si?0.4%, Fe?0.5%, Cu?0.15%, 0.1%?Mn?0.4%, Cr?0.05%, Zn?0.20%, Ti?0.20%, with the remainder Al and unavoidable impurities, individually at most 0.05 wt %, in total at most 0.15 wt %. In the method, a rolling ingot is cast. The rolling ingot is homogenised and then hot rolled into a hot strip. Then, the strip is cold rolled before a last intermediate annealing. The intermediate annealing is carried out to produce a recrystallised microstructure. The intermediate-annealed aluminium alloy strip is cold rolled to a final thickness, and the aluminium alloy strip is reverse annealed in the coil to a final thickness.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 7, 2022
    Assignee: Hydro Aluminium Rolled Products GmbH
    Inventors: Olaf Engler, Henk-Jan Brinkman
  • Patent number: 11326232
    Abstract: A method for producing aluminum strips for lithographic printing plate supports, wherein the aluminum strip is produced from a rolling ingot, which after optional homogenizing is hot-rolled to a thickness of 2 mm to 7 mm and cold-rolled to a final thickness of 0.15 mm to 0.5 mm provides for an aluminum strip having a thickness of 0.15 mm to 0.5 mm and a printing plate support produced from the aluminum strip.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: May 10, 2022
    Assignee: Hydro Aluminium Deutschland GmbH
    Inventors: Bernhard Kernig, Henk-Jan Brinkman, Jochen Hasenclever, Christoph Settele, Gerd Steinhoff
  • Patent number: 11229939
    Abstract: The present invention provides a method for manufacturing a curved thin-walled intermetallic compound component by winding a mandrel with metal foil strips, which comprises the following steps: designing a prefabricated blank; preparing a support mandrel; determining thicknesses and layer numbers of foil strips; determining widths of the foil strips; establishing a laying process; pretreating surfaces of the foil strips; laying A foil and B foil; carrying out bulge forming on the prefabricated blank; carrying out diffusion reaction and densification treatment on a bulged component; and carrying out subsequent treatment of a thin-walled component. The present invention can solve the problems that impurities generated in the separation process of a support mould and a laminated foil prefabricated blank influence the final performance of a part, and a single homogeneous intermetallic compound component in thickness direction has poor plasticity and toughness at room temperature.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: January 25, 2022
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Zhubin He, Yi Xu, Jiangkai Liang, Ying Sun, Shijian Yuan
  • Patent number: 11180839
    Abstract: Disclosed herein are embodiments of an aging heat treatment that can be used to replace conventional aging steps when making alloy embodiments of the present disclosure. Embodiments of the disclosed aging heat treatment reduce cost and complexity in producing aluminum alloy-based components while also promoting and/or improving microstructure stability of the aluminum alloys.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 23, 2021
    Assignees: UT-Battelle, LLC, Nemak USA, Inc., FCA US LLC
    Inventors: Amit Shyam, James A. Haynes, Jose Alejandro Gonzalez Villarreal, Andres Fernando Rodriguez-Jasso, Gregg Thomas Black, Christopher Randall Glaspie, Seyed M. Mirmiran
  • Patent number: 11111562
    Abstract: The invention relates to a wrought product such as an extruded, rolled and/or forged aluminum alloy-based product, comprising, in weight %: Cu: 3.0-3.9; Li: 0.8-1.3; Mg: 0.6-1.0; Zr: 0.05-0.18; Ag: 0.0-0.5; Mn: 0.0-0.5; Fe+Si?0.20; Zn?0.15; at least one element from among: Ti: 0.01-0.15; Sc: 0.05-0.3; Cr: 0.05-0.3; Hf: 0.05-0.5; other elements ?0.05 each and ?0.15 total, remainder aluminum. The invention also relates to the process for producing said product. The products according to the invention are particularly useful in the production of thick aluminum products intended for producing structural elements in the aeronautical industry.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 7, 2021
    Assignee: CONSTELLIUM ISSOIRE
    Inventors: Timothy Warner, Christophe Sigli, Cedric Gasqueres, Armelle Danielou
  • Patent number: 10910629
    Abstract: A current collector for an electrochemical device and a method for manufacturing the same are provided. The current collector has wrinkles formed spontaneously according to heat expansion and cold shrinking of a metal thin film. A method for manufacturing an electrode includes heating a metal thin film for a current collector, stretching the heated metal thin film, and cooling the heated metal thin film.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: February 2, 2021
    Inventors: Eun-Bee Kim, Jung-Pil Lee
  • Patent number: 10710516
    Abstract: The invention relates to a method of manufacturing an outside decorative trim strip of a motor vehicle, such as window surrounds or body shell trim, made of aluminum alloy, by shaping and brightening of a plate or strip made by vertical continuous casting of an alloy slab of series AA5xxx of high purity, homogenization-heating of the slab, hot rolling, cooling, cold rolling with intermediate annealing in a continuous tunnel furnace, or holding between the solvus temperature and the alloy burning temperature typically for 3 seconds to 5 minutes, quenching in air or water, possible annealing at a temperature of 100 to 200° C. The invention also relates to a decorative trim strip of motor vehicle manufactured using such a method.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: July 14, 2020
    Assignee: CONSTELLIUM SINGEN ROLLED PRODUCTS GMBH
    Inventors: Mary-Anne Kulas, Andreas Afseth, Volkmar Gillich
  • Patent number: 10550456
    Abstract: The invention relates to an aluminium alloy strip composed of an AA 5xxx-type aluminium alloy containing at least 4 wt. % of Mg in addition to Al and inevitable impurities. The object of the invention of proposing an aluminium alloy strip in an AlMg aluminium alloy strip which is resistant to intercrystalline corrosion despite having high strength and an Mg content of at least 4 wt. %, is achieved according to a first teaching of the present invention by an aluminium alloy strip that has a recrystallized microstructure, the grain size (GS) of which in ?m has the following relation to the Mg content (c_Mg) in wt. % : GS?22+2*c_Mg, and wherein the aluminium alloy of the aluminium alloy strip has the composition described herein.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 4, 2020
    Assignee: Hydro Aluminium Rolled Products GmbH
    Inventors: Thomas Hentschel, Olaf Engler, Henk-Jan Brinkman
  • Patent number: 10501835
    Abstract: The invention relates to a method for manufacturing a thin sheet having a thickness of 0.5 to 3.3 mm and an essentially non-recrystallized structure made of aluminum-based alloy.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: December 10, 2019
    Assignee: CONSTELLIUM ISSOIRE
    Inventors: Bernard Bes, Juliette Chevy, Frank Eberl
  • Patent number: 10400312
    Abstract: The invention relates to a rolled product with state T351, having thickness of between 15 and 50 mm, made from aluminum alloy having the following composition, in % by weight, Cu: 3.85-4.15; Mg: 0.95-1.25; Mn: 0.45-0.57; Zr: 0.09-0.16; Ti: 0.005-0.1; Fe: <0.070; Si: <0.060; with Cu+Mg?5.15; other lesser elements 0.05 each and less than 0.15 in total, the remainder being aluminum.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: September 3, 2019
    Assignee: CONSTELLIUM ISSOIRE
    Inventor: Bernard Bes
  • Patent number: 9993865
    Abstract: An aluminum alloy product for manufacturing structural components, made from direct chill casting ingots comprises, based on wt %: Zn 7.5˜8.7, Mg 1.1˜2.3, Cu 0.5˜1.9, Zr 0.03˜0.20, the balance being Al, incidental elements and impurities. The levels of Zn, Mg, Cu, and Zr in the aluminum alloy products satisfy the expressions of (a) 10.5?Zn+Mg+Cu?11.0; (b) 5.3?(Zn/Mg)+Cu?6.0; and (c) (0.24?D/4800)?Zr?(0.24?D/5000). D is the minimum length of a line section connecting any two points on the periphery of the cross section of the ingot and passing through the geometrical center of the cross section. 250 mm?D?1000 mm. The aluminum alloy products have a superior combination of strength and damage tolerance, and exhibit homogeneous and consistent performance on the surface, at various depths under the surface, and in the core of the product. A method of producing the aluminum alloy products is also provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: June 12, 2018
    Assignee: GRIMAT Engineering Institute Co., Ltd.
    Inventors: Baiqing Xiong, Yongan Zhang, Baohong Zhu, Xiwu Li, Zhihui Li, Feng Wang, Hongwei Liu
  • Patent number: 9938612
    Abstract: A method of manufacturing aluminium alloy rolled sheet with excellent formability and suitable for an automotive body, the method including: casting an ingot of aluminium alloy of, in wt. %: Si 0.5 to 1.5, Mg 0.2 to 0.7, Fe 0.03 to 0.30, Cu up to 0.30, optionally one or more elements selected from the group of: (Mn, Zr, Cr, V), Zn up to 0.3, Ti up to 0.15, impurities and aluminium; homogenising the cast ingot at 450° C. or more; hot rolling the ingot to a hot-rolled product; cold rolling the hot-rolled product to a cold-rolled product of intermediate gauge; continuous intermediate annealing the cold-rolled product of intermediate gauge in the range of 360-580° C.; cold rolling the intermediate annealed cold-rolled product to a sheet of final gauge up to 2.5 mm; solution heat treating the sheet; and quenching the solution heat treated sheet.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: April 10, 2018
    Assignee: ALERIS ALUMINUM DUFFEL BVBA
    Inventor: Peter De Smet
  • Patent number: 9844805
    Abstract: The present invention relates generally to forming a threaded neck in a metal bottle manufactured by a process known as impact extrusion. More specifically, the present invention relates to methods, apparatus and alloy compositions used in the impact extrusion manufacturing of containers and other articles with sufficient strength characteristics to allow threading the container necks to receive a threaded closure on the threaded neck.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: December 19, 2017
    Assignee: BALL CORPORATION
    Inventors: John L. Siles, Matthias K. van de Liefvoort, Kevin Reed Jentzsch
  • Patent number: 9783871
    Abstract: A method of producing molten aluminum-lithium alloys for casting a feedstock in the form of an ingot, the method including the steps of: preparing a molten first aluminum alloy with a composition A which is free from lithium as purposive alloying element, transferring the first aluminum alloy to an induction melting furnace, adding lithium to the first aluminum alloy in the induction melting furnace to obtain a molten second aluminum alloy with a composition B having lithium as purposive alloying element, optionally adding further alloying elements to the second aluminum alloy, transferring the second alloy via a metal conveying trough from the induction melting furnace to a casting station.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: October 10, 2017
    Assignee: ALERIS ROLLED PRODUCTS GERMANY GMBH
    Inventors: Fred Brandt, Philippe Meyer
  • Patent number: 9371573
    Abstract: The present invention describes an effective grain refining practice for aluminum foundry alloys. The method described herein relies on the control of the Titanium level of the alloy to be grain refined and the addition of boron once it is melted. Boron addition can be made via Al—B master alloys as well as with boron compounds such as KBF4 salt. The boron added into the melt dissolves first and then forms the AlB2 particles that act as potent substrates for the nucleation of aluminum once solidification process starts. The Ti concentration of the alloy must be controlled below 100 ppm for this method to offer effective grain refinement. The boron becomes ineffective when the Ti concentration in the alloy is higher.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: June 21, 2016
    Assignee: TUBITAK
    Inventors: Osman Cakir, Fahri Alageyik, Yucel Birol
  • Patent number: 9353431
    Abstract: A high-strength aluminum material having a chemical composition which includes Zn: more than 7.2% (mass %, the same applies hereafter) and 8.7% or less, Mg: 1.3% or more and 2.1% or less, Cu: less than 0.50%, Fe: 0.30% or less, Si: 0.30% or less, Mn: less than 0.05%, Cr: 0.20% or less; Zr: less than 0.05%, Ti: 0.001% or more and 0.05% or less, the balance being Al and unavoidable impurities, is provided. It has a proof stress of 350 MPa or more, and a metallographic structure formed of a recrystallized structure. The recrystallized structure is comprised of crystal grains having an average particle diameter of 500 ?m or less, and a crystal grain length in a direction parallel to a hot working direction is 0.5 to 4 times as long as a crystal grain length in a direction perpendicular to the hot working direction.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: May 31, 2016
    Assignee: UACJ CORPORATION
    Inventor: Hidenori Hatta
  • Patent number: 9347558
    Abstract: Aluminum-based alloys for casting or wrought processing having improved combinations of properties, including improved high temperature strength, are provided. The alloys generally comprise copper, magnesium, silver, and titanium, along with scandium and/or cobalt. Zirconium, zinc, and/or vanadium may also optionally be present in the alloy. When cobalt is present in the alloy, nickel may also optionally be present. Cast and wrought products, as well as methods of making the same using the alloys, are also disclosed.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 24, 2016
    Assignee: Spirit AeroSystems, Inc.
    Inventors: Rahbar Nasserrafi, LaVerne L. Waalkes, Gerald E. Hicks, Kevin Obrachta, David E. Jakstis
  • Patent number: 9039848
    Abstract: An aluminum alloy wrought product including, in wt. %, Mg 3.0 to 7.0, Zn 0.6 to 2.8, Mn 0 to 1.0, Cu 0 to 2.0, Sc 0 to 0.6, at least one element selected from the group of Zr 0.04 to 0.4, Cr 0.04 to 0.4, Hf 0.04 to 0.4 and Ti 0.01 to 0.3; Fe maximum 0.3, Si maximum 0.3, inevitable impurities, and balance aluminum. The range for the Zn-content in wt. % is a function of the Mg-content according to: lower-limit of the Zn-range: [Zn]=0.34[Mg]?0.4, and upper-limit of the Zn-range: [Zn]=0.34[Mg]+0.4.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 26, 2015
    Assignee: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Andrew Norman, Alastair Wise, Achim Burger, Sabine Spangel
  • Publication number: 20150132182
    Abstract: An electrical cable (100A, 100B, 100C) has an elongate electrically conductive element (10A, 10B, 10C) made of aluminum alloy having aluminum (Al) and erbium precipitates (Al3Er), where the aluminum alloy additionally has an element chosen from iron (Fe), copper (Cu) and a mixture thereof; and unavoidable impurities.
    Type: Application
    Filed: September 25, 2014
    Publication date: May 14, 2015
    Inventor: Emilien Comoret
  • Publication number: 20150122378
    Abstract: A high electrical conductive, high temperature stable foil material, a process for the preparation of such a high electrical conductive, high temperature stable foil material, a solar cell interconnector including the high electrical conductive, high temperature stable foil material as well as the use of the high electrical conductive, high temperature stable foil material and/or the solar cell interconnector in solar power, aircraft or space applications. The high electrical conductive, high temperature stable foil material includes an aluminium alloy that has at least two elements selected from the group of scandium (Sc), magnesium (Mg), zirconium (Zr), ytterbium (Yb) and manganese (Mn).
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Applicant: AIRBUS DS GMBH
    Inventors: Frank PALM, Wiebke STEINS, Claus ZIMMERMANN
  • Patent number: 8999083
    Abstract: An aluminum alloy fin material for a heat exchanger having suitable strength before brazing enabling easy fin formation, having high strength after brazing, having a high thermal conductivity (electrical conductivity) after brazing, and having superior sag resistance, erosion resistance, self corrosion prevention, and sacrificial anode effect, a method of production of the same, and a method of production of a heat exchanger using the fin material are provided, that is, an aluminum alloy fin material having a chemical composition of Si: 0.7 to 1.4 wt %, Fe: 0.5 to 1.4 wt %, Mn: 0.7 to 1.4 wt %, and Zn: 0.5 to 2.5 wt %, Mg as an impurity limited to 0.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 7, 2015
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Tomohiro Sasaki, Masae Nagasawa, Nobuki Takahashi
  • Patent number: 8992661
    Abstract: A series of inventions leading to the production of specific aluminum alloys (especially aluminum beverage can sheet product) through novel approach of introducing, selectively partitioning and managing alloying elements. This invention also enables manufacturing practices to enhance the performance characteristics of aluminum alloys produced. The selected elements can be derived from carbon anodes made from calcined petroleum coke with high metallic contents (such as nickel and vanadium). Alloying elements can also be introduced and managed from other raw material such as alumina and bath constituents added during aluminum smelting process. Additionally, cell operating parameters, such as cell temperature, off gas flow rate, aluminum tapping rate and impurity partition characteristics can also be manipulated to produce low cost aluminum alloys and facilitate utilization of high metallic content calcined petroleum coke.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Tri-Arrows Aluminum Inc.
    Inventors: Gyan Jha, Frank R. Cannova, Subodh K. Das, Barry A. Sadler
  • Publication number: 20150068649
    Abstract: This relates to an aluminum alloy product, in particular an age-hardenable Al—Zn—Mg type alloy product for structural members, the alloy product combining a high strength with high toughness and reduced quench sensitivity, and having a chemical composition including, in wt. %: Zn about 3 to 11%, Mg about 1 to 3%, Cu about 0.9 to 3%, Ge about 0.03 to 0.4%, Si max. 0.5%, Fe max. 0.5%, balance aluminum and normal and/or inevitable elements and impurities. Furthermore, this relates to a method of producing such aluminum alloy products.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 12, 2015
    Inventors: Shangping CHEN, Linzhong ZHUANG, Sunil KHOSLA, Hugo VAN SCHOONEVELT, Andrew NORMAN, Achim BURGER
  • Publication number: 20150050455
    Abstract: A prototype aluminum mold for stampers that is used to manufacture stampers having a fine irregular surface structure on the surface thereof and containing aluminum and magnesium, wherein the content of magnesium is 0.1% by mass to 3% by mass, the content of silicon is 100 ppm by mass or less, the total content of elements other than aluminum and magnesium is 500 ppm by mass or less, and the number of magnesium silicide particles having an equivalent diameter of 10 nm or more on the surface of the prototype aluminum mold for stampers is 10/1000 ?m2 or less.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Inventors: Katsuhiro Kojima, Hiroshi Onomoto, Hiroaki Kita, Kota Shirai, Hiroshi Okada, Kazume Mochizuki
  • Publication number: 20150041027
    Abstract: The present invention provides an aluminum alloy fin stock material with higher strength, and improved sag resistance for use in heat exchangers, such as automotive heat exchangers. The aluminum alloy fin stock material is produced from an aluminum alloy comprising about 0.8-1.4 wt % Si, 0.4-0.8 wt % Fe, 0.05-0.4 wt % Cu, 1.2-1.7 wt % Mn and 1.20-2.3 wt % Zn, with the remainder as Al. The aluminum alloy fin stock material is made by a process comprising direct chill casting the aluminum alloy into an ingot, preheating the ingot, hot rolling the preheated ingot, cold rolling the ingot and inter-annealing at a temperature of 275-400° C. After inter-annealing, the aluminum alloy fin stock material is a cold rolled in a final cold rolling step to achieve % cold work (% CW) of 20-35%.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Applicants: Novelis Inc., Denso Corporation
    Inventors: Andrew D. Howells, Kevin Michael Gatenby, Hany Ahmed, Jyothi Kadali, Derek William Aluia, John Michael Baciak, III
  • Publication number: 20150027595
    Abstract: An aluminum material for producing light-weight components includes aluminum (Al), scandium (Sc), zirconium (Zr) and ytterbium (Yb), where a weight ratio of scandium (Sc) to zirconium (Zr) to ytterbium (Yb) [Sc/Zr/Yb] is in a range from 10/5/2.5 to 10/2.5/1.25.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventor: Frank PALM
  • Publication number: 20150000799
    Abstract: The present application discloses wrought 2xxx Al—Li alloy products that are work insensitive. The wrought aluminum alloy products generally include from about 2.75 wt. % to about 5.0 wt. % Cu, from about 0.2 wt. % to about 0.8 wt. % Mg, where the ratio of copper-to-magnesium ratio (Cu/Mg) in the aluminum alloy is in the range of from about 6.1 to about 17, from about 0.1 wt. % to 1.10 wt. % Li, from about 0.3 wt. % to about 2.0 wt. % Ag, from 0.50 wt. % to about 1.5 wt. % Zn, up to about 1.0 wt. % Mn, the balance being aluminum, optional incidental elements, and impurities. The wrought aluminum alloy products may realize a low strength differential and in a short aging time due to their work insensitive nature.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Cagatay Yanar, Roberto J. Rioja, Jen C. Lin, Ralph R. Sawtell
  • Publication number: 20140367001
    Abstract: Provided is an aluminum alloy forged material comprising an excess amount of Si and a large quantity of a strength-increasing element such as Cu or Mn, and by which high strength and high toughness can be stably obtained even if the forged material is thinned, and also provided is a method for producing the same. A forged material constituted from an aluminum alloy which contains prescribed quantities of Mg, Si, Cu, Fe, Ti and B and further contains one or more elements selected from among Mn, Cr and Zr, with the remainder comprising Al and inevitable impurities, wherein the electrical conductivity measured at 20° C. on the surface of the aluminum alloy is greater than 42.5% IACS but not more than 46.0% IACS, and the forged aluminum alloy material has 0.2% proof stress of 360 MPa or more and Charpy impact value of 6 J/cm2 or more.
    Type: Application
    Filed: January 10, 2013
    Publication date: December 18, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yoshiya Inagaki, Masayuki Hori
  • Patent number: 8877123
    Abstract: The invention relates to an age-hardenable aluminium alloy product for structural members having a chemical composition including, in wt. %: Cu about 3.6 to 6.0%, Mg about 0.15 to 1.2%, Ge about 0.15 to 1.1%, Si about 0.1 to 0.8%, Fe<0.25%, balance aluminium and normal and/or inevitable elements and impurities. Zn, Ag and/or Ni may or may not be present. A typical range for Zn is <0.3 or, in a further embodiment about 0.3 to 1.3%. A typical range for Ag is <0.1 or, in a further embodiment about 0.1 to 1.0%. Products made from this aluminium alloy product are very suitable for aerospace applications. The alloy can be processed to various product forms, e.g. sheet, thin plate, thick plate, extruded or forged products. Products made from this alloy can be used also as a cast product, ideally as die-cast product.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 4, 2014
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Linzhong Zhuang, Shangping Chen, Andrew Norman
  • Patent number: 8844796
    Abstract: Disclosed herein is a method of making a structure by ultrasonic welding and superplastic forming. The method comprises assembling a plurality of workpieces comprising a first workpiece including a first material having superplastic characteristics; ultrasonically welding the first workpiece to a second workpiece, to form an assembly; heating the assembly to a temperature at which the first material having superplastic characteristics is capable of superplastic deformation, and injecting a fluid between the first workpiece and the second workpiece to form a cavity between the first workpiece and the second workpiece.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 30, 2014
    Assignee: The Boeing Company
    Inventor: Kevin T. Slattery
  • Publication number: 20140261909
    Abstract: A high-strength aluminum-magnesium silicon alloy and its manufacturing process which includes a composition adjusting step to add vanadium (V) and zirconium (Zr) in an aluminum-magnesium silicon alloy to refine grains of the alloy; a material casting step, a material preheating step, a hot forging step and a heat treatment step to melt magnesium and silicon atoms into an aluminum base to cause a lattice distortion and achieve a strengthening effect and precipitate Mg2Si from the grains of the alloy, and the precipitated particles act as obstacles to dislocation movement. Therefore, the alloy product has a yield strength improved by 31%, the ultimate strength by 39%, the hardness by 34%, and the fatigue strength by 55%. Therefore, the alloy product can be used in components with a high strength requirement such as the aluminum alloy wheels and the control arms of a car suspension system.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 18, 2014
    Applicant: SUPER ALLOY INDUSTRIAL CO., LTD.
    Inventors: Henry SHIH, Chuan Chao TSENG, Cheng Chia CHANG
  • Publication number: 20140224386
    Abstract: An Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties. The present invention relates to an aluminium alloy product comprising or consisting essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2% magnesium (Mg), about 1.0 to 1.9% copper (Cu), preferable (0.9 Mg?0.6)?Cu?(0.9 Mg+0.05), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminium (Al) and other incidental elements. The invention relates also to a method of manufacturing such as alloy.
    Type: Application
    Filed: December 27, 2013
    Publication date: August 14, 2014
    Applicant: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Rinze BENEDICTUS, Christian Joachim KEIDEL, Alfred Ludwig HEINZ, Nedia TELIOUI
  • Patent number: 8784582
    Abstract: A heat exchanger use high strength aluminum alloy fin material having a high strength and excellent in thermal conductivity, erosion resistance, sag resistance, sacrificial anodization effect, and self corrosion resistance, characterized by containing Si: 0.8 to 1.4 wt %, Fe: 0.15 to 0.7 wt %, Mn: 1.5 to 3.0 wt %, and Zn: 0.5 to 2.5 wt %, limiting the Mg as an impurity to 0.05 wt % or less, and having a balance of ordinary impurities and Al in chemical composition, having a metal structure before brazing of a fibrous crystal grain structure, a tensile strength before brazing of not more than 240 MPa, a tensile strength after brazing of not less than 150 MPa, and a recrystallized grain size after brazing of 500 ?m or more.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: July 22, 2014
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Hideki Suzuki, Yoshito Oki, Tomohiro Sasaki, Masae Nagasawa
  • Publication number: 20140190595
    Abstract: The invention relates to a method for producing a strip made of an AlMgSi alloy, in which a rolling ingot made of an AlMgSi alloy is cast, the rolling ingot is subjected to homogenization, the rolling ingot having been brought to rolling temperature is hot-rolled and is optionally cold-rolled to the final thickness thereafter. The problem of providing an improved method for producing aluminum strip made of an AlMgSi alloy, with which AlMgSi strips having very good shaping behaviour can be produced reliably, is solved in that immediately after exit from the final rolling pass, the hot strip has a temperature of between more than 130° C., preferably 135° C., and at most 250° C., preferably at most 230° C., and the hot strip is wound up at this temperature.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: Hydro Aluminum Rolled Products GmbH
    Inventors: Werner Kehl, Dietmar Schröder, Henk-Jan Brinkman, Natalie Hörster, Kai-Friedrich Karhausen, Eike Brünger, Thomas Wirtz
  • Patent number: 8771441
    Abstract: An aluminum alloy comprising 2.1 to 2.8 wt. % Cu, 1.1 to 1.7 wt. % Li, 0.1 to 0.8 wt. % Ag, 0.2 to 0.6 wt. % Mg, 0.2 to 0.6 wt. % Mn, a content of Fe and Si less or equal to 0.1 wt. % each, and a content of unavoidable impurities less than or equal to 0.05 wt. % each and 0.15 wt. % total, and the alloy being substantially zirconium free.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 8, 2014
    Inventors: Bernard Bes, Herve Ribes, Christophe Sigli, Timothy Warner
  • Publication number: 20140166161
    Abstract: A heat-resistant Al—Cu—Mg—Ag alloy for producing semifinished parts or products, which is suitable for use at elevated temperatures and has good static and dynamic strength properties combined with an improved creep resistance and comprises: 0.3-0.7% by weight of silicon (Si), not more than 0.15% by weight of iron (Fe), 3.5-4.7% by weight of copper (Cu), 0.05-0.5% by weight of manganese (Mn), 0.3-0.9% by weight of magnesium (Mg), 0.02-0.15% by weight of titanium (Ti), 0.03-0.25% by weight of zirconium (Zr), 0.1-0.7% by weight of silver (Ag), 0.03-0.5% by weight of scandium (Sc), 0.03-0.2% by weight of vanadium (V), not more than 0.05% by weight of others, individually, not more than 0.15% by weight of others, total, balance aluminium, is described. A process for producing a semifinished part or product composed of the abovementioned aluminium alloy is also described.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 19, 2014
    Applicant: Otto Fuchs KG
    Inventors: Gregor Terlinde, Thomas Witulski, Matthias Hilpert
  • Patent number: 8608876
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe<0.25%, and Si<0.12%. Also, a method of manufacturing aluminum wrought products in relatively thick gauges, i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: December 17, 2013
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Publication number: 20130312877
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg?(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the 3-stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Application
    Filed: August 8, 2013
    Publication date: November 28, 2013
    Applicant: ALCOA INC.
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Patent number: 8551267
    Abstract: Aluminum or aluminum alloy sputter targets and methods of making same are provided. The pure aluminum or aluminum alloy is mechanically worked to produce a circular blank, and then the blank is given a recrystallization anneal to achieve desirable grain size and crystallographic texture. A 10-50% additional strain is provided to the blank step after the annealing to increase the mechanical strength. Further, in a flange area of the target, the strain is greater than in the other target areas with the strain in the flange area being imparted at a rate of about 20-60% strain. The blank is then finished to form a sputtering target with desirable crystallographic texture and adequate mechanical strength.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 8, 2013
    Assignee: Tosoh SMD, Inc.
    Inventors: Weifang Miao, David B. Smathers, Robert S. Bailey
  • Publication number: 20130255841
    Abstract: It is an object to provide an aluminum alloy forged material for an automobile excellent in tensile strength while maintaining excellent corrosion resistance, and a method for manufacturing the same. Provided are the aluminum alloy forged material for an automobile and a method for manufacturing the same, the aluminum alloy forged material being composed of an aluminum alloy including Si: 0.7-1.5 mass %, Fe: 0.1-0.5 mass %, Mg: 0.6-1.2 mass %, Ti: 0.01-0.1 mass % and Mn: 0.3-1.0 mass %, further including at least one element selected from Cr: 0.1-0.4 mass % and Zr: 0.01-0.2 mass %, restricting Cu: 0.1 mass % or less and Zn: 0.05 mass % or less, and a hydrogen amount: 0.25 ml/100 g-Al or less, the remainder being Al and unavoidable impurities, in which the depth of recrystallization from the surface is 5 mm or less.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masayuki HORI, Yoshiya Inagaki
  • Publication number: 20130233706
    Abstract: There is provided an Al-based alloy sputtering target, which can provide an enhanced deposition rate (or sputtering rate) when the sputtering target is used, and which can preferably prevent the occurrence of splashes. The Al-based alloy sputtering target of the present invention includes Ta and may preferably include an Al—Ta-based intermetallic compound containing Al and Ta, which compound has a mean particle diameter of from 0.005 ?m to 1.0 ?m and a mean interparticle distance of from 0.01 ?m to 10.0 ?m.
    Type: Application
    Filed: October 5, 2011
    Publication date: September 12, 2013
    Applicants: Kobelco Research Institute Inc., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Katsushi Matsumoto, Katsutoshi Takagi, Yuichi Taketomi, Junichi Nakai, Hidetada Makino, Toshiaki Takagi
  • Publication number: 20130146186
    Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt.%: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each<0.5 wt. %, and impurities or incidental elements each<0.05, total<0.15, and the balance being aluminium.
    Type: Application
    Filed: February 9, 2013
    Publication date: June 13, 2013
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventor: Aleris Aluminum Koblenz GmbH
  • Publication number: 20130092294
    Abstract: The invention concerns a process to manufacture a flat-rolled product, notably for the aeronautic industry containing aluminum alloy comprising 2.1% to 3.9% Cu by weight, 0.7% to 2.0% Li by weight, 0.1% to 1,0% Mg by weight, 0% to 0.6% Ag by weight, 0% to 1% Zn by weight, at least 0.20% Fe+Si by weight, at least one element chosen from Zr, Mn, Cr, Sc, Hf and Ti, the quantity of said element, if chosen, being 0.05% to 0.18% by weight for Zn, 0.1% to 0.6% by weight for Mn, 0.05% to 0.3% by weight for Cr, 0.02% to 0.2% by weight for Sc, 0.05% to 0.5% by weight for Hf and 0.01% to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the rest being aluminum, in which, notably a flattening and/or stretching is performed with a cumulated deformation of at least 0.5% and less than 3%, and a short heat-treatment is performed in which the sheet reaches a temperature between 130° C. and 170° C. for a period of 0.1 to 13 hours.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 18, 2013
    Applicant: CONSTELLIUM FRANCE
    Inventor: CONSTELLIUM FRANCE
  • Publication number: 20130068351
    Abstract: Multi-alloy composite sheets and methods of producing the composite sheets for use in automotive applications are disclosed. The automotive application may include an automotive panel having a bi-layer or a tri-layer composite sheet with 3xxx and 6xxx aluminum alloys. The composite sheets may be produced by roll bonding or multi-alloy casting, among other techniques. Each of the composite sheets may demonstrate good flat hem rating and mechanical properties, long shelf life, and high dent resistance, among other properties.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John F. Butler, JR.
  • Publication number: 20130068352
    Abstract: Novel aluminum alloys are provided for use in an impact extrusion manufacturing process to create shaped containers and other articles of manufacture. In one embodiment blends of recycled scrap aluminum are used in conjunction with relatively pure aluminum to create novel compositions which may be formed and shaped in an environmentally friendly process. Other embodiments include methods for manufacturing a slug material comprising recycled aluminum for use in the impact extraction process.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: BALL CORPORATION
    Inventors: John L. Siles, Samuel Melancon, Stanley M. Platek, Anthony Chatey